Measurement of the top quark pair-production in association with a W or Z boson in pp collisions at 13 TeV with full 2016 dataset at CMS

1711.02547, Submitted to JHEP

Illia Khvastunov
on behalf of the CMS Collaboration
University of Ghent (Belgium), CEA Saclay (France)

Les Rencontres de Physique de la Vallee d’Aoste 2018

March 1, 2018
Strategy and event selection

- The observed yields and measured cross-sections could be altered by new physics, the main background for $t\bar{t}H$ and for BSM processes.
- Strength of the electromagnetic coupling of top quark and Z boson can be probed.

$t\bar{t}W$, SS2ℓ
- $p_T > 40, 25(27)$GeV
- at least 2 jets, 1 b-tag jet

$t\bar{t}Z$, 3ℓ
- $p_T > 40, 20, 10$ GeV
- at least 2 jets
- $|m_{\ell\ell} - M_Z| < 10$ GeV

$t\bar{t}Z$, 4ℓ
- $p_T > 40$ and 10 GeV for others
- at least 2 jets
- $|m_{\ell\ell} - M_Z| < 20$ GeV

- The number of jets and b-tagged jets are used to form signal regions
ttW in SS 2ℓ

- For ttW the MVA analysis a Boost Decision Tree (BDT) classifier was developed.
 - BDT input:
 - Number of jets; number of medium b-tagged jets; the sum of p_T of the jets
 - Leading and trailing lepton p_T, transverse invariant mass of both leptons
 - Leading and subleading jet p_T, missing transverse energy
 - ΔR between the trailing lepton and the nearest selected jet

Event selection and categorisation

- BDT > 0
- Further split in number of jets, b-tag jets
- Split in $++$ and $--$

Backgrounds

- misidentified leptons, tt
- ttZ and ttH
Nonprompt lepton background

- Nonprompt leptons are expected to come mostly from $t\bar{t}$ and Drell-Yan production: an additional nonprompt lepton from the semi-leptonic decay of a b-hadron, additional jets misidentified as leptons, etc.

- The probability of a loosely identified lepton to pass the full set of identification/isolation requirements is calculated in respective enriched region and validated in Monte-Carlo simulation and data:
 - 2ℓ: $D < 0$
 - 3ℓ: absence of an same flavour opposite-charge lepton pair or invariant mass of 2 leptons is far from Z boson mass
WZ and ZZ background

- Main backgrounds for $t\bar{t}Z$ in 3ℓ and 4ℓ final states
- We rely on MC simulation for yield estimation and validate in enriched control regions:
 - 3 leptons (4 leptons), 2 of the form an (2)SFOC pair close to Z peak mass
 - in 3ℓ the cut that excludes b-tag jets is used

3\ell

4\ell
ttV: systematic uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty range</th>
<th>Impact on ttW cross-section</th>
<th>Impact on ttZ cross-section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity</td>
<td>2.5%</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Jet Energy Scale/Resolution</td>
<td>2-5%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Trigger</td>
<td>2-4%</td>
<td>4-5%</td>
<td>5%</td>
</tr>
<tr>
<td>B tagging</td>
<td>1-5%</td>
<td>2-5%</td>
<td>4-5%</td>
</tr>
<tr>
<td>PU modeling</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Lepton ID, efficiency</td>
<td>2-7%</td>
<td>3%</td>
<td>6-7%</td>
</tr>
<tr>
<td>μ_R/μ_F scale choice</td>
<td>1%</td>
<td><1%</td>
<td>1%</td>
</tr>
<tr>
<td>PDF choice</td>
<td>1%</td>
<td><1%</td>
<td>1%</td>
</tr>
<tr>
<td>Nonprompt background</td>
<td>30%</td>
<td>4%</td>
<td>< 2%</td>
</tr>
<tr>
<td>WZ cross section</td>
<td>10-20%</td>
<td><1%</td>
<td>2%</td>
</tr>
<tr>
<td>ZZ cross section</td>
<td>20%</td>
<td>-</td>
<td>1%</td>
</tr>
<tr>
<td>Charge misidentification</td>
<td>20%</td>
<td>3%</td>
<td>-</td>
</tr>
<tr>
<td>Rare SM background</td>
<td>50%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>ttX background</td>
<td>10-15%</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Stat. unc. for nonprompt</td>
<td>5-50%</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>Stat. unc. rare SM processes</td>
<td>20-100%</td>
<td>1%</td>
<td>< 1%</td>
</tr>
<tr>
<td>Total systematic</td>
<td>-</td>
<td>14%</td>
<td>12%</td>
</tr>
</tbody>
</table>

- Uncertainties on the lepton reconstruction, b tagging and trigger efficiency have the greatest effect both on the ttW and ttZ cross-section measurement.

