New physics effects in $b \rightarrow s \ell \ell$ transitions

Nazila Mahmoudi

Lyon University & CERN

Based on arXiv:1603.00865, arXiv:1702.02234 & arXiv:1705.06274 and work in progress

Thanks to T. Hurth, S. Neshatpour, D. Martinez Santos and V. Chobanova

Les Rencontres de Physique de la Vallée d'Aoste: Results and Perspectives in Particle Physics La Thuile, Feb. 25th - March 3rd, 2018

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
● 00				
Introduction				

Several tensions with the SM predictions observed in the $bs\ell\ell$ transitions

 \rightarrow Flavour anomalies

At the moment amongst the most significant tensions with the SM at the LHC!

Focus of this talk:

- \rightarrow Can the deviations be explained by the SM uncertainties?
- \rightarrow If the deviations are due to New Physics, what can we learn in a model independent way?

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
000				
Theoretical frame	work			

Effective field theory

$$\mathcal{H}_{\text{eff}} = -\frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \left(\sum_{i=1\cdots 10, S, P} \left(C_{i}(\mu) \mathcal{O}_{i}(\mu) + C_{i}^{\prime}(\mu) \mathcal{O}_{i}^{\prime}(\mu) \right) \right)$$

Separation between short distance (Wilson coefficients) and long distance (local operators) effects

Operator set for $b \rightarrow s$ transitions:

+ the chirality flipped counter-parts of the above operators, \mathcal{O}'_i

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
000				
Theoretical framew				

Wilson coefficients:

The Wilson coefficients are calculated perturbatively and are process independent

$$C_i^{\text{eff}}(\mu) = C_i^{(0)\text{eff}}(\mu) + rac{lpha_s(\mu)}{4\pi}C_i^{(1)\text{eff}}(\mu) + \cdots$$

SM contributions known to NNLL

(Bobeth, Misiak, Urban '99; Misiak, Steinhauser '04, Gorbahn, Haisch '04; Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06,...)

$$C_7 = -0.294$$
 $C_9 = 4.20$ $C_{10} = -4.01$

Hadronic quantities:

$$\mathcal{A}(A \to B) = \langle B | \mathcal{H}_{\text{eff}} | A \rangle = \frac{G_F}{\sqrt{2}} \sum_i \lambda_i C_i(\mu) \langle B | \mathcal{O}_i | A \rangle(\mu)$$

How to compute matrix elements?

ightarrow Model building, Lattice simulations, light/heavy flavour symmetries, ...

ightarrow Describe hadronic matrix elements in terms of hadronic quantities

Decay constants

rm factors

Main source of uncertainty!

 \rightarrow design observables where the hadronic uncertainties cancel (ratios,...) Prime example: $B \rightarrow K^* \mu^+ \mu^-$ and its angular ratios P'_i

Nazila Mahmoudi

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
000				
Theoretical framework				

Wilson coefficients:

The Wilson coefficients are calculated perturbatively and are process independent

$$C_i^{eff}(\mu) = C_i^{(0)eff}(\mu) + rac{lpha_s(\mu)}{4\pi}C_i^{(1)eff}(\mu) + \cdots$$

SM contributions known to NNLL

(Bobeth, Misiak, Urban '99; Misiak, Steinhauser '04, Gorbahn, Haisch '04; Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06,...)

$$C_7 = -0.294$$
 $C_9 = 4.20$ $C_{10} = -4.01$
Hadronic quantities:

$$\mathcal{A}(A \to B) = \langle B | \mathcal{H}_{\text{eff}} | A \rangle = \frac{G_F}{\sqrt{2}} \sum_i \lambda_i C_i(\mu) \langle B | \mathcal{O}_i | A \rangle(\mu)$$

How to compute matrix elements?

ightarrow Model building, Lattice simulations, light/heavy flavour symmetries, ...

 \rightarrow Describe hadronic matrix elements in terms of hadronic quantities

 \checkmark

Form factors

Main source of uncertainty!

 \rightarrow design observables where the hadronic uncertainties cancel (ratios,...) Prime example: $B \rightarrow K^* \mu^+ \mu^-$ and its angular ratios P'_i

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
	•000			
The LHCb anomal	ies (1)			

 $B
ightarrow K^* \mu^+ \mu^-$ angular observables, in particular $P_5' \,/\, S_5$

Long standing anomaly $2-3\sigma$:

- 2013 (1 fb⁻¹): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb⁻¹): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

LHCb, JHEP 02 (2016) 104; Belle, PRL 118 (2017); ATLAS, ATLAS-CONF-2017-023; CMS, CMS-PAS-BPH-15-008

Also measured by ATLAS, CMS and Belle

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
	0000			
The LHCb anomal	ies (2)			

$B_s \rightarrow \phi \mu^+ \mu^-$ branching fraction

- Same theoretical description as $B o K^* \mu^+ \mu^-$
 - Replacement of $B
 ightarrow K^*$ form factors with the $B_s
 ightarrow \phi$ ones
 - Also consider the $B_s \bar{B}_s$ oscillations
- June 2015 (3 fb⁻¹): the differential branching fraction is found to be 3.2σ below the SM predictions in the [1-6] GeV² bin

JHEP 1509 (2015) 179

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
	0000			
The LHCb anomalies (3)				

Lepton flavour universality in $B^+ \to K^+ \ell^+ \ell^-$

- Theoretical description similar to $B \to K^* \mu^+ \mu^-$, but different since K is scalar
- June 2014 (3 fb⁻¹): measurement of R_K in the [1-6] GeV² bin (PRL 113, 151601 (2014)): 2.6 σ tension in [1-6] GeV² bin

SM prediction very accurate (leading corrections from QED, giving rise to large logarithms involving the ratio $m_B/m_{\mu,e}$)

If confirmed this would be a groundbreaking discovery and a very spectacular fall of the SM

The updated analysis is eagerly awaited!

