Les Rencontres de Physique de la Vallée d'Aoste

$K^+ \rightarrow \pi^+ \nu \nu$ decay and NP searches at NA62

Silvia Martellotti* on behalf of NA62 Collaboration (*INFN Laboratori Nazionali di Frascati & CERN)

La Thuile 2018. February 28th.

Outline

Theoretical introduction to the $K \rightarrow \pi v v$ rare decays

NA62 experiment at the CERN SpS

- Aim and strategy for the BR(K⁺ $\rightarrow \pi^+ \nu \nu$) measurement
- Detector overview
- Preliminary results with 2016 data
- Prospects
- Broader physics program

SM theoretical framework

The $K^+ \rightarrow \pi^+ \nu \nu$ decay is extremely suppressed

Flavor-changing neutral current quark transition $s \rightarrow dvv$.

Forbidden at tree level, dominated by short-distance dynamics (GIM mechanism)

Is characterized by a theoretical cleanness in the SM prediction of the BR($K^+ \rightarrow \pi^+ \nu \nu$): loops and radiative corrections are under control.

Highly suppressed & Very well predicted

Excellent laboratory complementary to LHC

Stringent test of the SM and possible evidence for New Physics

Past measurement and prediction

Current theoretical prediction:

BR(K⁺ $\rightarrow \pi^+ \nu \nu$)_{SM} = (9.11 ± 0.72) x 10⁻¹¹

BR(K_L $\rightarrow \pi^0 \nu \nu$)_{SM} = (3.00 ± 0.30) x 10⁻¹¹

A.J. Buras, D.Buttazzo, J. Girrbach-Noe and R.Knegjens arXiv:1503.02693

- Main contribution to the errors comes from the uncertainties on the SM input parameters
- Intrinsic theoretical uncertainties (1-3%) slightly larger for the charged channel because of the corrections from lighter-quark contributions

Experimental status:

$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$$

Only measurement obtained by E787 and E949 experiments at BNL with **stopped** kaon decays (7 candidates)

Gap between theoretical precision and large experimental error motivates a strong experimental effort. Significant new constraints can be obtained.

Neutral decay $K_L \rightarrow \pi^0 v v$ has never been measured

New Physics from $K \rightarrow \pi \nu \nu$ decays

Measurement of BR of charged ($K^+ \rightarrow \pi^+ \nu \nu$) and neutral ($K_L \rightarrow \pi^0 \nu \nu$) modes can determine the **unitarity triangle** independently from B inputs

$K \rightarrow \pi v v$ and new physics

$K \rightarrow \pi v v$ is uniquely sensitive to high mass scales.

NP may simply occur at a higher mass scale

 \rightarrow Null results from direct searches at LHC so far

Indirect probes to explore high mass scales become very interesting!

Es: Tree-level flavor changing Z' LH+RH couplings

- Some fine-tuning around constraint from ε_κ
- K → πvv sensitive to mass scales up to 2000 TeV (up to tens of TeV even if LH couplings only)
- Order of magnitude higher than for B decays

Kaon at CERN SPS

The **CERN-SPS secondary beam line** already used for the NA48 experiment can deliver the required K⁺ intensity

- In the North Area the SpS extraction line is providing a secondary charged hadron beam
- 400 GeV/c primary proton
 beam
- 3 x 10¹² protons/pulse
- 40 cm berillium target
- 75 GeV/c unseparated hadrons beam: π⁺, K⁺ (6%), protons (Δp/p ± 1%)
- 4.8 x 10¹² K⁺ decays/year

NA62 Experiment

NA62 Apparatus

270 m long downstream of the beryllium target. Useful K⁺ decays are detected in a **65 m long fiducial volume**.

Approximately cylindrical shape around the beam axis for the main detectors. Diameter varies from 20 to 400 cm.

Each detector sends ~ 10 MHz of raw input data to the Level 0 trigger (FPGA) that selects 1 MHz of events. L1 and L2 triggers (software) guarantee a maximum of 10 kHz of acquisition rate.

