

TOTEM Meaurement of $\rho, \, \sigma_{tot}, \, \sigma_{elastic} \\ \text{at 13TeV at LHC}$

Nicola Turini

University of Siena INFN gruppo collegato di Pisa

The TOTEM experiment

T1&T2 Inelastic detectors **T1: 3.1 <** η < 4.7 **T2: 5.3 <** η **< 6.5**

at ~220m from IP5 (CMS)

Detectors technology

Silicon Strips in secondary vacuum pots

Inelastic tracking detectors: T1 (CSC) T2 (triple GEM)

Cross section measurement

Differential elastic Cross Section

In October we ran 5 days – 13Tev, $\beta^*=90m$, PU~0.7 ~13 billion elastics recorded

No structure was observed at large t

Soon more information on large t analysis

Differential Slope

Differential Slope

 $\sigma_{\rm tot}, \sigma_{\rm inel} \& \sigma_{\rm el} vs \sqrt{s}$

 σ_{tot} = 110.6 ± 3.7 mb, σ_{inel} = 79.5 ± 2.7 mb, σ_{el} = 31.0 ± 2.1 mb

 $\sigma_{\rm el}/\sigma_{\rm tot}$ vs \sqrt{s}

TOTEM @ \sqrt{s} = 13 TeV: σ_{et}/σ_{tot} = 0.281 ± 0.010

$\beta^* = 2.5 \text{ km data} @ \sqrt{s} = 13 \text{ TeV}$

Elastic scattering in Coulomb-nuclear interference (CNI) region at very low |t|:

 $\rho = \Re \left. F^{\rm H} / \Im \left. F^{\rm H} \right|_{{\rm t}=0} \right.$

Special run September 2016, β^* = 2.5 km

Vertical RPs @ $3\sigma \Rightarrow |t|_{min} \approx 8 \cdot 10^{-4} \text{ GeV}^2$ $L_{\rm int} \approx 0.4 \ \rm nb^{-1} \Rightarrow ~7 \ \rm M \ elastic$ sector 56, right side sector 45, left side station 210 station 210 station 220 station 220 Data taking: red near near near far near far RPs; optimize |t|-IP5 CMS reach \Rightarrow analysis: only RP220 far 50 (Hz) 45-210-fr-bt, unresolved activity diagonal 45 bot - 56 top, 4x single track 40 Reasonable rate diagonal 45 top - 56 bot, 4x single track background 30 \rightarrow regular 20 beam cleaning 10 procedure 0 75 76 78 79 80 81 82 83 85 74 77 84 86 time from 20 September 2016, 0:00 (h)

Elastic selection in 2.5 km data

TOTEM

$\beta^* = 2.5 \text{ km low |t|} d\sigma_{el}/dt @ \sqrt{s} = 13 \text{ TeV}$

normalisation obtained from β^* = 90 m σ_{tot} analysis

Interference region

observed cross-section

- our modelling (assumptions)
 - "interference" formula: Kundrát-Lokajíček
 - Coulomb amplitude: QED + experimental form factors
 - hadronic modulus: empirical guidance, at low |t|: aexp

$$\begin{pmatrix} N_b \\ \sum_{n=1}^{N_b} b_n t^n \end{pmatrix}$$

hadronic phase: slowly varying (central behaviour), as in pre-LHC determinations

ρ extraction

ρ measurement

	$ t _{max} = 0.07 \text{ GeV}^2$		$ t _{max} = 0.15 \text{ GeV}^2$	
N_b	χ^2/ndf	ρ	χ^2/ndf	ρ
1	0.7	0.09 ± 0.01	2.6	-
2	0.6	0.10 ± 0.01	1.0	0.09 ± 0.01
3	0.6	0.09 ± 0.01	0.9	0.10 ± 0.01

data incompatible with purely-exponential hadronic component

- ρ constrained in a narrow range
- $^{\circ}$ one of the most precise ho determinations in history
- important fit configurations (red)
- Nb = 3, |t|max = 0.15 GeV2: "our best" determination
- Nb = 1, |t|max = 0.07 GeV2: "most fair" comparison to past measurements

ρ measurement

Observe significant decrease of ρ at larger \sqrt{s}

Models compatibility

RPdPL2_20, RPdPL2u_17, RPdPL2u_19, RPdPqcL2u_16, RRcdPL2u_15, RRcdPqcL2u_14, RRPL2u_19, RRPL2u_21 RRPEu_19 RqcRcL2qc_12, RRcL2qc_15, RRL2_18, RRL2qc_17 RqcRcLqc_12, RqcRLqc_14, RRcLqc_15, RRcPL_19, RRL_18, RRL_19, RRLqc_17, RRPL_21, RRPL2_20, RRPL2qc_18 [4 120 110 ρ 0.16 0.15 110 0.14 נס 100 ט 0.13 90 0.12 80 0.11 0.1 70 0.09 60 TeV je, TeV 2.76 TeV 1.8 TeV eV -0.9 TeV 0.08 TeV 546 50 0.9 °. 0.07 201 Ni 0 40 0.06 10^{2} 10^{3} 10^{3} 10^{4} 10^{4} 10^{2} \sqrt{s} \sqrt{s} [GeV] [GeV]

Comparison with COMPETE model predictions:

J.R. Cudell et al., PRL 89 (2002) 201801. Compatibility with COMPETE models (P-value):

	$\sigma_{ m tot}$ (6 points)	$ ho$ at 13 TeV (0.098 \pm 0.01)
blue	0.99	$2 \cdot 10^{-4}$
magenta	$4 \cdot 10^{-5}$	0.11
green	$2\cdot 10^{-16}$	0.84

Physics interpretation

- *t*-channel exchange of a colourless 3-gluon bound state (*JPC* = 1––) could decrease ρ in pp collisions at large \sqrt{s}
 - originally predicted as "Odderon" in axiomatic theory [Lukaszuk, Nicolescu]
 - confirmed in QCD [Vacca, Braun, Lipatov et al.]: colourless 3-gluon bound state with stronger internal coupling than external
 - "vector glueball" in lattice calculations [Luscher, Morningstar et al.]
- other manifestations
 - difference of depth of "diffractive dip" between p-p and p-p_{bar} collisions
 - faster increase of $\sigma_{\rm tot}$ with \sqrt{s}
 - non-constant hadronic phase and low-|t| deviation from pure exponential
 - no oscillatory effects at large |t|
- 2 models in agreement with TOTEM data [Nicolescu, Durham]
 - agreement improved when included exchange of 3-gluon bound state

Conclusions

- Totem experiment made a precise measurement of the proton-proton cross section at $\sqrt{s}=13$ TeV.
- In a special run with $\beta^*=2500m$, could reach the Coulomb-Nuclear Interference zone and measure the ρ parameter with unprecedented precision.
- Both measurement seems incompatible with COMPETE calculations.
- The presence of a bound 3 gluon state JPC=1– can explain such behavior.
- New data are foreseen at 14TeV after LHC Long Shutdown 2 in 2021.