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
	0000			
The LHCb anomal	ies (4)			

Lepton flavour universality in $B^0 \to K^{*0} \ell^+ \ell^-$

• LHCb measurement (April 2017):

$${\it R}_{{\it K}^{st}}={\it BR}({\it B}^{0}
ightarrow{\it K}^{st 0}\mu^{+}\mu^{-})/{\it BR}({\it B}^{0}
ightarrow{\it K}^{st 0}e^{+}e^{-})$$

• Two q² regions: [0.045-1.1] and [1.1-6.0] GeV²

BaBar, PRD 86 (2012) 032012; Belle, PRL 103 (2009) 171801

$$\begin{split} R_{K^*}^{\text{exp,bin1}} &= 0.660^{+0.110}_{-0.070}(\text{stat}) \pm 0.024(\text{syst}) \\ R_{K^*}^{\text{exp,bin2}} &= 0.685^{+0.113}_{-0.069}(\text{stat}) \pm 0.047(\text{syst}) \end{split}$$

JHEP 08 (2017) 055

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
	0000			
The LHCb anomal	ies (4)			

Lepton flavour universality in $B^0 \to K^{*0} \ell^+ \ell^-$

• LHCb measurement (April 2017):

$${\cal R}_{{\cal K}^*}={\cal B}{\cal R}({\cal B}^{0}
ightarrow{\cal K}^{*0}\mu^+\mu^-)/{\cal B}{\cal R}({\cal B}^{0}
ightarrow{\cal K}^{*0}e^+e^-)$$

• Two q² regions: [0.045-1.1] and [1.1-6.0] GeV²

$$\begin{split} R_{K^*}^{\text{exp,bin1}} &= 0.660^{+0.110}_{-0.070}(\text{stat}) \pm 0.024(\text{syst}) \\ R_{K^*}^{\text{exp,bin2}} &= 0.685^{+0.113}_{-0.069}(\text{stat}) \pm 0.047(\text{syst}) \\ R_{K^*}^{\text{SM,bin1}} &= 0.906 \pm 0.020_{\text{QED}} \pm 0.020_{\text{FF}} \\ R_{K^*}^{\text{SM,bin2}} &= 1.000 \pm 0.010_{\text{QED}} \\ & \text{Bordone, Isidori, Pattori, arXiv:1605.07633} \end{split}$$

JHEP 08 (2017) 055

BaBar, PRD 86 (2012) 032012; Belle, PRL 103 (2009) 171801

2.2-2.5 σ tension with the SM predictions in each bin

Introduction	Anomalies 0000	Theory uncertaint	ies NP fits 00000000	Conclusion O
Issue of the had	ronic power co	rrections		
Effective Hamilt	onian for $b ightarrow s$	s transitions	$\mathcal{H}_{\rm eff} = \mathcal{H}_{\rm eff}^{\rm had} + \mathcal{H}_{\rm eff}^{\rm sl}$	
$\mathcal{H}_{\text{eff}}^{\text{sl}} = -\frac{4}{2}$ $\langle \bar{\kappa}^* \mathcal{H}_{\text{eff}}^{\text{sl}} \bar{\delta} \rangle : B \rightarrow$ Transversity amplitu	$\frac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=7,9,10} C_{ks} \Big]$ $K^* \text{ form factors } V, A$ des:	$[{}^{(\prime)}_{i} o_{i}^{(\prime)}]$ 0,1,2 , $\tau_{1,2,3}$ $\mathcal{A}_{\lambda}^{(ha}$	$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1,,l} V_{ts}^* \left[\sum_{i=1,,l} V_{ts}^* \left[\sum_{i=1,,l} V_{ts}^* \left[V_{ts}^* \left[$	$\begin{bmatrix} C_i O_i + C_8 O_8 \\ B \end{bmatrix}$
$A_{\perp}^{L,R} \simeq N_{\perp} \begin{cases} (C_{9}^{+} \mp C_{1}^{+}) \\ C_{1}^{+} \end{cases}$	$= C_{10}^+) \frac{V(q^2)}{m_B + m_{K^*}} + \frac{2}{m_B + m_{K^*}}$	$\left. \frac{cm_b}{q^2} C_7^+ T_1(q^2) \right\}$	$ = \frac{e^2}{q^2} \epsilon_{\mu} L_V^{\mu} \Big[\text{ LO in } \mathcal{O}(\frac{\Lambda}{m_b}) \Big] $	
$A_{\parallel}^{L,R} \simeq N_{\parallel} \left\{ \left(C_{9}^{-} \mp A_{0}^{L,R} \simeq N_{0} \right\} \left(C_{9}^{-} \mp A_{0}^{L,R} \simeq N_{0} \right\} \left(C_{9}^{-} \mp A_{0}^{L,R} \simeq N_{0} \right) \left\{ \left(C_{9}^{-} \mp A_{0}^{L,R} \right) \right\} \left(C_{9}^{-} \mp A_{0}^{L,R} \right) \left(C_{9}^{L$	$= C_{10}^{-} \frac{A_1(q^2)}{m_B - m_{K^*}} + \frac{2}{m_B - m_{K^*}} + \frac{2}{m_B - m_{K^*}}$	$\left. \begin{array}{c} \frac{2m_b}{q^2} C_7^- T_2(q^2) \right\} \\ \dots \right\} A_2(q^2) \right]$	Non-Fact., C + $h_{\lambda}(q^2)$]	QCDf
$+ 2m_{\rm s}$ $A_{\rm S} = N_{\rm S}(C_{\rm S} - C_{\rm S}')$	$b C_{7}^{-} \left[(\ldots) T_{2}(q^{2}) + (d_{0}(q^{2})) \right]$ $(C_{2}^{\pm} \equiv C_{i} \pm C_{i}')$	$\ldots)T_{3}(q^{2})\Big]\Big\}$		

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion	
Issue of the hadronic power corrections					
			, had a gl		
Effective Ham	iltonian for $b \rightarrow s$ trans	itions $\mathcal{H}_{ ext{eff}} =$	$= \mathcal{H}_{eff}^{nad} + \mathcal{H}_{eff}^{sn}$		

$$\mathcal{H}_{\text{eff}}^{\text{sl}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \Big[\sum_{i=\textbf{7,9,10}} C_i^{(\prime)} O_i^{(\prime)} \Big]$$

