

Introduction

- Overview of the NOvA experiment setup
- Improvements for this round of analysis
- Muon neutrino disappearance result
- Electron neutrino appearance result
- Joint disappearance and appearance fit

The NOvA experiment

Studying oscillations of neutrinos within the NuMI beam over a 810km baseline with two functionally identical off-axis detectors

The NuMI beam

- 8.85 e20 POT in 14 kton equivalent detector
 - 50% more exposure than the 2016 analysis
- Now running in antineutrino mode
- Running at design target of 700 kW since June 2016

University of Sussex

Luke Vinton

Detector Components

- PVC extrusions + Liquid Scintillator (mineral oil + 5% pseudocumene)
- Readout via WLS fibre to APD

 Layered planes in orthogonal views for 3D reconstruction

Event topologies

1 radiation length =

- 38 cm
- 6 cell depths
- 10 cell widths

Analysis Improvements

- 50% more data! 9 e20 POT
- Improved analysis techniques:
 - improved selections using deep learning,
 - separating events by energy resolution to better exploit the existing data
- Retuned cross-section modelling
 - Particularly important for multi-nucleon processes
- Detector sim improvements
- Data driven flux estimates

Previous results

Previous appearance and disappearance results 6.05 e20 protons on target

University of Sussex

arXiv:1703.03328

Deep learning inspired PID

Deep learning methods used to identify muons and electrons using features of the event topology

"A Convolutional Neural Network Neutrino Event Classifier" A. Aurisano, A. Radovic, and D. Rocco et al Journal of Instrumentation, Volume 11, September 2016

υ_{μ} Disappearance

- Select and measure υ_u events in both detectors
- Extrapolate beam expectation to far detector
- Measure cosmic background expectation using far detector data outside the beam spill window
- Compare measured far detector energy spectrum with expectation

υ_{μ} Disappearance

- New selection using deep learning selector and retuned cosmic BDT
- Equivalent background rejection with 11% more signal selected

υ_{μ} Energy Estimator

UNIVERSITY OF SUSSEX

Resolution Binning

4 quantiles in the far detector split by hadronic energy fraction for each reconstructed neutrino energy bin

Energy resolution best for lower hadronic energy fraction

 Resolution varies from 6% to 12% from best to worst resolution bins

Luke Vinton

Resolution Binning

UNIVERSITY OF SUSSEX

υ_{μ} Systematics

- Systematics assessed using sets of shifted MC
- Impact on the result of each systematic is assessed by allowing the systematic uncertainty to shift as a penalty term in the fit

υ_{μ} Far Detector Events

In the absence of oscillations we expect 763 events 126 were observed NOvA Preliminary

	Events	
Total	126	>
Expected	129	Ğ
Total Background	9.24	nts/0.1
Cosmic	5.82	ver
Neutral Current	2.50	ш
Other Beam	0.96	

υ_{μ} Far Detector Events

University of Sussex

Joint fit

University of Sussex

Luke Vinton

υ_e Appearance

- Measure ND and FD ν_e and ν_μ energy Spectra
- Break down ND ν_e selected events to separately extrapolate background components
- Extrapolate ND ν_{μ} selected events estimate to the FD
- Use FD data from outside of the beam spill to estimate cosmic backgrounds
- Compare measured FD spectrum to expectation

υ_p Selection

Optimized to maximally exploit the power of our our CVN ID. Select down to low PID values to recover as many signal events as possible. Binning in PID to retain the full power of the high purity subsample of events

University of Sussex

υ_e Systematics

40

20

Luke Vinton

π

<u>π</u>2

NH: $\Delta m_{32}^2 = +2.44 \times 10^{-3} eV^2$ IH: $\Delta m_{32}^2 = -2.48 \times 10^{-3} eV^2$

<u>3π</u> 2

 2π

υ_e Selected Events

Observe 66 events in FD Background Expectation 20.5±2.5

NOvA Preliminary

Luke Vinton

Joint Best Fit

NOvA Preliminary

University of Sussex

Conclusions

- At 8.85 e20 POT, NOvA finds:
 - Muon neutrinos disappear: Competitive measurement of Δm_{32}^2 , new analysis prefers mixing near-maximal
 - Electron neutrinos appear: Inverted Hierarchy at $\delta_{cp} = \pi/2$ disfavoured at greater than 3 σ . Approaching 2 σ IH rejection
- Excellent detector and beam performance
- **Significant improvement in our analysis tools.** Expected to continue, benefiting from efforts like the NOvA test beam.
- Looking forward to opening the box on our first antineutrino data this summer!
- Expect NOvA to continue to contribute to key questions:
 - Is δ_{cp} nonzero?
 - What is the mass hierarchy?

Thank you!

5)

Tuned interaction modelling

- Nuclear effects on the initial state (nuclear charge screening/"RPA" effect) and reactions themselves (multinucleon ejection e.g. 2p2h via Meson Exchange Currents (MEC)) are important components of our interaction model, particularly of the hadronic energy component
- Theory for these effects and how they fit together remains incomplete
- Important that we not just have the best possible central value tune, but also appropriately conservative uncertainties

υ_{μ} Result

NOvA Preliminary

Future