NA62 Goal

Design criteria: kaon intensity, signal acceptance, background suppression

Kaons with high momentum. **Decay in flight technique**. Signal signature: K⁺ track + π⁺ track

Backgrounds

Decay	BR	Main Rejection Tools
$K^+ \to \mu^+ \nu_\mu(\gamma)$	63%	μ -ID + kinematics
$K^+ \to \pi^+ \pi^0(\gamma)$	21%	γ -veto + kinematics
$K^+ \to \pi^+ \pi^+ \pi^-$	6%	multi-track + kinematics
$K^+ \to \pi^+ \pi^0 \pi^0$	2%	γ -veto + kinematics
$K^+ \to \pi^0 e^+ \nu_e$	5%	$e\text{-ID} + \gamma\text{-veto}$
$K^+ \to \pi^0 \mu^+ \nu_\mu$	3%	μ -ID + γ -veto

Basic ingredients:

- O(100 ps) Timing between sub-detectors
- O(10⁴) Background suppression from kinematics
- O(10⁷) μ -suppression (K⁺ $\rightarrow \mu^+ \nu$)
- O(10⁷) γ -suppression (from K⁺ $\rightarrow \pi^{+}\pi^{0}, \pi^{0} \rightarrow \gamma \gamma$)

BR(K⁺ $\rightarrow \pi^+ \nu \nu$) with 10% accuracy: O(100) SM events + control of systematics at % level

Assuming 10% signal acceptance and a BR(K⁺ $\rightarrow \pi^+ \nu \nu$) ~10⁻¹⁰ at least **10¹³ K⁺ decays are required**

NA62: Beam ID & Tracking

Beam ID & Tracking

- KTAG: Differential Čerenkov counter blind to all particles but kaons of appropriate momentum (75 GeV, K+ rate:~45MHz). σt ~70 ps, efficiency > 99%. Steel vessel, 4.5 m long, filled with compressed nitrogen.
- **GTK:** GigaTracKer Spectrometer for K⁺ momentum and timing measurement.

 σ_t ~100 ps, $\sigma_{dx,dy} \approx 0.016$ mrad, ΔP/P < 0.4%.

750 MHz beam environment. 3 stations of 18000 silicon pixels (140 KHz/pixel).

CHANTI: Charged particle veto to reduce the background induced by inelastic interactions. 6 stations of X-Y plastic scintillator bars coupled with optical fibers. Efficiency > 99%.

NA62: Secondary ID & Tracking

Secondary particle ID & Tracking

- **STRAW:** Spectrometer with STRAW tubes for secondary particle momentum measurement. 4 chambers (4 layers < 0.5 X_0) in vacuum, 7168 STRAW tubes. Magnet provides a 270 MeV/c momentum kick in the horizontal plane. $\sigma_t \sim 6 \text{ ns}, \sigma_{dx,dy} \sim 130 \mu m$.
- CHOD: Charged Hodoscope of *plastic scintillator* to provide fast signal of the beam.
 Old CHOD σ_t ~ 250 ns, CHOD σ_t ~ 1 ns
- **RICH:** Ring Imaging Cherenkov detector for the secondary particle identification. 17 m long tank. Neon gas (1 atm). Downstream: mosaic of 20 spherical mirrors. Upstream: ~2000 PMTs. μ/π separation ~ 10⁻², σ_t of a ring < 100 ps

NA62: Photon Veto System

Photon Veto

- LAV: Large Angle Veto. 12 stations to veto γ with angles 8.5 < θ <50 mrad. 4 or 5 rings of lead glass crystals read out by PMTs. First 11 stations are in vacuum. $\sigma_t \sim 1 \text{ ns, } 10^{-3} \text{ to } 10^{-5} \text{ inefficiency (on } \gamma \text{ down to } 150 \text{ MeV}).$
- **IRC/SAC:** Inner Ring Calorimeter and Small Angle Calorimeter. To veto γ with angles <1 mrad. Shashlik calorimeters. Lead and plastic scintillator plates. σ_t < 1 ns, 10⁻⁴ inefficiency.
- LKr: NA48 LKr Calorimeter: to veto γ with angles 1 <θ <8.5 mrad and for PID. Ionization chamber + liquid Krypton, 2x2 cm2 cells. σ_t ~500 ps (E_{clusters} > 3 GeV), σ_t ~1 ns (hadronic and MIP clusters), $\sigma_{dx,dy}$ ~1 mm, 10⁻⁵ inefficiency (E γ > 10 GeV).

