

10 years in space: highlights of *Fermi*-LAT science

F. de Palma

(INFN Bari and Università Telematica Pegaso), on behalf of the Fermi LAT Collaboration

Les Rencontres de Physique de la Vallée d'Aoste La Thuile 2018

The *Fermi* satellite: instruments

- Launched by NASA on 2008 June 11, from Cape Canaveral, Florida
 - Almost circular orbit, at 565 km altitude and 25.6° inclination
 - Science mission started on August 2008
 - More than 1 billion of photons available for the standard analysis
 - Data and analysis SW are free on the FSSC website.
 - 8th Fermi symposium Oct 14-19 2018 in Baltimore

Gamma-ray

- The *Fermi* Gamma-Ray Space Telescope is an international Science Mission exploring the gamma-ray sky by means of its two main instruments:
 - Gamma-ray Burst Monitor (GBM): 8 keV → 40 MeV
 - − Large Area Telescope (LAT): 20 MeV → > 300 GeV
- Huge energy range: including largely unexplored band for a total of >7 energy decades!

F. de Palma @ La Thuile 2018

Following up LIGO events

- 6 GW events announced by the LIGO/VIRGO Collaboration:
 - 5 BH- BH: GW150914, LVT151012,
 GW151226, GW170104, GW170814;
 - 1 NS-NS: GW170817;
- BH-BH mergers are not expected to produce EM radiation.
- NS-NS: predicted (and confirmed) to have EM radiation.

- General strategy for *Fermi*-LAT searches at high-energy:
 - Automated full sky searches of transients;
 - Specific searches in the LIGO contours;
 - Specific follow-ups of detected counterparts;
 - All done automatically in pipelines to quick alert the community;

An historical event: GW170817

• ⊿t = 1.74 +/- 0.05 s

- Another <u>gamma-ray instrument</u>, the Anti-Coincidence Shield for the SPectrometer for **Integral (SPI-ACS)**, also detected GRB170817A!
- Conclusive evidence for the <u>BNS-SGRB connection</u>
 - Chance temporal and spatial coincidence for GRB170817A and GW170817 arising from two independent astrophysical events: P = 5 x 10⁻⁸

Abbott+2017 ApJ 848, 13

GW170817/GRB170817A, an unlucky event

- The LAT and the GBM do not collect data when in the SAA
 - For different instrument requirements, the SAA definition for the LAT is slightly larger (14%) than the GBM one;
 - At the time of the GW event (and GBM trigger), the LAT was in the SAA;
 - We observe the entire region between t_{GW}+1153 – t_{GW}+2017;

Gamma-ray

Fermi LAT sensitivity to SGRBs

Dermi

Rate estimation:

- LAT sees 23% of the all sky SGRBs within 100 s (either a detection or upper bound)
- LAT detects 5% of all GBMdetected SGRB
- Assuming 1 (2) GW+SGRB events per year : 5% (10%) probability to detect it in the LAT
- Modifying the observing profile (re-pointing every SGRB within 100 seconds): 7% (13%)

Arxiv: 1710.05450

Fermi-LAT source catalogs

- Purely gamma-ray based (associations only post facto)
- Concentrate on persistent sources, detection over timeintegrated data set
- 0/1/2/3FGL: full energy range
 (> 100 MeV)
- 1/2/3FHL: high-energy only
 (> 10 / 50 GeV)
- Each generation has used improved data/calibration: P6 ->P7 ->P7Rep ->P8

	0FGL ^a	1FGL	2FGL	1FHL ^b	3FGL
Total	205	1451	1873	514	3033
High-latitude sources	132	1043	1319	399	2193
Low-latitude sources	73	408	554	115	841
"Lost" sources ^c in 3FGL	12	310	300	17	

Acero F. + 2015 ApJS 218, 23

The 3FHL Catalog

Gamma-ray Space Telescope

- 1556 sources:
 - 79% extragalactic,
 - 8% Galactic
 - 13% unassociated

- 1286 in 3FGL
- 133 in TeVCat
- 211 new sources (not in 1FHL/2FHL/3FGL/TeVCat)
- 16 with redshift > 2

26/2/2018

F. de Palma @ La Thuile 2018

11

Ajello M+ 2017 ApJS 232, a8A

- The last main source list in the full energy range (E> 100 MeV) is the 3FGL based on 4 years of data.
- Improvements in the 4FGL:
 - Longer dataset
 - Improved interstellar emission model
 - Energy dispersion
 - Earth limb suppression
 - Weighted likelihood
- Preliminary 8 year source list with 5524 sources above 4 sigma (2500 were not in the 3FGL) available here:
 - https://fermi.gsfc.nasa.gov/ssc/data/access/lat/fl8y/

J. Ballet @ Fermi Symposium 17

pace Telescope

Supernova Remnants

SNRs with hadronic emission

γ-ray emission dominated by Inverse Compton

F. de Palma @ La Thuile 2018

Young SNRs

Hadronic scenario

γ-ray emission dominated by pion decay Presence of accelerated protons

The CRE energy spectrum

Differences up to 30% wrt previous results:

- loss of CREs due to the geomagnetic field
- "ghost events" in the MC simulation
- The spectrum is well fitted by a broken power law:
 - Break energy: 53±8 GeV
 - Spectral index below the break: 3.21±0.02
 - Spectral index above the break: 3.07±0.02
- An exponential cutoff lower than 1.8 TeV is excluded at 95% CL

Abdollahi S. + 2017 PrD 95h2007A

Angular power spectra (APS)

 The measured APS are consistent with the white noise APS in all the energy bins

- The dipole anisotropy is evaluated from the multipole coefficient C_1 of the APS: $\delta = 3\sqrt{C_1/4\pi}$
- The measured values are consistent with those expected in the isotropic case

Abdollahi S. + 2017 PrL 118i1103A

Interpretation of the results

- The CRE spectrum can be reproduced assuming the presence of an additional high-energy source
- The Galactic CRE component is evaluated using a simulation based on the DRAGON propagation code
- We have evaluated the contributions from Vela and Monogem:
 - The injected luminosity of each source is such that the total flux is not higher than the one measured by the Fermi-LAT and AMS-02
 - The injection spectrum of both sources is a power law with spectral index 1.7 and cut-off energy at 1.1 TeV
- The anisotropy limits disfavor a scenario with a nearby young source

DM search targets

Satellites

Low background and good source id, but low statistics

ermi

Gamma-ray Space Totol

Galactic Center

Good Statistics, but source confusion/diffuse background

Milky Way Halo

Large statistics, but diffuse background

Dwarf Galaxies Known location and DM content Low statistics

Isotropic contributions

Large statistics, but astrophysics, galactic diffuse background

For a recent overview: Charles, E +2016 PhR 636, 1

Spectral Lines

Little or no astrophysical uncertainties, good source id, but low sensitivity because of expected small branching ratio

26/2/2010

Galaxy Clusters

Low background, but low statistics

DM searches in dSph Galaxies

- dSph Galaxies are the cleanest target for DM searches:
 - DM-dominated (1000:1)
 - 10s to 1000s of stars
 - Mostly old stars
 - Few gamma-ray emitters (pulsars, SNRs)
 - Little gas content
 - − often high latitude → low diffuse background
 - nearby (<250 kpc)</p>
 - − many! (50+) → allows for joint analyses

Gamma-ray

Upper limits on DM annihilation cross section from dSph analysis

 6 years of *Fermi*-LAT Pass8 data from 15 dwarf spheroidal galaxies constrain the thermal relic cross section for low mass dark matter

Gamma-ray Space Telescope

- DM Limits from the LAT Dwarf stacking analysis are highly competitive with those provided by ground-based gamma-ray observatories (HESS, MAGIC)
- LAT Dwarf limits are more constraining for WIMP models with mass below 1 TeV
- Currently, statistically limited (especially at high masses)

Ackerman, M + 2015 PRL 115, 231301 26/2/2018 F. de Palma @ La Thuile 2018

- WIMP annihilations in the Universe may produce gamma rays detectable by the LAT
 - $\chi\chi \rightarrow \gamma\gamma$, γZ^0 , γH^0 would produce a narrow feature
 - Sharp, distinct spectral feature ("smoking gun")
 - Likely a small branching fraction (~10⁻² to 10⁻⁴)
 - Signal predicted to be small
- Most recent line search from the LAT Collaboration:
 - 5.8 years Pass 8 data sample
 - Improved energy reconstruction
 - Increased effective area
 - Energy interval from 200 MeV to 500 GeV
 - Improved understanding of systematics

Ackerman, M + 2015, PRD 91, 122002 (2015)

pace Telescope

Upper limits on the WIMP mass from line searches

t to the table of ta

No evidence of spectral lines found! F. de Palma @ La Thuile 2018

Conclusions

- Fermi has been extremely successful in the last ten years;
- Still in perfect active data taking with an increasing focus on transient sources;
- Fermi covers a fundamental energy range in various multiwavelength and multi-messenger analysis;
- Part of his strength is the large community that uses LAT and GBM data outside the collaboration.

https://fermi.gsfc.nasa.gov/fermi10/

Backup

New Sources in the 3FHL Catalog

214 sources not included in previous LAT catalogs. 3 of these have been seen by IACTs.

Samma-ray

Gamma-ray Space Telescope

Another gamma-ray instrument, the Anti-Coincidence Shield for the SPectrometer for Integral (SPI-ACS), also detected GRB170817A!

