Search and measurement of the SM Higgs boson

Silvio Donato (University of Zürich) on behalf of the CMS and ATLAS collaborations

UNIVERGE

MDCCC XXXII

Introduction

- No significant deviation from the SM has been found so far.
- $gg \rightarrow H$ and VBF production, and ZZ, $\gamma\gamma$, WW decays observed
 - many other channels to be observed.
- ATLAS and CMS collaborations obtained many new results with 36fb⁻¹ of 13 TeV data \rightarrow they are summarized in this talk.

Production process	Measured significance (σ)	Expected significance (σ)
VBF	5.4	4.6
WH	2.4	2.7
ZH	2.3	2.9
VH	3.5	4.2
ttH	4.4	2.0
Decay channel		
$H\to\tau\tau$	5.5	5.0
$H \rightarrow bb$	2.6	3.7

ATLAS and CMS LHC Run 1

\k_v_k_

Outline

- Introduction
- Big news:
 - Single experiment observation of $H \rightarrow \tau \tau$;
 - Evidence for ttH;
 - Evidence for $VH \rightarrow bb$.
- Other SM Higgs searches:
 - VH \rightarrow cc;
 - boosted $H \rightarrow bb;$
 - $\ H \rightarrow \mu \mu;$
 - $\ H \to Z \gamma;$
 - $H \rightarrow light$ quarks.

- Towards precision SM Higgs measurements with $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$:
 - simplified template cross section;
 - differential cross section;
 - couplings;

Conclusions.

Big news

 $H \rightarrow \tau \tau$

- The H $\rightarrow \tau \tau$ can decay into eµ, $\mu \tau_h$, $e\tau_h$, $\tau_h \tau_h$ ($\tau_h = \tau \rightarrow hadr.$).
 - All final states have been exploited.
- Three categories with different purities: **0-jet**, **VBF**, **boosted**.
- $\tau_{\rm h}$ identified by a MVA discriminant.
 - energy calibrated for different $\tau_{\rm h}\,{\rm final}$ states using ${\bf Z}\,\rightarrow\,\tau\tau;$
 - $m_{\tau\tau}$ reconstructed combining τ momenta with MET (**SVFIT**).
- Opposite charge and lepton isolation \rightarrow QCD rejection.
- $[e\tau_h, \mu\tau_h]$ Transverse mass $< 50 \text{ GeV} \rightarrow W+jets$ rejection.
- $[e\mu]$ Large MET projected along di-tau axis $\rightarrow t\bar{t}$ rejection.
- Main backgrounds:
 - $\mathbf{Z} \rightarrow \boldsymbol{\tau} \boldsymbol{\tau}$ simulation is corrected using $\mathbf{Z} \rightarrow \mu \mu$ data;
 - W+jets and $t\bar{t}$ simulations are normalized to data inverting rejection cuts;
 - **QCD** fully estimated from data \rightarrow ABCD method inverting charge and isolation cuts.

SM Higgs boson

 $H \to \tau \tau$

- arXiv:1708.00373 (sub. PLB)
- Signal extraction:
 - 1D or **2D** fit of the most discriminating variables, eg. $(m_{jj}, m_{\tau\tau})$ for $\tau_h \tau_h$ VBF.
- **Results** [CMS]:
 - $-\mu = 1.09^{+0.15}_{-0.15} (stat)^{+0.16}_{-0.15} (syst)^{+0.10}_{-0.08} (theo)^{+0.13}_{-0.12} (bkg stat)$
 - corresponding to a sign. of 4.9σ (exp. 4.7σ).
- 13 TeV + 8 TeV combination:
 - $\mu = 0.98 \pm 0.18 \rightarrow \text{sign. } \mathbf{5.9\sigma} \text{ (exp. } \mathbf{5.9\sigma}\text{)}.$

