Anisotropies at ultra-high energies An indication and a discovery

Ultra-high energy cosmic rays

11.

Who Is Shooting Superfast Particles at the Earth?

In Which You Learn That Space Is Full of Tiny Bullets

UHECR ID

Nature

Stable nuclei: p to Fe

Energy

from 10^{18} to $>10^{20}$ eV 1 **E**eV to >100 **E**eV

millions to billions TeV! note: $1 J \sim 6 EeV$

Flux

>10 EeV: few / km² / year >50 EeV: few / km² / century nearly isotropic

Travel distance

GZK: ${}^{A}X + \gamma \rightarrow {}^{A}X + \pi^{0}$ (e⁺ e⁻) few Gpc (z~0.1-0.2) @ 10 EeV 10-100 Mpc (z<0.05) @ 100 EeV

The Pierre Auger Observatory

Location

West Argentina: 1,400m above sea level **3,000 km²** (Luxembourg!)

Components

Atmosphere: calorimeter for the shower of daughter particles

Telescopes: 'image' showers during dark time (~10% duty cycle)

Particle detectors: 'collect' μ/e reaching ground (~100% duty cycle)

Fluorescence Telescopes

27 fixed cameras (PMTs) in 5 buildings 4 main sites: 6 eyes/site – 30°×30° FoV

Particle Detectors

1600 water-Cherenkov tanks 3 PMTs per tank, spaced by 1,500m (+infill: 50 spaced by 750m)

Surface array - collecting daughter particles

Surface array - collecting daughter particles

Surface array - performance

Detection of an UHECR event

Trigger of a 'hot' station and its neighboring tanks \rightarrow 25ns-sampled signal from the array Array status monitored every minute \rightarrow number of active detection 'cells' \rightarrow exposure

Reconstruction of an UHECR event

Charge \rightarrow **energy** (stat.~12%) / **Timing** \rightarrow **direction** (stat.~0.9°)

Energy calibrated against fluorescence for 'golden-hybrid' subset (sys.~14%)

Large-scale Anisotropy A discovery

The Pierre Auger Collaboration, Science 357 (2017)

RESEARCH ARTICLE

COSMIC RAYS

Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 10¹⁸ eV

The Pierre Auger Collaboration*+

Rayleigh Analysis in Right Ascension

Equatorial coordinate system

Spherical coordinates with z along Earth's rotation axis

 \rightarrow Right Ascension. ($\alpha \equiv \Phi$), Declination ($\delta \equiv \pi/2-\theta$)

Directional exposure constant in R.A.

- . Sidereal day: 23h 56m 4s
- → solar / sidereal: control of accuracy (e.g. correction for density, and pressure variations vs hour of the day)

Rayleigh analysis in R.A.

$$a_lpha = rac{2}{\mathcal{N}} \sum_{i=1}^N w_i \cos lpha_i$$

$$b_lpha = rac{2}{\mathcal{N}} \sum_{i=1}^N w_i \; ext{sin} \; lpha_i$$

Pierre Auger Collab. 2012

$$r_lpha = \sqrt{a_lpha^2 + b_lpha^2}
onumber \ an arphi_lpha = rac{b_lpha}{a_lpha}$$

$$\tan \varphi_{lpha} = rac{b_{lpha}}{a_{lpha}}$$

 α_i : R.A. of the event, w_i =array non-uniformity / tilt (N= Σw_i)

 \rightarrow r, ϕ : amplitude, phase of the 1st harmonic in R.A.

Deviation from isotropy

Linsley 1975

$$P(r_{\alpha}) = \exp(-\mathcal{N}r_{\alpha}^2/4) \rightarrow \mathbf{p\text{-value}}$$
 for a single tested dataset

Rayleigh analysis in Right Ascension

Normalized rates

Study in two energy bins

Array fully efficient up to $80^{\circ} > 4 \text{ EeV}$

4-8 EeV: ~82,000 events

$$\varphi = 80\pm60^{\circ}, r < 1.2\% (95\% C.L.)$$

→ no significant modulation

>8 **EeV**: ~32,000 events

$$\varphi = 100\pm10^{\circ}, r = 4.7\%\pm0.8\%$$

 \rightarrow local p=2.6 × 10⁻⁸!

Penalization for the energy scan

Study in 2 independent energy bins

- \rightarrow global p-value of 5 × 10⁻⁸
- \rightarrow first harmonic significant at the **5.4** σ level

Combining Right Ascension and Azimuthal

Amplitude of the dipole

 $d = 6.5\% \pm 1.0\% \rightarrow 10 \times larger$ than from proper motion wrt large scale structures!

→ astrophysical sources with anisotropic flux distribution?