 $\langle \tilde{K}^* | \mathcal{H}_{eff}^{sl} | \tilde{B} \rangle: B \to K^*$ form factors $V, A_{0,1,2}, T_{1,2,3}$ Transversity amplitudes:

$$\begin{split} A_{\perp}^{L,R} &\simeq N_{\perp} \left\{ (C_{0}^{+} \mp C_{10}^{+}) \frac{V(q^{2})}{m_{B} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{+} T_{1}(q^{2}) \right\} \\ A_{\parallel}^{L,R} &\simeq N_{\parallel} \left\{ (C_{0}^{-} \mp C_{10}^{-}) \frac{A_{1}(q^{2})}{m_{B} - m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{-} T_{2}(q^{2}) \right\} \\ A_{0}^{L,R} &\simeq N_{0} \Big\{ (C_{0}^{-} \mp C_{10}^{-}) \left[(\ldots) A_{1}(q^{2}) + (\ldots) A_{2}(q^{2}) \right] \\ &+ 2m_{b} C_{7}^{-} \left[(\ldots) T_{2}(q^{2}) + (\ldots) T_{3}(q^{2}) \right] \Big\} \\ A_{S} &= N_{S} (C_{S} - C_{S}') A_{0}(q^{2}) \\ & \left(C_{i}^{\pm} \equiv C_{i} \pm C_{i}' \right) \end{split}$$

$$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$$

$$\begin{split} \mathcal{H}_{\text{eff}}^{\text{had}} &= -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1...6} c_i O_i + C_8 O_8 \right] \\ \mathcal{A}_{\lambda}^{(\text{had})} &= -i \frac{e^2}{q^2} \int d^4 x e^{-iq \cdot x} \left\langle \ell^+ \ell^- | J_{\mu}^{\text{em}, \text{lept}}(x) | \mathbf{0} \right\rangle \\ &\times \int d^4 y \, e^{iq \cdot y} \left\langle \bar{K}_{\lambda}^* | T \{ J^{\text{em}, \text{had}}, \mu(y) \mathcal{H}_{\text{eff}}^{\text{had}}(\mathbf{0}) \} | \bar{B} \rangle \\ &\equiv \frac{e^2}{q^2} \epsilon_{\mu} L_V^{\mu} \left[\text{ LO in } \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_K^*}) \\ & \text{ Non-Fact., QCDf} \\ &+ \underbrace{h_{\lambda}(q^2)}_{\text{power corrections}} \right] \\ &= \text{ power symbols at present} \end{split}$$

but estimates possible with some work on the theory side

Introduction 000	Anomalies 0000	Theory uncertai	nties NP fits 0000000	Conclusion			
Issue of the hadronic power corrections							
Effective Hami	tonian for $b ightarrow s$	transitions	$\mathcal{H}_{\mathrm{eff}} = \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} + \mathcal{H}_{\mathrm{eff}}^{\mathrm{sl}}$	f			

3

$$\begin{aligned} \mathcal{H}_{\text{eff}}^{\text{sl}} &= -\frac{4c_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=7,9,10} C_i^{(\prime)} \mathcal{O}_i^{(\prime)} \right] \\ \langle \bar{K}^* | \mathcal{H}_{\text{eff}}^{\text{sl}} | \bar{B} \rangle : B \to K^* \text{ form factors } V, A_{0,1,2}, T_{1,2} \end{aligned}$$
Transversity amplitudes:

 $A_{\perp}^{L,R} \simeq N_{\perp} \left\{ (C_{9}^{+} \mp C_{10}^{+}) \frac{V(q^{2})}{m_{R} + m_{K^{*}}} + \frac{2m_{b}}{q^{2}} C_{7}^{+} T_{1}(q^{2}) \right\}$ $A_{\parallel}^{L,R} \simeq N_{\parallel} \left\{ (C_{9}^{-} \mp C_{10}^{-}) \frac{A_{1}(q^{2})}{m_{R} - m_{V}*} + \frac{2m_{b}}{q^{2}} C_{7}^{-} T_{2}(q^{2}) \right\}$ $A_{\mathbf{0}}^{L,R} \simeq N_{\mathbf{0}} \left\{ (C_{\mathbf{0}}^{-} \mp C_{\mathbf{10}}^{-}) \left[(\ldots) A_{\mathbf{1}}(q^{2}) + (\ldots) A_{\mathbf{2}}(q^{2}) \right] \right\}$ $+2m_bC_7^{-}[(...)T_2(q^2)+(...)T_3(q^2)]$ $A_{\rm S} = N_{\rm S}(\underline{C_{\rm S}} - \underline{C_{\rm S}}')A_{\rm O}(q^2)$ $\left(C_{i}^{\pm} \equiv C_{i} \pm C_{i}^{\prime}\right)$

$$\begin{split} \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}} &= -\frac{4G_F}{\sqrt{2}} \, v_{tb} v_{ts}^* \left[\sum_{i=1\ldots,6} C_i \mathcal{O}_i + C_8 \mathcal{O}_8 \right] \\ \mathcal{A}_{\lambda}^{\mathrm{(had)}} &= -i \frac{e^2}{q^2} \int d^4 x e^{-iq \cdot x} \left(\ell^+ \ell^- |j_{\mu}^{\mathrm{em},\mathrm{lept}}(x)|\mathbf{0} \right) \\ &\times \int d^4 y \, e^{iq \cdot y} \left(\vec{k}_{\lambda}^* | T \{j^{\mathrm{em},\mathrm{had}}, \mu(y) \mathcal{H}_{\mathrm{eff}}^{\mathrm{had}}(\mathbf{0}) \} | \vec{B} \right) \\ &\equiv \frac{e^2}{q^2} \epsilon_{\mu} \mathcal{L}_V^{\mu} \left[\text{ LO in } \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}}) \right] \\ & \text{ Non-Fact., QCDf} \\ &+ \underbrace{h_{\lambda}(q^2)}_{p \text{ ower corrections}} \\ &\to \text{ unknown} \\ \end{split}$$

The significance of the anomalies depends on the assumptions made for the unknown power corrections!

This does not affect R_K and R_K^* of course, but does affect the combined fits!

 $\langle \bar{K}^*$

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
		0000		
New physics or ha	dronic effects?			