First observation of $H \rightarrow \tau \tau$ by a single experiment

ttH multilepton

- In **ttH**, the Higgs boson can decay into leptons (e, μ , τ) through the decay H \rightarrow WW, ZZ, $\tau\tau$
 - up to two other leptons can be originated from the top decays in ttH
- The presence of at least two same-sign leptons can be used to eliminate the large Z/W+jets and tt background.
- Many final states considered. Categories Main backgrounds: Number of 2 $1\ell + 2\tau_{had}$ - ttV and VV \rightarrow estimated by **simulations**; 1 $2\ell SS+1\tau_{had}$ $2\ell OS+1\tau_{had}$ $3\ell + 1\tau_{had}$ (ATLAS only) charge mis-id, fake $\tau_{\rm h}$, non-prompt lept. 2ℓSS 3ℓ 0 \rightarrow data-driven estimate. 3 2 1 Number of light leptons

ttH multilepton

Events / bin

10⁴

10

10²

10

Data / Pred. 1 2.70 0.75

ATLAS

Post-Fit

vs = 13 TeV. 36.1 fb

Category yields

tī H

tīz

Other Uncertainty

BDT (l[±]l[±] cat.)

[±]I[±], post-fit (SM prediction)

Non-prompt

• Data

Diboson

a mis-id

Fake T -- Pre-Fit Bkod

t t W

 $\overset{2}{\sim} SS \xrightarrow{3\ell} SR \xrightarrow{3\ell} t \bar{l} W \overset{3\ell}{CR} t \bar{l} \mathcal{E} \overset{3\ell}{CR} V V \overset{3\ell}{CR} t \bar{l} \tilde{\ell} CR \xrightarrow{2\ell} SS \xrightarrow{3\ell+1} t_{\bar{h}_{ad}} \overset{4\ell}{\sim} \overset{-4\ell}{\sim} \overset{-4\ell}{\sim} \overset{-4\ell}{\sim} \overset{2\ell}{\sim} \overset{2\ell}{\sim} SS \xrightarrow{2\ell} SS \xrightarrow{3\ell+1} t_{\bar{h}_{ad}} \overset{4\ell}{\sim} \overset{-4\ell}{\sim} \overset{-4\ell}{\sim} \overset{2\ell}{\sim} SS \xrightarrow{2\ell} SS \xrightarrow{3\ell+1} t_{\bar{h}_{ad}} \overset{4\ell}{\sim} \overset{-4\ell}{\sim} \overset{2\ell}{\sim} SS \xrightarrow{2\ell} SS \xrightarrow{3\ell} SR \xrightarrow{3\ell} t \tilde{l} W \overset{3\ell}{\sim} SS \xrightarrow{3\ell} SR \xrightarrow{3\ell} t \tilde{l} W \overset{3\ell}{\sim} SS \xrightarrow{3\ell} SR \xrightarrow{3$

CMS

nts

- Fit is performed combining most discriminating variables using a BDT.
 - In several cases, a **multinomial BDT** is trained to reject the different backgrounds

 \rightarrow combined into a 1D discriminant.

Results:

	Final state	Signal strength	Sign.(exp.)	Data WZ ⊠Non-prompt th The second
ATLAS	inclusive	$\mu = 1.6^{+0.3}_{-0.3} (\text{stat})^{+0.4}_{-0.3} (\text{syst})$	$4.1\sigma(2.8\sigma)$	
CMS	$N(\tau_h) = 0$	$\mu = 1.5^{+0.3}_{-0.3} (\text{stat})^{+0.4}_{-0.4} (\text{syst})$	$3.3\sigma(2.4\sigma)$	40
	$N(\tau_h) > 0$	$\mu = 0.76^{+0.62}_{-0.53}$	$1.4\sigma(1.8\sigma)$	1.8 stat. unc. total unc.
				$ \overset{\circ}{\square} \begin{array}{c} 1.0 \\ 0.8 \\ 0.6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8$

BDT (ttH,tt/ttV) bin

$ttH \rightarrow bb$

- In ttH(bb), 4 **b-jets** are expected from the top and Higgs decays plus:
 - 2 leptons + MET (Dilepton decay);
 - 2 jets + 1 lepton + MET (Single lept. decay).
- Main background is tt + b/c/light jets.
- Events are **categorized** depending on the number of jets and leptons, and **b-tagging** discriminant, into:
 - 9 signal regions, to select different purities;
 - 10 control regions, to constrain the different background components.

tītH

_____tt̄ + ≥1c

/// Total unc.