- Conclusive evidence for the **BNS-SGRB** connection
 - Chance temporal and spatial coincidence for GRB170817A and GW170817 arising from two independent astrophysical events: $P = 5 \times 10^{-8}$

GW-GRB association significance: 5.3 σ

28

- GBM flux (10 keV 1 MeV): in the middle of the GBM SGRB population:
 - other 4 SGRBs of similar fluence have been detected by the LAT at highenergy (>100 MeV);
- Detectability of SGRBs depends on the off-axis angle:
 - LAT can repoint within few hundreds of seconds;

- We developed a novel technique to search for EM counterpart in LAT data starting from LIGO probability maps:
 - LVC probability maps (in HEALPix) downscaled to match the Fermi LAT PSF (~4 degrees at 100 MeV);
 - We center a ROI in each pixel (p>0.9), and we run standard likelihood analysis (Unbinned);
- Cumulative coverage of the map as a function of time:
 - In some cases we started with ~40-50% of the credibility region in the field of view at the time of the trigger;
 - In all cases we reached 100% of the coverage within 8 ks;
 - Different pixels of the map enter and exit at different time:
 - We set up two different analysis: fixed time window and adaptive time window
 - see: Ackermann et al. 2016 (GW150915), Racusin et al. 2017 (GW151226, LVT151012), Goldstein at al. 2017 (GW170114), Vianello et al. 2017 (Methods)

GW170817/GRB170817A, an unlucky event

- Upper bound (0.1–1 GeV):
 - F < 4.5x10⁻¹⁰ erg cm⁻² s⁻¹
- At the distant of GW170817:
 - L_{iso} < 9.3x10⁴³ erg s⁻¹
- Very strong constrain on the luminosity of GRB170817A at high energy

- The onset of gamma-ray emission from a binary neutron star merger progenitor is predicted to be within a few seconds after the merger
 - the central engine is expected to form within a few seconds
 - the jet propagation delays are at most of the order of the SGRB duration
 - Finn et al. 1999; Abadie et al. 2012 and references therein

Measured time delay between GW and light: $\Delta t = 1.74 + -0.05 s$

pace Telescope

Construction of 3FHL

Energy Range: 10 GeV -2 TeV Duration: 7 years Pass 8 data, Source-class Unbinned likelihood using PSF types Zenith angle < 105° Minimum 4 photons/source

Median point source localization accuracy: 2.3 arcmin radius (95%) 48 spatially extended sources

 15 dwarfs selected for composite analysis (UMal, CVnl and Leol excluded due to ROI overlap)

The Fermi LAT

Precision Si-strip Tracker (TKR)

• Measures incident γ-ray direction

Gamma-ray Space Telescope

- 18 XY tracking planes: 228 µm strip pitch
- High efficiency. Good position resolution
- 12x 0.03 X_0 front end \rightarrow reduce multiple scattering
- 4x 0.18X₀ back-end \rightarrow increase sensitivity >1 GeV

Anticoincidence Detector (ACD)

- 89 scintillator tiles
- First step in the reduction of large charged cosmic ray background
- Segmentation reduces self-veto at high energy

Hodoscopic Csl Calorimeter-

- Segmented array of 1536 CsI(TI) crystals
- 8.6 X₀: shower max contained
 - ~ 200 GeV normal (1.5 X_0 from TKR included)
 - ~ 1TeV @ 40° (CAL-only)
- Measures the incident γ-ray energy
- •2Rejects cosmic-ray background

F. de Palma @ La Thuile 2018

Electronics system

Includes flexible, highly
 efficient, multi-level trigger

- ROIs for line search:
 - R3 (circle with 3° radius centered on the GC), R16 (Einasto Optimized), R41 (NFW Optimized), R90 (Isothermal Optimized), R180 (Decay Optimized)
- Control regions:
 - 31 boxes $10^{\circ} \times 10^{\circ}$ along the GP
 - Same line search algorithms as in signal ROIs
 - Allow to evaluate systematics

• Gamma-ray signal from each dwarf is proportional to its J-factor:

- $J = \int_{\Delta\Omega(\phi,\theta)} d\Omega' \int_{l.o.s.} \rho^2 (r(l,\phi')) dl(r,\phi')$

- J-factors are determined spectroscopically from stellar velocity dispersions:
 - Classical dwarfs: spectra for several thousand stars
 - Ultra-faint dwarfs: spectra for fewer than 100 stars
 - J-factors are calculated from the LOS velocity dispersion and an assumed DM density profile (NFW)
- Statistical uncertainty in the J-factor is folded into the gamma-ray analysis

 $\sigma_{v_{\bullet}}~(\mathrm{km/s})$

DM searches in dSph Galaxies: future perspectives

- dSph Galaxies are among the most promising target for future DM searches
 - Discovery of new dSph Galaxies
 - ~20 new targets from the dark energy survey (DES)
 - Waiting on spectroscopic follow-up for J-factors
 - Even more with the upcoming LSST survey
 - Increased statistics
- Can reach thermal relic cross section up to DM masses >100 GeV
 - For further details see Phys. Rep. 636 (2016), 1-46

The line feature at 133 GeV

- A potential signal was reported in the 3.7yrs data sample for a small ROI containing the GC
 - Bringmann+, JCAP 07 (2012), 054
 - Weniger+, JCAP 08 (2012), 007
- The LAT detected the feature, although with low global significance
- Newest LAT data analysis:
 - Increased data set (5.8 yrs)
 - Use of Pass 8 event classification
 - Improved energy reconstruction
 - Greater exposure towards the GC
 - Modified observing strategy from Dec 2013 to Dec 2014
- The excess in the 3.7 yrs data is of 2σ (3.3σ with Pass 7 data) and decreases using the full 5.8 yrs data set

Gamma-ray Space Telescope

F. de Palma @ La Thuile 2018

require assumptions about the particle interaction

Charles, E +2016 PhR 636, 1