Description in terms of helicity amplitudes:

$$\begin{aligned} H_{V}(\lambda) &= -i \, N' \left\{ \begin{array}{l} C_{9} \tilde{V}_{L\lambda}(q^{2}) + C_{9}' \tilde{V}_{R\lambda}(q^{2}) + \frac{m_{B}^{2}}{q^{2}} \left[\frac{2 \, \hat{m}_{b}}{m_{B}} (C_{7} \, \tilde{T}_{L\lambda}(q^{2}) + C_{7}' \, \tilde{T}_{R\lambda}(q^{2})) - 16 \pi^{2} \mathcal{N}_{\lambda}(q^{2}) \right] \right] \\ H_{A}(\lambda) &= -i \, N' (C_{10} \, \tilde{V}_{L\lambda}(q^{2}) + C_{10}' \, \tilde{V}_{R\lambda}(q^{2})), \qquad \qquad \mathcal{N}_{\lambda}(q^{2}) = \text{leading nonfact.} + h_{\lambda} \\ H_{5} &= i \, N' \, \frac{\hat{m}_{b}}{m_{W}} (C_{5} - C_{5}') \tilde{S}(q^{2}) \qquad \qquad \left(N' = -\frac{4 \, G_{F} \, m_{B}}{\sqrt{2}} \frac{e^{2}}{16 \pi^{2}} \, V_{tb} \, V_{ts}^{*} \right) \end{aligned}$$

Helicity FFs $\tilde{V}_{L/R}, \tilde{T}_{L/R}, \tilde{S}$ are combinations of the standard FFs $V, A_{0,1,2}, T_{1,2,3}$

A possible parametrisation of the non-factorisable power corrections $h_{\lambda(=+,-,0)}(q^2)$:

$$h_{\lambda}(q^2) = h_{\lambda}^{(0)} + rac{q^2}{1 {
m GeV}^2} h_{\lambda}^{(1)} + rac{q^4}{1 {
m GeV}^4} h_{\lambda}^{(2)}$$

S. Jäger and J. Camalich, Phys.Rev. D93 (2016) 014028M. Ciuchini et al., JHEP 1606 (2016) 116 Hadronic power correction effect:

$$\delta H_V^{\text{p.c.}}(\lambda) = i N' m_B^2 \frac{16\pi^2}{q^2} h_\lambda(q^2) = i N' m_B^2 \frac{16\pi^2}{q^2} \left(h_\lambda^{(0)} + q^2 h_\lambda^{(1)} + q^4 h_\lambda^{(2)} \right)$$

New Physics effect:

$$\delta H_V^{C_9^{\rm NP}}(\lambda) = -iN' \tilde{V}_L(q^2) C_9^{\rm NP} = iN' m_B^2 \frac{16\pi^2}{q^2} \left(a_\lambda C_9^{\rm NP} + q^2 b_\lambda C_9^{\rm NP} + q^4 c_\lambda C_9^{\rm NP} \right)$$

and similarly for C_7

 \Rightarrow NP effects can be embedded in the hadronic effects.

Nazila Mahmoudi

La Thuile, Feb. 28th 2018

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
		0000		
New physics or ha	dronic effects?			

Description in terms of helicity amplitudes:

$$\begin{aligned} H_{V}(\lambda) &= -i \, N' \left\{ C_{9} \, \tilde{V}_{L\lambda}(q^{2}) + C_{9}' \, \tilde{V}_{R\lambda}(q^{2}) + \frac{m_{B}^{2}}{q^{2}} \left[\frac{2 \, \hat{m}_{b}}{m_{B}} (C_{7} \, \tilde{T}_{L\lambda}(q^{2}) + C_{7}' \, \tilde{T}_{R\lambda}(q^{2})) - 16 \pi^{2} \mathcal{N}_{\lambda}(q^{2}) \right] \right] \\ H_{A}(\lambda) &= -i \, N' (C_{10} \, \tilde{V}_{L\lambda}(q^{2}) + C_{10}' \, \tilde{V}_{R\lambda}(q^{2})), \qquad \qquad \mathcal{N}_{\lambda}(q^{2}) = \text{leading nonfact.} + h_{\lambda} \\ H_{5} &= i \, N' \, \frac{\hat{m}_{b}}{m_{W}} (C_{5} - C_{5}') \, \tilde{S}(q^{2}) \qquad \qquad \qquad \left(N' = -\frac{4 \, G_{F} \, m_{B}}{\sqrt{2}} \frac{e^{2}}{16 \, \pi^{2}} \, V_{tb} \, V_{ts}^{*} \right) \end{aligned}$$

Helicity FFs $\tilde{V}_{L/R}, \tilde{T}_{L/R}, \tilde{S}$ are combinations of the standard FFs $V, A_{0,1,2}, T_{1,2,3}$

A possible parametrisation of the non-factorisable power corrections $h_{\lambda(=+,-,0)}(q^2)$:

$$h_{\lambda}(q^2) = h_{\lambda}^{(0)} + rac{q^2}{1 {
m GeV}^2} h_{\lambda}^{(1)} + rac{q^4}{1 {
m GeV}^4} h_{\lambda}^{(2)}$$

S. Jäger and J. Camalich, Phys.Rev. D93 (2016) 014028M. Ciuchini et al., JHEP 1606 (2016) 116 Hadronic power correction effect:

$$\delta H_V^{\text{p.c.}}(\lambda) = i N' m_B^2 \frac{16\pi^2}{q^2} h_\lambda(q^2) = i N' m_B^2 \frac{16\pi^2}{q^2} \left(h_\lambda^{(0)} + q^2 h_\lambda^{(1)} + q^4 h_\lambda^{(2)} \right)$$

New Physics effect:

$$\delta H_V^{C_9^{\rm NP}}(\lambda) = -iN' \tilde{V}_L(q^2) C_9^{\rm NP} = iN' m_B^2 \frac{16\pi^2}{q^2} \left(a_\lambda C_9^{\rm NP} + q^2 b_\lambda C_9^{\rm NP} + q^4 c_\lambda C_9^{\rm NP} \right)$$

and similarly for C_7

 \Rightarrow NP effects can be embedded in the hadronic effects.

