Evidence for the H → bb decay with the ATLAS detector

Changqiao LI^[1,2] on behalf of the ATLAS Collaboration [1]University of Science and Technology of China [2]Laboratoire de Physique Nucléaire et de Hautes Energies

> La Thuile 2018 Feb. 25 - Mar. 03, 2018

1958

Motivation for VH, $H \rightarrow b\overline{b}$ and Previous results

 \rightarrow H \rightarrow bb an important missing piece of the "Higgs puzzle":

- ➡ Provides direct probe of coupling to quarks
- Drives the uncertainty on the total decay width, and thus on measurement of absolute couplings
- ➡ The more Higgs boson decays we see, the less "space" remains available for "undetected/invisible" decays

→VH leptonic signatures → suppression of multi-jet bkg / trigger

previous VHbb at Higgs mass = 125 GeV	Signal strength**	Significance (expected)	Significance (observed)	
CDF+DØ combination [1] 9.7 fb-1 @ \s = 1.96TeV	$1.9^{+0.8}_{-0.7}$	1.5σ	2.8σ (3.1 σ global)	
ATLAS Run-I [2] 4.7/20.3 fb-1 @ √s = 7/8TeV	$0.52^{+0.40}_{-0.37}$	2.6σ	1.4σ	
CMS Run-I [3] 5.1/19.7 fb-1 @ √s = 7/8TeV	$0.89^{+0.47}_{-0.44}$ 2.5σ		2.1σ	
ATLAS+CMS Run-I* [4]	$\begin{array}{c} \text{ATLAS+CMS} \\ \text{Run-I*}_{\tiny [4]} \end{array} & 0.70^{+0.29}_{-0.27} & 3.7\sigma \end{array}$		2.6σ	
*with sub-lead ** $\mu = \frac{\sigma \times B}{(\sigma \times BF)}$	 Phys. Rev. Lett. 109 (2012) 071804 JHEP01(2015)069 Eur.Phys.J. C75(5), 212 (2015) + <u>twiki</u> JHEP08(2016)045 			

2

How to make a use of the leptonic signatures?

VH, $H \rightarrow b\overline{b}$ selection

- $\Rightarrow 0 / 1 / 2 \text{ lepton (e or } \mu)$
- → Trigger based on single lepton and MET (MET also used for $W \rightarrow \mu v$)
- ⇒ 2 b-tagged jets with (> 45, > 20) GeV
- ⇒ Exactly 2 or 3 jets (0, 1-lepton),
 2 or ≥ 3 jets (2-lepton)
- → Requiring high p_T(V) → improving S/B ratio
- ➡ Exploited in event categorisation:
 - ⇒ 75 < p_T(V) ≤ 150 GeV (2-lepton)
 - ⇒ $p_T(V) > 150$ (all channels)

Performed with the pp collisions data at $\sqrt{s} = 13$ TeV, collected in 2015 and 2016, corresponding to an integrated luminosity of 36.1 fb⁻¹. [JHEP 12 (2017) 024]

Multivariate analysis

- One BDT per channel and analysis region
- Two versions of the BDTs
 - ➡ Same inputs
 - Separate VH(→ bb̄)
 from backgrounds,
 denoted as BDT_{VH}
 - Separate VZ(→ bb̄) from backgrounds, denoted as BDT_{VZ}

Variable	0-lepton	1-lepton	2-lepton
p_{T}^{V}		Х	×
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	×
$p_{\mathrm{T}}^{m{b}_1}$	×	×	×
$p_{\mathrm{T}}^{b_2}$	×	×	×
m _{bb}	×	×	×
$\Delta R(b_1,b_2)$	×	×	×
$ \Delta\eta(b_1,b_2) $	×		
$\Delta \phi(V, bb)$	×	×	×
$ \Delta \eta(V, bb) $			×
$m_{\rm eff}$	×		
$\min[\Delta\phi(\ell,b)]$		×	
m_{T}^W		×	
$m_{\ell\ell}$			×
m _{top}		×	
$ \Delta Y(V, bb) $		×	
	Only	y in 3-jet ev	vents
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	×
m _{bbj}	×	×	×