■tt + V

BDT distribution in

the highest-purity SR

ATLAS

• Data

⊡tī̄ + light

Itt̄ + ≥1b

--- ttH (norm)

■Non-tt̄

0.2

0.6

Classification BDT output

0.4

0.8

- arXiv:1712.08895 (sub. PRD)
- Signal is extracted fitting simultaneously all signal and control regions
 - BDTs are used to enhance the S/B separation.
- ATLAS results and ttH combination:

 $VH \rightarrow bb$

- Most sensible $H \to bb$ channel is **VH(bb)**, with a leptonic decay $(Z \to \ell \ell, W \to \ell \nu, Z \to \nu \nu)$ to suppress the QCD multijet background.
 - H(bb) is also the most sensible VH channel.
- Four channels (0-lepton, 1-lepton, low and high boosted 2-lepton).
 - ATLAS split signal regions depending also on the number of jets (2 or 3).
- Main backgrounds are Z+(b)jets, W+(b)jets, tt:
 - bkg **shape** modeled using simulations;
 - yields are **free parameters** of the final fit;
 - control regions added into the final fit to constrain background yields.
- Special calibration of **b-jet energy** in order to improve m_{bb} resolution.

 $VH \rightarrow bb$

- BDT trained against all bkg in each SR, combining discriminating variables (eg. m_{bb}, b-tag) _____ATLAS
- A simultaneous fit of all SR and CR is performed for the signal extraction.
- [ATLAS] Cross-check analysis w/o BDT

ATLAS					
Channel	SR/CR	Categories			
Channel		2 jets	3 jets		
0-lepton	SR	BDT	BDT		
1-lepton	\mathbf{SR}	BDT	BDT		
2-lepton	SR (high p_T^V)	BDT	BDT		
2-lepton	SR (low $p_T^{\vec{V}}$)	BDT	BDT		
1-lepton	W + HF CR	Yield	Yield		
2-l.(high p_T^V)	$t\bar{t}(e\mu)$ CR	Yield	m_{bb}		
2-l.(low p_T^V)	$t\bar{t}(e\mu)$ CR	m_{bb}	m_{bb}		

	CMS	
Channel	SR/CR	Categories
0-lepton	\mathbf{SR}	BDT
1-lepton	\mathbf{SR}	BDT
2-l.(high p_T^V)	\mathbf{SR}	BDT
2-l.(low p_T^V)	\mathbf{SR}	BDT
0-lepton	$t\bar{t}$ CR	CSV_2
0-lepton	Z + LF CR	CSV_2
0-lepton	Z + HF CR	CSV_2
1-lepton	$t\bar{t}$ CR	CSV_2
1-lepton	W + LF CR	CSV_2
1-lepton	W + HF CR	CSV_2
2-l.(high p_T^V)	$t\bar{t}$ CR	CSV_2
2-l.(high p_T^V)	Z + LF CR	CSV_2
2-l.(high p_T^V)	Z + HF CR	CSV_2
2-l.(low p_T^V)	$t\bar{t}$ CR	CSV_2
2-l.(low p_T^V)	Z + LF CR	CSV_2
2-l.(low $p_T^{\tilde{V}}$)	Z + HF CR	CSV_2
	1	