Nazila Mahmoudi

La Thuile, Feb. 28th 2018

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
		0000		
Wilk's test				

We can do a fit for both (hadronic quantities $h_{+,-,0}^{(0,1,2)}$ (18 parameters) and Wilson coefficients $C_i^{NP}(2 \text{ or 4 parameters})$)

Due to this embedding the two fits can be compared with the Wilk's test

For low q^2 (up to 8 GeV²):

	2 (δC_9)	$4 (\delta C_7, \delta C_9)$	$18~(h^{(0,1,2)}_{+,-,0})$
0	$3.7 imes 10^{-5}$ (4.1 σ)	$6.3 imes10^{-5}$ (4.0 σ)	$6.1 imes10^{-3}$ (2.7 σ)
2	-	$0.13 (1.5\sigma)$	0.45 <mark>(0.76</mark> σ)
4	-	—	$0.61 (0.52\sigma)$

- \rightarrow Adding $\delta \mathit{C}_{9}$ improves over the SM hypothesis by 4.1σ
- \rightarrow Including in addition δC_7 or hadronic parameters improves the situation only mildly
- \rightarrow One cannot rule out the hadronic option

Adding 16 more parameters does not really improve the fits

The situation is still inconclusive

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
		0000		
Estimates of h	adronic effects			

Various methods for hadronic effects

$$\frac{e^2}{q^2}\epsilon_{\mu}L_V^{\mu}\Big[Y(q^2)\tilde{V_{\lambda}} + \text{LO in }\mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}}) + h_{\lambda}(q^2)\Big]$$

	factorisable	non- factorisable	power corrections (soft gluon)	region of calculation	physical region of interest
Standard	1	1	×	$q^2 \lesssim 7 ~{ m GeV^2}$	directly
Khodjamirian et al. [1006.4945]	1	x	1	$q^2 < 1 { m GeV^2}$	extrapolation by dispersion relation
Bobeth et al. [1707.07305]	1	1	1	$q^2 < 0 \mathrm{GeV^2}$	extrapolation by analyticity

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
		0000		
Estimates of ha	dronic effects			

Various methods for hadronic effects

$$\frac{e^2}{q^2} \epsilon_{\mu} L_V^{\mu} \Big[Y(q^2) \tilde{V_{\lambda}} + \text{LO in } \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}}) + h_{\lambda}(q^2) \Big]$$

	factorisable	non- factorisable	power corrections (soft gluon)	region of calculation	physical region of interest
Standard	1	1	×	$q^2 \lesssim 7~{ m GeV^2}$	directly
Khodjamirian et al. [1006.4945]	1	x	1	$q^2 < 1~{ m GeV^2}$	extrapolation by dispersion relation
Bobeth et al. [1707.07305]	1	1	1	$q^2 < 0 { m GeV^2}$	extrapolation by analyticity

One operator fit

		SM	C9	C10	C'9	C'_{10}
Standard	χ^2	60.7	45.6(3.9 <i>σ</i>)	60.7 (0.0 <i>σ</i>)	54.2(2.6 <i>σ</i>)	$53.8(2.6\sigma)$
Khodjamirian et al.	χ^2	79.6	52.9(5.2 <i>\sigma</i>)	$74.1(2.3\sigma)$	$73.0(2.6\sigma)$	$76.8(1.7\sigma)$
Bobeth et al.	χ^2	53.7	45.4(2.9 <i>σ</i>)	$52.5(1.1\sigma)$	$53.1(0.8\sigma)$	$52.9(0.9\sigma)$

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
000	0000	0000	0000000	

NP Implications

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
			•0000000	
Global fits				

Many observables \rightarrow Global fits

NP manifests itself in shifts of individual coefficients with respect to SM values:

$$\mathcal{C}_i(\mu) = \mathcal{C}_i^{ ext{SM}}(\mu) + \delta \mathcal{C}_i$$

- \rightarrow Scans over the values of δC_i
- \rightarrow Calculation of flavour observables

Theoretical uncertainties and correlations

- Monte Carlo analysis
- variation of the "standard" input parameters: masses, scales, CKM, ...
- decay constants taken from the latest lattice results
- $B \rightarrow K^{(*)}$ and $B_s \rightarrow \phi$ form factors are obtained from the lattice+LCSR combinations (1411.3161, 1503.05534), including all the correlations
- Parameterisation of uncertainties from power corrections:

$$egin{aligned} \mathcal{A}_k
ightarrow \mathcal{A}_k \left(1 + eta_k \exp(i\phi_k) + rac{q^2}{6 \ ext{GeV}^2} b_k \exp(i heta_k)
ight) \end{aligned}$$

 $|a_k|$ between 10 to 60%, $b_k \sim 2.5 a_k$ Low recoil: $b_k = 0$

 \Rightarrow Computation of a (theory + exp) correlation matrix

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
			0000000	
Global fits				

Global fits of the observables obtained by minimisation of

$$\chi^2 = \big(\vec{O}^{\texttt{th}} - \vec{O}^{\texttt{exp}}\big) \cdot (\Sigma_{\texttt{th}} + \Sigma_{\texttt{exp}})^{-1} \cdot \big(\vec{O}^{\texttt{th}} - \vec{O}^{\texttt{exp}}\big)$$

 $(\Sigma_{th} + \Sigma_{exp})^{-1}$ is the inverse covariance matrix.

More than 100 observables relevant for leptonic and semileptonic decays:

- BR($B \rightarrow X_s \gamma$)
- BR($B \rightarrow X_d \gamma$)
- $\Delta_0(B \to K^*\gamma)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_{\mathfrak{s}} \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s \mu^+ \mu^-)$
- $\mathsf{BR}^{\mathsf{low}}(B \to X_s e^+ e^-)$
- $\mathsf{BR}^{\mathsf{high}}(B \to X_s e^+ e^-)$
- BR($B_s \rightarrow \mu^+ \mu^-$)
- BR($B_d \rightarrow \mu^+ \mu^-$)

- BR($B \rightarrow K^0 \mu^+ \mu^-$)
- BR($B \rightarrow K^{*+} \mu^+ \mu^-$)
- BR($B \rightarrow K^+ \mu^+ \mu^-$)
- BR($B \rightarrow K^* e^+ e^-$)
- R_K , R_{K^*}
- $B \to K^{*0}\mu^+\mu^-$: BR, F_L , A_{FB} , S_3 , S_4 , S_5 , S_7 , S_8 , S_9 in 8 low q^2 and 4 high q^2 bins
- $B_s \rightarrow \phi \mu^+ \mu^-$: BR, F_L , S_3 , S_4 , S_7 in 3 low q^2 and 2 high q^2 bins

Computations performed using SuperIso public program

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion	
			0000000		
Form factor dependence					

Global fit using all *bsll* observables

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- 4 \times form factor errors (dotted line)

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
000	0000		00000000	O
Form factor depen	dence			

Global fit using all *bsll* observables

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- 4 \times form factor errors (dotted line)

$(C_{9}^{e} - C_{9}^{\mu})$

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion	
			0000000		
Form factor dependence					

Global fit using all *bsll* observables

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- 4 \times form factor errors (dotted line)

The size of the form factor errors has a crucial role in constraining the allowed region!