NA62: Muon Veto System

Beam ID & Tracking

- MUV3: Efficient fast Muon Veto (reduction factor > 10) used in the hardware trigger level. Placed after an iron wall. 1 plane of 148 5cm thick scintillator tiles. Muon Rate: 10 MHz. σ_t ~500 ps, efficiency ~99.5%
- **MUV1/2:** Hadronic calorimeters for the μ/π separation.

2 modules of iron-scintillator plate sandwiches. Readout with LKr electronics. Cluster reco at ~20 ns from T_{track}, and at ±150 mm from the expected impact point

NA62 Timescale

2014 Pilot Run

- 2015 Commissioning Run
- **2016** Commissioning + Physics Run \rightarrow SM sensitivity reached O(10⁻¹⁰).
- **2017** Physics $Run \rightarrow Improve$ on the present state of the art.
- **2018** > 6 months of data taking expected...

Assuming that the 2018 run is as successful as the 2017 one, by the end of 2018 NA62 should have collected between 20 and 30 PNN events at the SM sensitivity

- For the spring 2018 the results from the full 2016 statistics will be presented
- Processing of the 2017 data is on-going after calibrations were performed

2019-2020 LS2 (Long shutdown 2)

Analysis Strategy

Most discriminating variable: $m_{miss}^2 = (P_{K+} - P_{\pi+})^2$

Where the daughter charged particle is assumed to be a pion

Theoretical m²_{miss} distribution for signal and backgrounds of the main K⁺ decay modes: (signal is multiplied by a factor 10¹⁰).

2 signal regions, on each side of the $K^+ \rightarrow \pi^+ \pi^0$ peak (to eliminate 92% of the K^+ width)

Main background sources:

- $K^+ \rightarrow \pi^+ \pi^0$, $K^+ \rightarrow \mu^+ \nu$ non gaussian resolution and radiative tails
- $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ non gaussian resolution tails
- decays with neutrino in final state

2016 Data

2016 data Goal: study the single event sensitivity of the apparatus down to 1 event over 10¹⁰ (reach SM-expectation sensitivity).

Data sample: preliminary exploratory analysis has been performed on about 2.3 × 10¹⁰ K⁺ decays in fiducial region (5% of 2016 statistics, at 40% of the nominal beam intensity)

Single downstream track selection with K⁺ matching:

- Timing π^+ :
 - $\sigma(T_{CHOD}) \sim 250 \text{ ps}, \sigma(T_{RICH}) \sim 150 \text{ ps}$
- Timing K⁺:
 - σ(T_{KTAG}) ~ 80ps, σ(T_{GTK}) ~ 100 ps
- Spatial matching, i.e intersection of GTK and Straw track:
 - σ (CDA) ~ 1.5 mm, 115 < Z_{vertex} < 165 m
- Mis-tagging probability: ~1.7%

 $15 < P_{\pi+} < 35 \text{ GeV/c}$ selected, to leave at least 40 GeV of missing energy.

Kinematic reconstruction

3 Missing Mass definition

•
$$m_{miss}^2 = (P_{K^+} G^{TK} - P_{\pi^+} S^{TRAW})^2$$

• $m_{miss}^2 (RICH) = (P_{K^+} G^{TK} - P_{\pi^+} R^{ICH})^2$

•
$$m_{miss}^2$$
 (no GTK) = ($P_{K^+}^{beam} - P_{\pi^+}^{STRAW}$)²

"beam"- i.e. with nominal
$$P_k = 75 \text{ GeV/c}$$
 -

Kinematical background suppression measured on data: $K^+ \to \pi^+ \pi^0 {:}~ 6{\times}10^{-4}$ $K^+ \to \mu^+ \nu {:}~ 3{\times}10^{-4}$