- A fit to a multivariate discriminant (BDT) is performed to separate signal from background
 - → MVA analysis: VH(→ bb) fit on BDT_{VH}
 - → Validation: $VZ(\rightarrow b\bar{b})$ fit on BDT_{VZ}
 - ➡ Cross check: VH(→ bb̄) fit on mbb
- - Shapes and relative normalisations across regions parametrised by nuisance parameters (NPs), constrained within allowed systematic uncertainties (priors)

Backgrounds

0-lepton

1-lepton

2-lepton

- ➡ Distribution of best discriminating variable m_{bb}
- ➡ Non-resonant backgrounds from W+jets, Z+jets, ttbar and single top
- ➡ W+jets / Z+jets is mainly suppressed by b-jet requirement (except W/Z+bb)
- ttbar is mainly suppressed by the requirement on jet multiplicity
- \Rightarrow Resonant VZ, Z \rightarrow bb backgrounds, used to validate the analysis procedure

Background estimation strategy

⇒Z+jets:

Constrained in 2-lepton, extrapolated to 0-lepton

⇒W+jets:

Constrained in 1-lepton with a dedicated control region, extrapolated to 0-lepton

→ttbar:

- In 0-lepton and 1-lepton: constrained together
- In 2-lepton: constrained in a dedicated control region

- ➡ 1-lepton W+jets control region:
 - → m_{bb} < 75 GeV and * m_{top} > 225 GeV
 - ➡ ~ 75-80 % purity
- * Reconstructed top quark mass

- ⇒ 2-lepton ttbar control region:
 - \Rightarrow Require $e\mu$
 - ⇒ > 99 % purity

Validation with VZ production

VZ, $Z \rightarrow b\overline{b}$ as signal, fit on BDT_{VZ}

MVA analysis fit

VH, $H \rightarrow b\overline{b}$ as signal, fit on BDT_{VH}

Impact of systematics in MVA analysis

Source of un	certainty	σ_{μ}		
Total		0.39		
Statistical		0.24		
Systematic		0.31		
Experimenta	l uncertainties			
Jets		0.03		
$E_{ m T}^{ m miss}$		0.03		
Leptons		0.01		
	<i>b</i> -jets	0.09		
<i>b</i> -tagging	<i>c</i> -jets	0.04		
	light jets	0.04		
	extrapolation	0.01		
Pile-up		0.01		
Luminosity		0.04		
Theoretical a	and modelling ur	ncertainties		
Signal		0.17		
Floating nor	malisations	0.07		
Z+jets		0.07		
W+jets		0.07		
tī		0.07		
Single top-quark		0.08		
Diboson		0.02		
Multijet		0.02		
MC statistica	al	0.13		

- Systematic uncertainties are dominant
- Main systematic uncertainties:
 - Signal modelling (dominated by extrapolation uncertainty from high pT(V) to inclusive phase space, and presently by parton shower/underlying events systematics)
 - Signal uncertainty doesn't affect the significance
 - Background modeling

 (similar contribution from all the backgrounds, with a statistical component from floating normalisations)
 - ➡ B-tagging calibration uncertainty
 - Limited size of Monte Carlo samples (despite generator slicing/filtering)

Cross check fit: dijet mass analysis

All analysis regions combined, weighted by their S/B, with all backgrounds except VZ subtracted.