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion		
			0000000			
Fit results with more than two operators						

Wilson coefficients sensitive to NP:

$$C_7, C_8, C_9^{\ell}, C_{10}^{\ell}, C_S^{\ell}, C_P^{\ell}$$

- ightarrow 10 independent WC (considering $\ell=e,\mu$)
- + 10 primed Wilson coefficents

In the general case, the WC can be complex

 \rightarrow 40 independent real parameters!

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
			00000000	
Fit results with mo	re than two operat	tors: All observables		

Preliminary!

Set of WC	Nb parameters	χ^2_{min}	Pull _{SM}	Improv.
SM	0	105.56	-	-
$C_{9}^{(e,\mu)}$ real	2	79.84	4.70σ	4.70σ
$C_7, C_8, C_9^{(e,\mu)}, C_{10}^{(e,\mu)}$ real	6	79.03	3.75σ	0.08σ
All non-primed WC real	10	78.20	3.05σ	0.07σ
All WC real (incl. primed)	20	75.90	1.78σ	0.01σ
All WC complex (incl. primed)	40	67.20	0.61σ	0.01σ

107 observables

- No real improvement in the fits when going beyond the $C_9^{(e,\mu)}$ case
- $\bullet\,$ Pull with the SM below 1σ when all WC are varied
- Many parameters are not constrained, in particular the imaginary parts
- Significant contribution also from the electron scalar coefficient

Introduction 000	Anomalie 0000	s	Theory uncert	ainties	NP fits 00000€0	Conclusion O O
Fit results with mo	ore than	i two opera	ators: All o	bservables		
		All observal	bles $(\chi^2_{ m SM}=10$	5.6, $\chi^2_{\rm min} = 67.2$!)	Preliminary
		δ	C7	δ	C8	r reminary:
	$Re(\delta C_i)$	0.02 =	± 0.01	0.03	± 0.35	
	$Im(\delta C_i)$	0.01 =	± 0.17	-1.10	± 0.68	
		δ	C'7	δ	C'8	
	$Re(\delta C_i)$	0.02 =	± 0.03	-0.13	± 1.18	
	$Im(\delta C_i)$	-0.07	± 0.02	-0.45	± 1.50	
		δC_9^{μ}	δC_9^e	δC_{10}^{μ}	δC_{10}^e	
	$Re(\delta C_i)$	-1.25 ± 0.17	-0.45 ± 0.54	-0.20 ± 0.20	$\textbf{4.39} \pm \textbf{3.27}$	
	$Im(\delta C_i)$	0.40 ± 4.27	-2.54 ± 0.47	0.02 ± 2.55	-0.29 ± 3.00	
		$\delta C_{9}^{\prime \mu}$	$\delta C_{9}^{\prime e}$	$\delta C_{10}^{\prime \mu}$	$\delta C_{10}^{\prime e}$	
	$Re(\delta C_i)$	0.10 ± 0.31	0.00 ± 1.41	-0.10 ± 0.17	0.00 ± 1.41	
	$Im(\delta C_i)$	0.43 ± 0.59	0.32 ± 4.63	-0.14 ± 0.24	0.00 ± 5.01	
		$\delta C^{\mu}_{Q_1}$	$\delta C_{Q_1}^e$	$\delta C^{\mu}_{Q_2}$	$\delta C_{Q_2}^e$	
	$Re(\delta C_i)$	-0.07 ± 0.02	-3.57 ± 0.96	0.10 ± 0.14	-0.01 ± 10.58	
	$Im(\delta C_i)$	0.00 ± 0.19	-3.53 ± 0.48	-0.01 ± 0.11	-0.02 ± 7.77	
		$\delta C_{Q_1}^{\prime \mu}$	$\delta C_{Q_1}^{\prime e}$	$\delta C_{Q_2}^{\prime \mu}$	$\delta C_{Q_2}^{\prime e}$	
	$Re(\delta C_i)$	0.07 ± 0.02	0.00 ± 1.41	-0.06 ± 0.14	0.00 ± 1.41	
	$\operatorname{Im}(\delta C_i)$	0.00 ± 0.19	-3.61 ± 0.94	0.02 ± 0.11	-0.07 ± 9.58	

- No real improvement in the fits when going beyond the $C_9^{(e,\mu)}$ case
- $\bullet\,$ Pull with the SM below 1σ when all WC are varied
- Many parameters are not constrained, in particular the imaginary parts
- Significant contribution also from the electron scalar coefficient

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion	
			00000000		
Future LHCb prospects					

Global fits using the angular observables only (NO theoretically clean R ratios)

Considering several luminosities, assuming the current central values

LHCb will be able to establish new physics within the angular observables even in the pessimistic case that there will be no theoretical progress on non-factorisable power corrections!

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion	
			0000000		
Future LHCb prospects					

Global fits to ΔC_9^{μ} using the ratios R_K and R_{K^*} only

Assuming current central values remain

ΛC^{μ}	Syst.	Syst./2	Syst./3
ΔCģ	$Pull_{\mathrm{SM}}$	$Pull_{\mathrm{SM}}$	$Pull_{\mathrm{SM}}$
12 fb^{-1}	6. 1 <i>σ</i> (4.3 <i>σ</i>)	7.2σ (5.2 σ)	7.4 σ (5.5 σ)
50 fb ⁻¹	8.2σ (5.7 σ)	11.6 σ (8.7 σ)	12.9σ (9.9 σ)
300 fb ⁻¹	9.4 σ (6.5 σ)	15.6 σ (12.3 σ)	19.5 σ (16.1 σ)

(): assuming 50% correlation between each of the R_K and R_{K^*} measurements

Only a small part of the 50 fb⁻¹ is needed to establish NP in the $R_{K^{(*)}}$ ratios even in the pessimistic case that the systematic errors are not reduced by then at all.