Direction of the dipole

125° \pm 12° from the Galactic center \rightarrow hard to reconcile with Galactic origin, unless quite peculiar structure of the Galactic magnetic field (center = sink \rightarrow anti-center? Eichler+16)

UHECR & 2MRS dipoles

Effect of Galactic magnetic field (GMF)

Deflections in GMF: a few 10° Z (E / 10 EeV)⁻¹, with $\langle Z \rangle \sim 2-5$ at ~ 10 EeV (fluorescence)

Test realizations: use the GMF model of Jansson & Farrar 12 → **good direction!**

Conclusion

First detection $>5\sigma$ of a large-scale anisotropy > 8 EeV

Direction & amplitude consistent with an extragalactic origin \rightarrow **All / which galaxies???**

Jonathan Biteau | La Thuile | 2018-02-26 | Page 11/20

Which galaxies? An indication

■ The Astrophysical Journal Letters, 00:000000 (9pp), 2018 Month Day

© 2018. The American Astronomical Society. All rights reserved.

An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources

A multimessenger approach

AGNs and SBGs in our vicinity

AGNs from the 2FHL Catalog (Fermi-LAT, > 50 GeV) within 250 Mpc

Ackermann+ 16

'Starbursts' from *Fermi*-LAT search list (HCN survey) within 250 Mpc with radio flux > 0.3 Jy

Gao & Salomon 05

Assumption: UHECR flux ∝ non-thermal photon flux

Analysis: unbinned maximum-likelihood analysis vs isotropy Sky model: $[\alpha \times \text{sources} + (1-\alpha) \times \text{isotropic}] \otimes \text{Fisher}(\theta)$

past UHECR studies: doesn't assume that sources are 'standard' candles

Note: inspired from Pierre Auger Collaboration 2011 but differs from most

Result of the scan: the starburst indication!

Observations vs Expectations

Starburst galaxies - best-fit parameters

 $m f^{SB}(
ho_{SFR})$

Anisotropic fraction

10% of UHECR events correlating with position and flux of starbursts

Other 90%? Heavier nuclei deflected further away? Unresolved sources?

Note: Starburst contribution to local starformation rate: 5-20% (Sargent+ 12)

→ Are starbursts the tip of the iceberg?

Search radius

Simulations of 3 tested composition scenarios through the Galactic magnetic field of Jansson & Farrar 12

- . 2 CNO-dominated scenarios $\rightarrow \sim 25^{\circ}$
- . 1 p-dominated scenario
- → reconstructed parameters from sims bracket θ~13°

Composition > 40 EeV?

Auger upgrade

Highest energies: components

- . 3.8 m² scintillators on each water-cherenkov tank
- . upgraded electronics + extra PMT (dynamic range)
- → improved characterization of electromagnetic & muonic components of the shower
- $\rightarrow N_{u}(E)$ correlated to $X_{max}(E) \rightarrow$ **better compo.**

e.g. Parra +16

Lower energies: components

- . Burried muon counters in infill array (AMIGA)
- . Increased fluorescence uptime

Back to the old mission:

Who Is Shooting Superfast Particles at the Earth?

First harmonic study > 8 EeV

- . Collection of > 30,000 events
- \rightarrow 5.4 σ anisotropy

1st order spherical expansion

- . 6.5% dipole compatible with galaxy distrib.
- → 1st obs. evidence of extragalactic origin!

Observed Excess Map - E > 39 EeV

Max-likelihood analysis > 40 EeV

- . Collection of ~ 900 events
- \rightarrow 4.0 σ starburst-based anisotropy

We still don't know the sources!

- . Starbursts only preferred to other galaxies by $\sim 3\sigma$
- . **More to come**: models (magnetic fields) current data (Auger+TA), upgrades!

Side note: the VCV trauma

2007 tentative correlation with VCV

VCV: Véron-Cetty & Véron compilation of AGN

'Standard candle' approach: 2-pt correlation scan over search radius around evts and source distance

20/27 events > 57 EeV within 3.2° of 21 galaxies within 75 Mpc \rightarrow **p-value = 0.2% (3\sigma)**

Good fraction of the signal from clustering of 10 evts around **Cen A / M 83 / NGC 4945 group**

Latest update of this analysis (2014) $\rightarrow 2\sigma$

Why did the signal drop?

'Standard candle' approach

- → strong incompleteness effect (see Farrar +09)
- → limit of infinite # of srcs/evts: signal drops!
- + Low statistics → more subject to fluctuations

Current analysis any different?

2-pt correl. \rightarrow max-likelihood (no ∞ stat. issue)

Flux weight + volume limit \rightarrow less affected by missed faint sources (checked with \neq SB cat.)

27 events \rightarrow 894 events

Pierre Auger Collab., Science 2007

Event Map - Starburst model density