- ➡ A fit to m_{bb} observable is applied
- An additional p_T(V) category at 200 GeV
 - ➡ Additional cut on ∆R(b₁,b₂), getting tighter with increasing p_T(V)
- Important validation of MVA analysis
- Higgs boson signal strength:

 $\mu = 1.30^{+0.28}_{-0.27}(\text{stat.})^{+0.37}_{-0.29}(\text{syst})$

- 2.8σ expected significance
- 3.5σ observed significance
- ➡ Consistent result with MVA analysis → solid results

Combination with Run1

- ➡ Run-2 MVA VH, H → bb analysis is combined with the corresponding Run-1 analysis
 - \Rightarrow 4.0 σ expected significance
 - ⇒ 3.6σ observed significance
 - → Fitted signal strength compatible with SM within 0.4σ

Conclusions

- ⇒ 3.6 σ evidence (4.0 σ expected) has been obtained for VH (→ $b\bar{b}$)
- ➡ Within the present ~25-30% uncertainty on µ, the result compatible with Standard Model (SM) prediction
- Assuming the SM production rate, results consistent with the Yukawa coupling to b-quarks in the SM
- More than 3 times data in full Run2, this is definitely only the first step of a wonderful journey

Let's have a look at the production mode

Details in the event selection

Selection	0-lepton	1-lepton		2-lepton		
		e sub-channel	μ sub-channel			
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton		
Leptons	0 loose leptons	1 tight electron	1 medium muon	2 loose leptons with $p_{\rm T} > 7 {\rm ~GeV}$		
	with $p_{\rm T} > 7 {\rm ~GeV}$	$p_{\rm T} > 27 { m ~GeV}$	$p_{\rm T} > 25 { m ~GeV}$	≥ 1 lepton with $p_{\rm T} > 27 { m GeV}$		
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 150 { m ~GeV}$	$> 30 { m GeV}$	_	_		
$m_{\ell\ell}$	_		_	$81 \text{ GeV} < m_{\ell\ell} < 101 \text{ GeV}$		
Jets	Exactly	2 or 3 jets		Exactly 2 or ≥ 3 jets		
Jet $p_{\rm T}$		>	$\cdot 20 \text{ GeV}$			
b-jets		Exactly 2 <i>b</i> -tagged jets				
Leading <i>b</i> -tagged jet $p_{\rm T}$						
H_{T}	> 120 (2 jets), > 150 GeV (3 jets)	_		_		
$\min[\Delta \phi(ec{E}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jets})]$	$> 20^{\circ} (2 \text{ jets}), > 30^{\circ} (3 \text{ jets})$	-		_		
$\Delta \phi (ec{E}_{\mathrm{T}}^{\mathrm{miss}}, ec{bb})$	$> 120^{\circ}$	—		_		_
$\Delta \phi(ec{b}_1,ec{b}_2)$	$< 140^{\circ}$	_		_		
$\Delta \phi(ec{E}_{ m T}^{ m miss}, ec{E}_{ m T,trk}^{ m miss})$	$< 90^{\circ}$	_		—		_
$p_{\rm T}^V$ regions	> 150 GeV			(75, 150] GeV, > 150 GeV		
Signal regions	\checkmark	$m_{bb} \geq 75 \text{ GeV} \text{ or } m_{top} \leq 225 \text{ GeV}$		$m_{bb} \geq 75 \text{ GeV} \text{ or } m_{top} \leq 225 \text{ GeV}$		Same-flavour leptons
				.		Opposite-sign charge ($\mu\mu$ sub-channel)
Control regions	_	$m_{bb} < 75 \text{ GeV} \text{ and } m_{top} > 225 \text{ GeV}$		Different-flavour leptons		

Event display

2-lepton

 $N_{sig,exp} = 102$

0-lepton

Higgs mass reconstruction

Sharpening signal mass peak directly improves sensitivity Two most important corrections:

- → µ-in-jet corrections: if available, add muon to jet momentum (+13%)
- → For 2-lepton channel (≤ 3jets),
 use full kinematic likelihood fit,
 exploiting constraint

OK, S/B is what we care about!

dRBB

'H'

q,V

ro plane

low $p_T(V/H)$

- $H \rightarrow b\overline{b}$ is a simple 2-body decay
- For high $p_T(H)$, can require
 - low $\Delta R(bb)$

small $\Delta R_{b\bar{b}}$

rø plane

high p⊤(V/H)