This is independent of the hadronic uncertainties!

Introduction	Anomalies	Theory uncertainties	NP fits	Conclusion
				•
Conclusion				

- The full LHCb Run 1 results show several consistent tensions with the SM predictions
- Significance of the anomalies depends on the assumptions on the power corrections
- Model independent fits point to about 25% reduction in C_9 , and new physics in muonic C_9^{μ} is preferred
- Comparing the fits for NP and hadronic parameters through the Wilk's test shows that at the moment adding the hadronic parameters does not improve the fit compared to the new physics fit, but the situation is inconclusive
- The size of the form factor errors has a significant impact in the fits
- When adding more parameters in the fit, no significant improvement is obtained
- ullet With the full set of free parameters, the tensions with the SM fall below 1σ

Thank you for your attention!

Backup

$\delta \langle P_2 \rangle_{[0.1,2]}$	\simeq	$+0.37 \delta C_{7}$	$+0.02\delta C_8$		$-0.03\delta C_{10}$
$\delta \langle P_2 angle_{[2,4.3]}$	\simeq	$-2.48\delta C_{7}$	$-0.10\delta C_8$	$-0.17\delta C_9$	$+0.03\delta C_{10}$
$\delta \langle P_2 \rangle_{[4.3,8.68]}$	\simeq	$-0.71\delta C_{7}$	$-0.04 \delta C_8$	$-0.09\delta C_9$	$-0.04\delta C_{10}$
$\delta \langle P_4' angle_{[0.1,2]}$	\simeq	$+0.59\delta C_7$		$-0.08\delta C_9$	$-0.13\delta C_{10}$
$\delta \langle P_4' \rangle_{[2,4.3]}$	\simeq	$+2.45\delta C_7$	$+0.11\delta C_8$	$+0.06\delta C_9$	$-$ 0.14 δC_{10}
$\delta \langle P_4' \rangle_{[4.3,8.68]}$	\simeq	$+0.33\delta C_{7}$	$+0.01\delta C_8$	$+0.01\delta C_9$	
$\delta \langle P_5' angle_{[0.1,2]}$	\simeq	$-0.91\delta C_7$	$-0.04 \delta C_8$	$-0.12\delta C_9$	$-0.03\delta C_{10}$
$\delta \langle P_5' angle_{ extsf{[2,4.3]}}$	\simeq	$-3.04 \delta C_7$	$-0.14\delta C_8$	−0.29 <i>δC</i> 9	$-0.03\delta C_{10}$
$\delta \langle P_5' \rangle_{[4.3,8.68]}$	\simeq	$-0.52 \delta C_7$	$-0.03 \delta C_8$	−0.08 δ <i>C</i> 9	$-0.03 \delta C_{10}$

New Physics contributions to C'_i are suppressed by a factor m_s/m_b and $m_s m_b/m_t^2$ The rest of the observables are less sensitive to real NP contributions in $C_{7,8,9,10}$

Nazila Mahmoudi

La Thuile, Feb. 28th 2018

Fits with $B \to K^* \mu \mu$ angular observables only:

Fits with $B \to K^* \mu \mu$ angular observables only:

 $(C_9 - C_{10})$ $(C_9 - C'_9)$ Method of moments 68% CL 95% CL 68% CL 95% CL 0.6 0.5 No FF cor No FF cor 2x FE err 0.4 2x FF en 4x FE err 4x FF err $\delta C'_9/C_9^{\rm SM}$ $\delta C_{10}/C_{10}^{\rm SM}$ 0.2 0.0 0.0 -0.2-0.5 -0.4-0.6 -0.4-0.2 0.0 0.2 -0.4-0.20.0 0.2 $\delta C_9/C_9^{SM}$ $\delta C_9/C_9^{SM}$ Likelihood 68% CL 68% CL 0.6 95% CL 95% CL 0.5 No FF cor No FF cor 2x FF err 0.4 2x FF en 4x FE err 4x FF en $\delta C'_9/C_{\rm SM}^{\rm SM}$ $\delta C_{10}/C_{10}^{\rm SM}$ 0.2 0.0 0.0 -0.2 -0.5 -0.4-0.6 -0.4-0.2 0.0 -0.20.0 0.2 0.2 -0.4 $\delta C_9/C_9^{SM}$ $\delta C_9/C_9^{SM}$

Fits with $B_s \rightarrow \phi \mu \mu$ branching fractions only:

Fits with $B_s \rightarrow \phi \mu \mu$ branching fractions only:

Fits with $B_s \rightarrow \phi \mu \mu$ branching fractions only, using absolute χ^2 (goodness of fit):

Fits with $B_s \rightarrow \phi \mu \mu$ branching fractions only, using absolute χ^2 (goodness of fit):

Fit results with more than two operators: All observables except $R_{\kappa^{(*)}}$

Preliminary!

Set of WC	Nb parameters	χ^2_{min}	Pull _{SM}	Improv.
SM	0	89.84	-	-
$C_9^{(e,\mu)}$ real	2	71.05	3.93σ	3.93 <i>σ</i>
$C_7, C_8, C_9^{(e,\mu)}, C_{10}^{(e,\mu)}$ real	6	70.04	2.97 σ	0.13 <i>σ</i>
All non-primed WC real	10	69.25	2.25σ	0.07 <i>σ</i>
All WC real (incl. primed)	20	67.15	1.03σ	0.01 <i>o</i>
All WC complex (incl. primed)	40	58.24	0.22 <i>σ</i>	0.02 <i>σ</i>