- VZ(bb) measurement:
 - CMS: μ = 1.02 \pm 0.22
 - ATLAS: $\mu = 1.11 \pm 0.23$
 - Results (Run1+Run2):
 - CMS: **3.8** σ (exp. 3.8 σ) $\mu = 1.06^{+0.31}_{-0.29}$
 - ATLAS: **3.6** σ (exp. 4.0 σ) μ =0.90±0.18(*stat*)^{+0.21}_{-0.19}(*syst*)

S. Donato (UZH)

Other SM Higgs boson searches

$VH \rightarrow cc$

- As for $H \to bb$, $H \to cc$ has been searched in the $Z(\ell\ell)H(cc)$ channel.
- Two **c-tagger** discriminators have been trained against b-jets and light-jets:
 - calibrated in data using $t \to Wb$ and $W \to cs/cd$.
- Challenges: c-tagger, $BR(H \rightarrow cc) \sim 2.9\%$, Z+cc bkg.
- A validation analysis has been performed looking for $Z(\ell l)W(cs)$ and $Z(\ell l)Z(cc)$.

- $\mu = 0.6^{+0.5}_{-0.4} \rightarrow 1.4\sigma \text{ (exp. 2.2\sigma)}$

- Results: $\mu = -69 \pm 101$
 - upper limit $\mu < 100$ (exp. 150).

Boosted $H \rightarrow bb$

arXiv:1709.05543 (acc. PRL)

- Brand new analysis: boosted $gg \rightarrow H \rightarrow bb$.
- Large QCD multijet background.
- **AK8 jet** with $p_T > 450 \text{GeV}$:
 - pileup per particle identification (PUPPI);
 - soft drop grooming and two subjets (N_{2^1} variable);
 - **double b-tagger** specifically designed for H(bb).
- **QCD** estimated inverting b-tag cut and propagated to SR with a transfer function $R_{p/f} = f(\log(m_{SD}/p_T), p_T)$.
- Other backgrounds estimated by simulations \rightarrow b-tag fake rate and efficiency constrained from data.
- Challenging signal cross-section computation in boosted $gg \rightarrow H$:
 - approximate NLO H+0,1,2 jet merged with finite m_t ;
 - k-factor \sim 1.3, systematic unc. $\sim\!30\%$ on normalization and slope.
- **Results**: $\mu = 2.3 \pm 1.5(stat)^{+1.0}_{-0.4}(syst) \rightarrow 1.5\sigma \text{ (exp. 0.7\sigma)}$

 $H \rightarrow \mu\mu$

- $H \rightarrow \mu\mu$ can be found as a peak in a **smoothly falling background**.
- The analysis is split in categories with different di-muon mass **resolution** and signal **purity** \rightarrow a **BDT** is used to enhance S/B separation.
 - VBF-enriched categories have the largest purity and sensitivity.
- Results. CMS: $\mu = 0.9^{+1.0}_{-0.9} \rightarrow 0.98\sigma(1.09\sigma)$; ATLAS: $\mu = -0.1 \pm 1.4$

S. Donato (UZH)

SM Higgs boson

 $H \rightarrow Z\gamma$

- Higgs boson decays into $Z\gamma$ through loops.
 - BR similar to $H \rightarrow \gamma \gamma$, but only 6.6% $Z \rightarrow \mu \mu/ee$.
- $m_{Z_{\gamma}}$ resolution improved recovering the FSR emitted 0.002close to the lepton and with a **kinematic fit**.
- Analysis divided in several categories with different purities
 - **VBF** category has the largest purity and sensitivity.
- **Result**: Upper limit 6.6 times the SM (exp. 5.2).