1,,

- With almost no loss in signal efficiency
 - **Backgrounds** (esp. ttbar) significantly suppressed by these requirements!
 - First realised in the context of jet substructure [PRL 100:242001, 2008, Butterworth et al., **ATL-PHYS-PUB-2009-088**]

Control regions

Dedicated control regions (CRs) are defined to better isolate specific background

Control region	W+HF	ttbar
Channel	l-lepton	2-lepton
Selection	$m_{b\bar{b}} < 75 { m ~GeV}$	Same as signal, but
	$m_{top} > 225 \text{ GeV}$	require e+µ final state
Analysis regions	2- / 3- jets	2- / ≥3- jets Iow / high-p⊤(V)
Purity	~75-80%	>99%
Fit observable	Yield only	m _{bb}

- Due to the very different regions of phase space probed, the ttbar background model in the 2lepton channel is decorrelated from the 0- and 1lepton channels
- In total 8 signal regions and 6 control regions

Multi Variate Analysis techniques

Separate signal and background

m_{bbj}

- Use Multi Variate
 Analysis (BDT) to
 combine all observables
 into a single final
 discriminant
- One BDT per channel and analysis region

20

Fit and validation strategy

- → A likelihood fit is applied across channels and multiple analysis regions to extract the signal strength $\mu = \frac{\sigma \times BR}{(\sigma \times BR)_{SM}}$ and the normalisations of the main backgrounds
- Shapes and relative normalisations across regions parametrized by nuisance parameters (NPs), constrained within allowed systematic uncertainties (priors)
- ➡ A nominal analysis (main observable: BDTVH output), two validation analyses (main observable: BDTVZ output and mbb).

Systematic uncertainties

	Z + jets				
Z + ll normalisation	18%				
Z + cl normalisation	23%				
Z + bb normalisation	Floating (2-jet, 3-jet)				
Z + bc-to- $Z + bb$ ratio	30-40%				
Z + cc-to- $Z + bb$ ratio	13-15%				
Z + bl-to- $Z + bb$ ratio	20-25%				
0-to-2 lepton ratio	7%				
$m_{bb},p_{ m T}^V$	S				
	W + jets				
W + ll normalisation	32%				
W + cl normalisation	37%				
W + bb normalisation	Floating (2-jet, 3-jet)				
W + bl-to- $W + bb$ ratio	26% (0-lepton) and $23%$ (1-lepton)				
W + bc-to- $W + bb$ ratio	15% (0-lepton) and $30%$ (1-lepton)				
W + cc-to- $W + bb$ ratio	10% (0-lepton) and $30%$ (1-lepton)				
0-to-1 lepton ratio	5%				
W + HF CR to SR ratio	10% (1-lepton)				
$m_{bb},p_{ m T}^V$	S				
$t\bar{t}$ (all are uncorrel	ated between the $0+1$ and 2-lepton channels)				
$t\bar{t}$ normalisation	Floating (0+1 lepton, 2-lepton 2-jet, 2-lepton 3-jet)				
0-to-1 lepton ratio	8%				
2-to-3-jet ratio	9% (0+1 lepton only)				
W + HF CR to SR ratio	25%				
$m_{bb},p_{ m T}^V$	S				
	Single top quark				
Cross-section	4.6% (s-channel), $4.4%$ (t-channel), $6.2%$ (Wt)				
Acceptance 2-jet	17% (t-channel), $35%$ (Wt)				
Acceptance 3-jet	20% (t-channel), $41%$ (Wt)				
$m_{bb},p_{ m T}^V$	S (t-channel, Wt)				
	Multi-jet (1-lepton)				
Normalisation	60-100%~(2-jet),~100-400%~(3-jet)				
BDT template	S				

Summary of the systematic uncertainties in the background modelling for

- ➡ Z + jets
- ➡ W + jets
- ➡ ttbar
- single top quark
- ➡ multi-jet production.