104 observables

• Similar results to the case with $R_{\kappa^{(*)}}$

• The value of δC_9^e is shifted

Fit results with more than two operators: All observables except $R_{K^{(*)}}$

-		
Pre	liminary	

All observables except $R_{K^{(*)}}$ ($\chi^2_{ m SM}=$ 89.8, $\chi^2_{ m min}=$ 58.2)						
	δC7		δC_8			
$Re(\delta C_i)$	0.02 :	0.02 ± 0.01		0.03 ± 0.35		
$Im(\delta C_i)$	0.02 :	± 0.16	-0.96 ± 0.76			
	δ	$\delta C'_7$		$\delta C'_8$		
$Re(\delta C_i)$	0.02 ± 0.03		-0.28 ± 0.93			
$\operatorname{Im}(\delta C_i)$	-0.07 ± 0.02		-0.55 ± 1.41			
	δC_9^{μ}	δC_9^e	δC_{10}^{μ}	δC_{10}^e		
$Re(\delta C_i)$	-1.26 ± 0.17	0.45 ± 0.51	-0.18 ± 0.23	$\textbf{4.48} \pm \textbf{3.78}$		
$Im(\delta C_i)$	0.29 ± 4.38	-1.51 ± 0.58	0.00 ± 0.98	-0.16 ± 3.35		
	$\delta C_{9}^{\prime \mu}$	$\delta C_9^{\prime e}$	$\delta C_{10}^{\prime \mu}$	$\delta C_{10}^{\prime e}$		
$Re(\delta C_i)$	0.09 ± 0.36	0.00 ± 1.41	-0.10 ± 0.19	0.00 ± 1.41		
$Im(\delta C_i)$	0.42 ± 0.59	$\textbf{0.93} \pm \textbf{3.98}$	-0.14 ± 0.23	$\textbf{0.03} \pm \textbf{9.20}$		
	$\delta C^{\mu}_{Q_1}$	$\delta C_{Q_1}^e$	$\delta C^{\mu}_{Q_2}$	$\delta C_{Q_2}^e$		
$Re(\delta C_i)$	-0.06 ± 0.02	-2.90 ± 4.51	0.06 ± 0.04	-2.82 ± 4.00		
$Im(\delta C_i)$	0.00 ± 0.19	-2.89 ± 2.33	0.05 ± 0.04	-2.88 ± 2.09		
	$\delta C_{Q_1}^{\prime \mu}$	$\delta C_{Q_1}^{\prime e}$	$\delta C_{Q_2}^{\prime \mu}$	$\delta C_{Q_2}^{\prime e}$		
$\operatorname{Re}(\delta C_i)$	0.06 ± 0.02	0.00 ± 1.41	-0.04 ± 0.04	0.00 ± 1.41		
$Im(\delta C_i)$	0.00 ± 0.19	-2.85 ± 4.16	-0.01 ± 0.04	-2.81 ± 4.09		

- Similar results to the case with $R_{K^{(*)}}$
- The value of δC_9^e is shifted

Fit results with more than two operators: Only R_K and R_{K^*} (+ $B_{s,d} \rightarrow \ell\ell + B \rightarrow X_s \ell\ell$)

Preliminary!

Set of WC	Nb parameters	χ^2_{min}	Pull _{SM}	Improv.
SM	0	16.74	-	-
$C_9^{(e,\mu)}$ real	2	9.78	2.16σ	2.16σ
$C_7, C_8, C_9^{(e,\mu)}, C_{10}^{(e,\mu)}$ real	6	8.89	1.16σ	0.09σ
All non-primed WC real	10	8.87	0.47σ	0.00σ
All WC real (incl. primed)	20	7.75	0.02σ	0.00σ
All WC complex (incl. primed)	40	7.35	0.00σ	0.00σ

8 observables

R_K and *R_{K*}* points to a best fit point different from the previous fits
The values of δ*C*^μ₁₀ and δ*C*^{/μ}₁₀ are more constrained than δ*C*₉

Fit results with more than two operators: Only R_K and R_{K^*} (+ $B_{s,d} \rightarrow \ell\ell + \overline{B \rightarrow X_s \ell \ell}$)

Preliminary!

Only R_K and R_{K^*} ($\chi^2_{ m SM} = 16.74, \ \chi^2_{ m min} = 7.35$)						
	δC7		δC8			
$Re(\delta C_i)$	0.18	± 0.03	0.80 ± 0.49			
$Im(\delta C_i)$	0.02	± 0.25	0.03 ± 11.93			
	3	$\delta C'_7$		$\delta C'_8$		
$Re(\delta C_i)$	-0.17 ± 0.03		-2.04 ± 0.18			
$Im(\delta C_i)$	-0.01 ± 0.17		-0.41 ± 2.78			
	δC_9^{μ}	δC_9^e	δC^{μ}_{10}	δC_{10}^e		
$Re(\delta C_i)$	$\textbf{6.59} \pm \textbf{1.70}$	$\textbf{3.38} \pm \textbf{5.48}$	-3.02 ± 0.44	-3.29 ± 5.65		
$Im(\delta C_i)$	0.00 ± 1.41	$\textbf{3.38} \pm \textbf{5.48}$	0.00 ± 1.41	-3.29 ± 5.65		
	$\delta C_{9}^{\prime \mu}$	$\delta C_9^{\prime e}$	$\delta C_{10}^{\prime\mu}$	$\delta C_{10}^{\prime e}$		
$Re(\delta C_i)$	11.18 ± 1.70	0.00 ± 1.41	-7.11 ± 0.44	0.00 ± 1.41		
$Im(\delta C_i)$	0.35 ± 3.11	-10.26 ± 5.83	$\textbf{0.00} \pm \textbf{3.43}$	-24.01 ± 2.49		
	$\delta C^{\mu}_{Q_1}$	$\delta C_{Q_1}^e$	$\delta C^{\mu}_{Q_2}$	$\delta C_{Q_2}^e$		
$Re(\delta C_i)$	0.00 ± 1.41	-0.56 ± 8.03	-0.07 ± 0.02	-0.31 ± 8.43		
$Im(\delta C_i)$	0.00 ± 1.58	-0.60 ± 6.18	0.00 ± 1.41	-0.29 ± 6.45		
	$\delta C_{Q_1}^{\prime \mu}$	$\delta C_{Q_1}^{\prime e}$	$\delta C_{Q_2}^{\prime \mu}$	$\delta C_{Q_2}^{\prime e}$		
$Re(\delta C_i)$	0.00 ± 1.41	0.00 ± 1.41	0.07 ± 0.02	0.00 ± 1.41		
$Im(\delta C_i)$	0.00 ± 1.58	-0.66 ± 6.09	0.00 ± 1.41	-0.25 ± 8.40		

• R_K and R_{K^*} points to a best fit point different from the previous fits

• The values of δC_{10}^{μ} and $\delta C_{10}^{\prime \mu}$ are more constrained than δC_9