- The uncertainty on nonprompt background gives a significant contribution to the systematic uncertainty of ttW cross section measurement.

- The systematic uncertainty for ttW and ttZ becomes dominant!
ttV results

2L

3L

4L
⇒ First time a single experiment achieves $>5\sigma$ for both processes simultaneously at 13 TeV
⇒ First time $t\bar{t}V$ reaches $>5\sigma$ at 13 TeV
ttV: EFT interpretations

EFT Lagrangian:
\[\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \sum_i c_i \mathcal{O}_i + \frac{1}{\Lambda^2} \sum_j c_j \mathcal{O}_j + \cdots \]

- \[\mathcal{M} = \mathcal{M}_0 + \sum c_j \mathcal{M}_j \], consider one operator at a time
- Do not consider all NP couplings to the first two generations, as well operators which caused significant cross section scaling for tt, inclusive Higgs, WW or WZ
- Considered NP effects on ttH as well as ttW and ttZ
- Construct a profile likelihood test statistic \[q(c_j) \], maximize to find the asymptotic best-fit \[c_j \]

<table>
<thead>
<tr>
<th>Wilson coefficient</th>
<th>Best fit [TeV(^{-2})]</th>
<th>68% CL [TeV(^{-2})]</th>
<th>95% CL [TeV(^{-2})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{c}_{uW}/\Lambda^2)</td>
<td>1.7</td>
<td>[−2.4, −0.5] and [0.4, 2.4]</td>
<td>[−2.9, 2.9]</td>
</tr>
<tr>
<td>(</td>
<td>\bar{c}_H/\Lambda^2 − 16.8\text{ TeV}^{-2}</td>
<td>)</td>
<td>15.6</td>
</tr>
<tr>
<td>(</td>
<td>\bar{c}_{3G}/\Lambda^2</td>
<td>)</td>
<td>0.5</td>
</tr>
<tr>
<td>(\bar{c}_{3G}/\Lambda^2)</td>
<td>−0.4</td>
<td>[−0.6, 0.1] and [0.4, 0.7]</td>
<td>[−0.7, 1.0]</td>
</tr>
<tr>
<td>(\bar{c}_{uG}/\Lambda^2)</td>
<td>0.2</td>
<td>[0, 0.3]</td>
<td>[−1.0, −0.9] and [−0.3, 0.4]</td>
</tr>
<tr>
<td>(</td>
<td>\bar{c}_{uB}/\Lambda^2</td>
<td>)</td>
<td>1.6</td>
</tr>
<tr>
<td>(\bar{c}_{Hu}/\Lambda^2)</td>
<td>−9.3</td>
<td>[−10.3, −8.0] and [0, 2.1]</td>
<td>[−11.1, −6.5] and [−1.6, 3.0]</td>
</tr>
<tr>
<td>(\bar{c}_{2G}/\Lambda^2)</td>
<td>0.4</td>
<td>[−0.9, −0.3] and [−0.1, 0.6]</td>
<td>[−1.1, 0.8]</td>
</tr>
</tbody>
</table>
Conclusions

- The measurement of $t\bar{t} + V$ cross-section is done at 13 TeV with statistical uncertainty $O(15\%)$ and systematic uncertainty $O(15\%)$
- Next step is to measure differential cross-section for $t\bar{t}Z$ and the tZ coupling
- We are excited to have more data already in 2017-2018!
ttbar MC closure test

- Tight-to-loose prediction vs. MC observed
- CMS Simulation Supplementary arXiv:1711.02547

Histograms for:
- N_j: 2 to 6 a.u.
- Leading lepton p_T (GeV): 10 to 200
- Trailing lepton p_T (GeV): 10 to 30
- MVA score: -0.5 to 1 a.u.
DY control region in data

3ℓ channel, OSSF pair, 0-1 jets, 0 b jets, $E_{T}^{\text{miss}} < 30$ GeV
WZ+jets split in flavour

CMS Supplementary arXiv:1711.02547 35.9 fb⁻¹ (13 TeV)

![Diagram showing event distribution based on Nb and N_j categories.]

- Data
- t\(\bar{t}\)Z
- t(\(\bar{t}\))X
- WZ + light
- WZ + c
- WZ + b
- Rare
- Nonprompt
same-sign 2ℓ channel in enriched $t\bar{t}W$ region: ≥ 3 jets, ≥ 2 b jet
$t\bar{t}Z$ in 3ℓ

3ℓ channel in enriched $t\bar{t}Z$ region: ≥ 3 jets, ≥ 1 b jet

![Graphs showing event distributions for $t\bar{t}Z$ in 3ℓ channel.](image)