Systematic uncertainties

ZZ			
Normalisation	20%		
0-to-2 lepton ratio	6%		
Acceptance from scale variations (var.)	10 – 18% (Stewart–Tackmann jet binning method)		
Acceptance from PS/UE var. for 2 or more jets	5.6% (0-lepton), $5.8%$ (2-lepton)		
Acceptance from PS/UE var. for 3 jets	7.3% (0-lepton), $3.1%$ (2-lepton)		
$m_{bb}, p_{\rm T}^V$, from scale var.	S (correlated with WZ uncertainties)		
$m_{bb}, p_{\rm T}^V$, from PS/UE var.	S (correlated with WZ uncertainties)		
m_{bb} , from matrix-element var.	S (correlated with WZ uncertainties)		
WZ			
Normalisation	26%		
0-to-1 lepton ratio	11%		
Acceptance from scale var.	13 - 21% (Stewart-Tackmann jet binning method)		
Acceptance from PS/UE var. for 2 or more jets	3.9%		
Acceptance from PS/UE var. for 3 jets	11%		
$m_{bb}, p_{\rm T}^V$, from scale var.	S (correlated with ZZ uncertainties)		
$m_{bb}, p_{\rm T}^V$, from PS/UE var.	S (correlated with ZZ uncertainties)		
m_{bb} , from matrix-element var.	S (correlated with ZZ uncertainties)		
L L L L L L L L L L L L L L L L L L L	VW		
Normalisation	25%		

Signal			
Cross-section (scale)	0.7%~(qq),~27%~(gg)		
Cross-section (PDF)	$1.9\% (qq \rightarrow WH), 1.6\% (qq \rightarrow ZH), 5\% (gg)$		
Branching ratio	1.7~%		
Acceptance from scale variations (var.)	2.5 - 8.8% (Stewart-Tackmann jet binning method)		
Acceptance from PS/UE var. for 2 or more jets	10 - 14% (depending on lepton channel)		
Acceptance from PS/UE var. for 3 jets	13%		
Acceptance from PDF+ $\alpha_{\rm S}$ var.	0.5-1.3%		
$m_{bb}, p_{\rm T}^V$, from scale var.	S		
$m_{bb}, p_{\rm T}^V, \text{ from PS/UE var.}$	S		
$m_{bb}, p_{\rm T}^V,$ from PDF+ $\alpha_{\rm S}$ var.	S		
$p_{\rm T}^V$ from NLO EW correction	S		

Summary of the systematic uncertainties in the background modelling for

- ➡ diboson
- ➡ Signal

post fit scale factor

Process	Normalisation factor
$t\overline{t}$ 0- and 1-lepton	0.90 ± 0.08
$t\overline{t}$ 2-lepton 2-jet	0.97 ± 0.09
$t\overline{t}$ 2-lepton 3-jet	1.04 ± 0.06
W + HF 2-jet	1.22 ± 0.14
W + HF 3-jet	1.27 ± 0.14
Z + HF 2-jet	1.30 ± 0.10
Z + HF 3-jet	1.22 ± 0.09

Factors applied to the nominal normalisations of the ttbar, W+HF and Z+HF backgrounds, as obtained from the global fit to the 13 TeV data for the nominal multivariate analysis, used to extract the Higgs boson signal. The errors include the statistical and systematic

Cross Check fit: mbb

Channel							
Selection	Selection 0-lepton 1-lepton 2-lepton						
m_{T}^W	-	$< 120 { m GeV}$	-				
$E_{\rm T}^{\rm miss}/\sqrt{S_{\rm T}}$	-	-	$< 3.5\sqrt{\text{GeV}}$				

$p_{\rm T}^V$ regions				
$p_{\rm T}^V$ (75, 150] GeV (150, 200] GeV (200, ∞) GeV				
\rightarrow \rightarrow \rightarrow	(2-lepton only)			
$\Delta R(b_1, b_2)$	<3.0	<1.8	<1.2	