Particle ID: π-μ separation

- Particle ID with calorimeters (MVA on LKr and MUVs): ε(μ) ≃ 10⁻⁵, ε(π) ≃ 80%
- Particle ID with RICH: $\varepsilon(\pi)_{ring} \simeq 90\%$ (P π function), $\varepsilon(\pi)_{ID} \simeq 80\%$, $\varepsilon(\mu) \simeq 10^{-2}$

PID performance measurement with RICH and calorimeter combined: μ -suppression <10⁻⁷

Photon Rejection

• $K^+ \rightarrow \pi^+ \pi^0$ suppression (in $K^+ \rightarrow \pi^+ \pi^0$ mass region):

 $\epsilon(\pi^0) = (1.2 \pm 0.2) \times 10^{-7}$

O(10⁻⁸) assuming 25-30% of accidental losses (measured with data)

Hermetic γ veto suppression of $\pi^0 \rightarrow \gamma \gamma$ decays < 10^{-7}

Preliminary Result

P_{π} estimated with RICH

Expected signal:

• $K^+ \rightarrow \pi^+ \nu \nu \simeq 0.064$ (normalization $K^+ \rightarrow \pi^+ \pi^0$)

Expected background:

- $K^+ \rightarrow \pi^+ \pi^0 \simeq 0.024$
- $K^+ \rightarrow \mu^+ \nu \simeq 0.011$
- $K^+ \rightarrow \pi^+ \pi^+ \pi^- \simeq 0.017$
- Beam-induced < 0.005</p>

(estimated with data-driven method)

No event in signal region*

*Event in box has m²_{miss}(NoGTK) outside the signal region

Conclusion

Results from 5% of 2016 data has been presented (2.3×10¹⁰ kaon decays) No signal observed compared to expectation of 0.064 events

Processing of the 2017 data is on-going (~3×10¹² kaon decays) Expected 10-15 K⁺ $\rightarrow \pi^+\nu\nu$ signal events

Data taking will continue through 2018 (april-november)

Along with the BR(K⁺ $\rightarrow \pi^+ \nu \nu$) measurement a rich program of physics will be addressed

Broader NA62 Physics Program

The high-intensity, high-performance NA62 setup is ideal for many other **measurements** and **new physics searches**

Standard Kaon Physics

- Measurements of the BR of all the main K⁺ decay modes
- Chiral perturbation theory studies: $K^+ \rightarrow \pi^+ \gamma \gamma$, $K^+ \rightarrow \pi^+ \pi^0 e^+ e^-$, $K^+ \rightarrow \pi^{0(+)} \pi^{0(-)} l^+ \nu$
- Precision measurement of $R_K = \Gamma(K^+ \rightarrow e^+ \nu_e)/(K^+ \rightarrow \mu^+ \nu_\mu)$

Searches for lepton-flavour or lepton-number violating decays

• $K^+ \rightarrow \pi^+ \mu^\pm e^\mp$, $K^+ \rightarrow \pi^- \mu^+ e^+$, $K^+ \rightarrow \pi^- e^+ e^+$, $K^+ \rightarrow e^+ \nu \gamma$, $K^+ \rightarrow \pi^- \mu^+ \mu^+$ (+ radiative modes)

 10^{13} K⁺: expected sensitivity 10^{-12} . Improve by ~x100 the past results.

Neutral pion

- π^0 form factor
- Ultra-rare/forbidden decays ($\pi^0 \rightarrow \gamma \gamma \gamma$, $\pi^0 \rightarrow \gamma \gamma \gamma \gamma$, $\pi^0 \rightarrow vv$)

Searches for exotic particles

Heavy neutral leptons, axion-like particles, dark photons

Talk from T. Spadaro!

Thank you for the attention from the NA62 Collaboration!

28 institutions, ~200 participants,

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna(JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Moscow(INR), Naples, Perugia, Pisa, Prague, Protvino(IHEP), Rome I, Rome II, San Luis Potosi, Sofia, TRIUMF, Turin, Vancouver(UBC)

