

Lepton-Flavour Universality tests with semitauonic decays at LHCb

Christos Hadjivasiliou on behalf of the LHCb collaboration

LPC Clermont-Ferrand

Lepton-Flavor Universality

- Standard Model (SM) predicts Lepton-Flavour Universality (LFU): equal couplings between gauge bosons and the three lepton families.
 - Signature: comparisons between $e/\mu/\tau$ channels. Usually exploiting ratios to cancel uncertainties.

b PENGUINS (b \rightarrow s FCNC): B \rightarrow K/K*/ $\phi \ell \ell$, $\Lambda_b \rightarrow \Lambda/\Lambda^* \ell \ell$ CHARM PENGUINS ($c \rightarrow u$ FCNC): $D \rightarrow h\ell\ell$, $\Lambda_c \rightarrow p\ell\ell$ TREE LEVEL $(b \rightarrow c)$: $B \rightarrow D^* \ell v$. $B_c \rightarrow J/\psi \ell v$

 $\mathcal{R}(H_c) = \frac{\mathcal{B}(H_b \to H_c \tau \nu)}{\mathcal{B}(H_b \to H_c \mu \nu)} \quad \begin{array}{c} \text{Should only account} \\ \text{for phase-space effects} \end{array}$

Tensions between SM expectations and experimental results:

 \Box semitauonic B decays \Box b→sll transitions

Follow Marta's talk – $R(J/\Psi)$ and $R(D^*)$ using muonic tau decays $[\tau \rightarrow \mu \nu \nu]$, R(D^{*}) using hadronic tau decays $[\tau \rightarrow \pi^{-}\pi^{+}\pi^{-}(\pi^{0})v]$, R(K), R(K^{*}), future prospects.

This talk will focus on the latest $R(D^*)$ results using three-prong τ-lepton decays. arXiv:1708.08856, arXiv:1711.02505

SM extensions (extended Higgs sector, leptoquarks, extended gauge sector) add new interactions with a stronger coupling with the τ . arXiv:1604.03088

arXiv:1206.4977

- Ø
- ☐ Semileptonic decay without charged lepton in the final state: Zero background from normal semileptonic decays.

- □ Signal isolation complicated by neutrinos, but several hadronic ones that provide control on the various background channels.
- **Only one v in the \tau vertex**: Partial reconstruction can be applied with a very good precision.
- □ $B^0 \rightarrow D^* \pi^+ \pi^- \pi^+$ is used as a normalization channel. (Same visible final state: shared systematics uncertainties cancel).

External inputs

$$R_{had}(D^*) = \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+} \pi^+ \pi^- \pi^+)}$$

$$R(D^*) = R_{had} \times \left| \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \pi^+ \pi^-)}{\mathcal{B}(\bar{B}^0 \to D^{*+} \mu^-)} \right|^2$$

Detached-vertex topology

Dominant background: Hadronic B⁰ decays into D*3πX (prompt).
 □ Yield is 100x bigger than the SM expectation for the signal yield.

Good precision in the τ decay vertex reconstruction

- Detachment cut: The τ vertex is downstream with respect to the B⁰ vertex and with a significance of at least 4σ .
- $\square D^*3\pi X \text{ background is reduced by} \\ 3 \text{ orders of magnitude.}$

Double-charm background

- □ The remaining background consists of B⁰ decays where the 3π vertex is transported away from the B⁰ vertex by a charm carrier: D_s, D⁺ or D⁰ (i.e. B→D*DX, D→3\piX).
- \Box Total yield is ~10x higher than SM expectation for signal.
- □ LHCb has three very good tools to limit this background:
 - \Box 3 π dynamics.
 - □ **Isolation criteria** against charged tracks and neutral energy deposits.
 - □ **Partial reconstruction** in both signal and background hypotheses.
- □ A Boosted Decision Tree (BDT) is trained using these tools to discriminate double charm decays from signal.

LHC

Double-charm background

- \Box In order to determine the D_s decay model:
 - \Box The **BDT output** is used to select an enriched sample of D_s events directly from data.
 - **Variables related to the 3\pi dynamics** are simultaneously fitted [min M(2π), max M(2π), M($\pi^+\pi^+$), M(3π)].

The weights obtained are used to construct the D_s templates

Normalization channel

The normalization channel has to be as similar as possible to the signal channel to cancel all systematics linked to trigger, particle ID, selection cuts.

- The channels differ by:
 Softer pions and D* due to the presence of two ν.
 Kinematics of 3π system is not exactly the same.
 - This gives a small residual effect on the efficiency ratio

Absolute BR recently measured by BABAR with a precision of 4.3%. Phys.Rev. D94 (2016) no.9, 091101

Signal reconstruction

- ❑ Assume 2 neutrinos in the event
 → can be used to access full kinematics (τ and B⁰, mass and direction constrains):
 - $\Box \text{ Reconstruction of } \tau \text{ and } B^0$ momentum, τ decay time.
 - \Box Kinematics solution found ~95% of the time.

Fit strategy

- □ A BDT cut is applied.
- □ 3D template fit is performed in:
 - $\Box q^2$ (the squared-momentum transferred to τ -v system).
 - $\Box \tau$ lifetime.
 - \Box The output of the BDT.

Fit results

- □ The 3D template binned likelihood fit results are presented for the lifetime and q² in four BDT bins, with increasing values of the BDT response from top to bottom.
- □ The increase in signal purity as function of BDT is very clearly seen, as well as the decrease of the D_s component.
- □ The dominant background at high BDT becomes the D⁺ component, with its distinctive long lifetime.

The overall χ^2 per dof is 1.15

Main systematics

Contribution	Value [%]
Simulated sample size	4.7
Signal modeling	1.8
D ^{**} τν and D _s ^{**} τν feed-downs	2.7
$D_s \rightarrow 3\pi X$ decay model	2.5
$B \rightarrow D^{*}D_{s}^{+}X, B \rightarrow D^{*}D^{+}X, B \rightarrow D^{*}D_{0}X$ backgrounds	3.9
Combinatorial background	0.7
$B \rightarrow D^* 3\pi X$ background	2.8
Empty bins in templates	1.3
Efficiency ratio	3.9
Normalization channel efficiency	2.0
Total internal uncertainty	9.1
B(B ⁰ →D [*] 3π) and B(B ⁰ →D [*] μ v _µ)	4.8

Can be reduced internally by LHCb

Can be reduced with help from other experiments

R(D*) results and conclusions

The fit results give a branching fraction which is:

 $BR(B^0 \rightarrow D^{*+}\tau v) = [1.40 \pm 0.09(stat) \pm 0.13(syst) \pm 0.18(ext)] \%$

To be compared to PDG 2017: BR(B⁰ \rightarrow D ^{*+} τ v) = (1.67 ± 0.13) %

□ Using HFLAV BR(B⁰→D $^{*}\mu\nu$) = (4.88 ± 0.10) %

 $R(D^*) = 0.286 \pm 0.019(stat) \pm 0.025(syst) \pm 0.021(ext)$

Impact on World Average:

- $\square R(D^*): 3.3\sigma \rightarrow 3.4\sigma \text{ from SM prediction}$
- □ Adding R(D): $4.0\sigma \rightarrow 4.1\sigma$ from SM prediction (reduced with the latest theory input arXiv:1707.0950)

It is also possible to compute an LHCb average: $\mathbf{R}_{\text{LHCb}}(\mathbf{D}^*) = \mathbf{0.309} \pm \mathbf{0.016}(\text{stat}) \pm \mathbf{0.024}(\text{syst})$ 2.0 σ from SM prediction

Back-up slides follow