- To fully exploit the High PT, the di-jet mass analysis includes (on top of MVA analysis):
 - An additional category for events with p_T(V) > 200 GeV
 - Topological requirements that require smaller ΔR(b₁,b₂) for the increasing p_T(V)

		Categories					
Channel	SB/CB	75 GeV $< p_{\rm T}^V$	< 150 GeV	$150 \text{ GeV} < p_{\mathrm{T}}^{V}$	$< 200 { m GeV}$	$p_{\mathrm{T}}^{V} > 20$	$00 \mathrm{GeV}$
	517,010	2 jets	3 jets	2 jets	$3 ext{ jets}$	2 jets	3 jets
0-lepton	SR	-	-	m_{bb}	m_{bb}	m_{bb}	m_{bb}
1-lepton	SR plus W + HF CR	-	-	m_{bb}	m_{bb}	m_{bb}	m_{bb}
2-lepton	SR	m_{bb}	m_{bb}	m_{bb}	m_{bb}	m_{bb}	m_{bb}
2 lepton	$e\mu$ CR	m_{bb}	m_{bb}	Yield*	${m_{bb}}^\dagger$	Yield*	m_{bb}^{\dagger}
			25			/	/

Regions used in likelihood fit for the dijet-mass analysis

merged

CMS v.s. ATLAS

•Analysis also performed by the other sister. [CMS]

CMS

ATLAS

1.20+0.24-0.23(stat)+0.34-0.28(syst)

CMS v.s. ATLAS

•A close eye on the systematic uncertainties and significances.

CMS

ATLAS

			Individual contribution	Effect of removal to
	Source	Туре	to the μ uncertainty (%)	the μ uncertainty (%)
1	Scale factors (tt, V+jets)	norm.	9.4	3.5
2	Size of simulated samples	shape	8.1	3.1
	Simulated samples' modeling	shape	4.1	2.9
3	b tagging efficiency	shape	7.9	1.8
	Jet energy scale	shape	4.2	1.8
5	Signal cross sections	norm.	5.3	1.1
	Cross section uncertainties	norm.	4.7	1.1
л	(Single-top, v v)	chana	5.6	0.0
4	h tagging mistag rate	shape	5.0	0.9
	b tagging mistag rate	snape	4.0	0.9
	Integrated luminosity	norm.	2.2	0.9
	Unclustered energy	shape	1.3	0.2
	Lepton efficiency and trigger	norm.	1.9	0.1

Source of uncertainty σ_{μ}								
Total	0.39							
Statistical	0.24							
Systematic	Systematic							
Experimenta	Experimental uncertainties							
Jets	Jets							
$E_{ m T}^{ m miss}$		0.03						
Leptons	Leptons							
	<i>b</i> -jets	0.09						
b-tagging	<i>c</i> -jets	0.04						
	light jets	0.04						
	extrapolation	0.01						
Pile-up	0.01							
Luminosity	0.04							
Theoretical and modelling uncertainties								
Signal 0.17								
	0.07							
Z+jets W+jets	0.07							
$t\bar{t}$	0.07							
Single top_o	0.07							
Diboson	0.00							
Multijet	0.02							
Winiijei 0.02								
MC statistica	0.13							

CMS			ATLAS					
Channala Cignificance Cignifi		Cianifican co	Dataset			Significance		
Channels	expected	observed	Dataset	Exp.	Obs.	Exp.	Obs.	
0-lepton	1.5	0.0	0-lepton	4.2%	30%	1.7	0.5	
1-lepton 2-lepton	1.5 1.8	3.2 3.1	1-lepton	3.5%	1.1%	1.8	2.3	
	d 2.8	3.3	2-lepton	3.1%	0.019%	1.9	3.6	
Combined			Combined	0.12%	0.019%	3.0	3.5	