$H \rightarrow light quarks$

arXiv:1712.02758 (sub. JHEP)

- H→ φy and H→ ρ(770)y have been proposed as channel to probe the Higgs coupling with the s quark and u/d quarks, respectively.
- The expected SM BR are $2.3 \cdot 10^{-6}$ and $1.7 \cdot 10^{-5}$.
- They have been searched in the $\phi \rightarrow K^+K^-$ and $\rho \rightarrow \pi^+\pi^-$ decays.
- One isolated photon with $p_T > 35$ GeV.
- Two isolated tracks with $p_T > 15$ GeV and mass compatible to ρ or ϕ .
- Data driven background estimate:
 - validated in ρ and ϕ side bands.
- Results:
 - upper limit BR($\phi \gamma$) 4.8(4.2) $\cdot 10^{-4} \rightarrow \mu < 208(182);$
 - upper limit BR($\rho\gamma$) 8.8(8.4) \cdot 10-4 $\rightarrow \mu < 52(50)$.

Precision SM Higgs boson measurements

ATLAS-CONF-2017-047 $H \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ CMS-PAS-HIG-17-015 JHEP 11 (2017) 047

m

G14000

€12000

₽ 6000

\$ 2000

νν

S/(S+B) weighted

- S+B fit

B component

↓ Data

±1 σ

 $m_{_{4\ell}}$

 $H \to ZZ^{\star} \to 4I$

13 TeV, 36,1 fb⁻¹

Data Higgs (m. = 125.09 GeV

77

tT+V VVV

Z+iets. tī

GeV

ñ

Events / 2.

50

40

30

20

- The $H \to \gamma \gamma$ and $H \to 4\ell$ are the most sensitive channel to provide precision measurement of the Higgs boson.
 - ATLAS has already provided the combination $H \rightarrow 4\ell + H \rightarrow \gamma\gamma$.
- 13 TeV analyses confirm SM expectation: \rightarrow measurement cross-section vs \sqrt{s} .

 $H \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ CMS-PAS-HIG-17-015 JHEP 11 (2017) 047

- The growing signal allows to measure the
 differential cross section as a function of variable
 eg. p_T(H), N_{jet}, η(H), ...
- Here the measurement of $p_T(H)$ in $H \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$.
- The cross section is measured in a **fiducial** phase space in order to allow a good comparison with theory.

Simplified Template Cross Section (STXC)

S. Donato (UZH)

SM Higgs boson

Simplified Template

Cross Section (STXC)

- We are going towards the measurement of the Higgs boson cross-section using stage-1 STXC.
- The first step (stage-0) is the measurement of the crosssection per production channel (ggH, VBF, VH, ttH)
- ATLAS already provided a reduced stage-1 set of measurements with the combination

of
$$H \to 4\ell$$
 and $H \to \gamma\gamma$.

 $\sigma_{i} \times B_{4i} / B_{4i}^{SM}$ [pb]

Couplings

ATLAS Preliminary

 \sqrt{s} = 13 TeV. 36.1 fb⁻¹

n_µ = 125.09 GeV

 $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4H$

κ_g VS κ ATLAS

SM pre

Best fit

68% CL

----- 95% CL

1.3

1.2

1.1

0.9

0.8

- The first measurements of the **coupling modifiers** κ at 13 TeV are available.
- Example:
 - fermionic vs bosonic couplings $(k_f vs k_V);$
 - loop couplings: photons vs gluons $(k_y vs k_g)$.

S. Donato (UZH)

Conclusions

Conclusions

- CMS and ATLAS collaborations published many important Higgs results in the last year.
 - single-experiment observation of H $\rightarrow \tau \tau;$
 - evidence for $H \rightarrow bb$ and ttH;
 - new Higgs channel (eg. boosted $H \rightarrow bb$);
 - large improvement in $H \rightarrow \mu\mu$.

- $H \to 4\ell$ and $H \to \gamma\gamma$ are now channels for precision measurements
 - differential cross sections, and couplings.
- All results have been obtained using 2015-16 data (36 fb⁻¹):
 - LHC doubled the integrated luminosity in 2017 and even more luminosity is expected in 2018.
- Many more results are expected in the next months/years!

Thank you for your attention!

Backup

$ZH \rightarrow invisible$

- H → invisible decay can be enhanced by New Physics (eg. dark matter).
 - SM prediction BR(H \rightarrow ZZ \rightarrow inv.)~10⁻³
- Analysis performed in $\mathbf{Z}(\boldsymbol{ll})\mathbf{H}(\mathbf{inv.})$ channel.
- Main backgrounds :
 - **Diboson**: estimated by simulation and scaled by a data-driven scale factor
 - $\mathbf{Z+jets}$, non-resonant(ll) : estimated by data.
- **Results** on $BR(H \rightarrow inv.)$:
 - upper limit 67% (exp. 39%).

Mass combination (ATLAS) ATLAS Preliminary Here Total Syst Measurement of the Higgs mass and width. $\sqrt{s} = 13 \text{ TeV}$. 36.1 fb⁻¹ • Stat. Syst. Total LHC Run 1 125.09 ± 0.24 ($\pm 0.21 \pm 0.11$) GeV ATLAS: $H \rightarrow ZZ^* \rightarrow 4$ 124.88 ± 0.37 (± 0.37 ± 0.05) GeV $H \rightarrow \gamma \gamma$ 125.11 ± 0.42 ($\pm 0.21 \pm 0.36$) GeV combination $H(\gamma\gamma)$ with $H(4\ell)$; Combined 124.98 \pm 0.28 (\pm 0.19 \pm 0.21) GeV 124 124.5 125 125.5 126 126.5 m_{H} [GeV] combination with LHC Run-1. Mass $H(\gamma\gamma)$ (CMS) Mass H(4^ℓ) (CMS) CMS: CMS 35.9 fb⁻¹ (13 TeV) CMS 35.9 fb⁻¹ (13 TeV) 2 Δ InL 10 IU Ņ only $H(4\ell)$ available: Observed ---- Expected $m_{H} = 125.26 \pm 0.20(stat) \pm 0.08(syst) GeV$ 95% CL $\Gamma_{H} < 1.10 \, GeV(95 \,\% CL)$ 2021 Combined ombined (stat. only 68% CL 121 122 123 124 125 126 127 m_H (GeV) 120 0.5 1.5 2.5 $\Gamma_{\rm H}$ (GeV)

$H \rightarrow bb$ (History)

 1-CL Observed ····· 1-CL, Expected

> ±1 s.d. ±2 s.d.

120 125 130 135 140 145 150

m_H (GeV/c²)

CMS

10⁻⁶

115

∖s = 7 TeV, L **=**5.0 fb⁻¹

 $pp \rightarrow VH; H \rightarrow b\overline{b}$

- Observed

120

∖s = 8 TeV, L = 18.9 fb⁻¹

······ Expected from SM Higgs boson

125

130

135

m_H [GeV]

PLB 776 (2017) 318 10² Significance @125 GeV (expected): Tevatron Run II, L $_{int} \leq 9.7$ fb ⁻¹ 10 **Tevatron** CDF: $\sim 2.8\sigma (\sim 1.5\sigma)$ Background p-value ATLAS: 1.7σ (2.7 σ) – Run-1 10⁻¹ 3.5σ (3.0 σ) – Run-2 10-2 $3.6\sigma (4.0\sigma) - \text{Run-1} + \text{Run-2}$ 10-3 ATLAS: 2.0σ (2.5σ) – Run-1 115 100 105 110 3.3σ (2.8 σ) – Run-2 1 Local p-value 10⁻¹ 10⁻² 3.8σ (3.8 σ) – Run-1+Run-2 ocal p 10 ATLAS √s=7 TeV ∫Ldt = 4.7 fb⁻¹ Observed √s=8 TeV ∫Ldt = 20.3 fb⁻¹ Expected 10^{-3} Injected 125 GeV 10-1 10⁻⁴ ATLAS Run1 CMS Run1

S. Donato (UZH)

SM Higgs boson

140 m_H [GeV]

2σ