

Mixing and CP violation in charm

Louis Henry (IFIC, University of Valencia-CSIC) On behalf of the LHCb collaboration Les Rencontres de Physique de la Vallée d'Aoste, La Thuile, Italy, 27/02/2018

Introduction

- Recent results
 - A measurement of the CP asymmetry difference in $\Lambda_c^+ \rightarrow pK^+K^-$ and $p\pi^+\pi^-$ decays [arxiv:1712.07051]
 - Measurement of CP asymmetries in $D^{\pm} \rightarrow \eta' \pi^{\pm}$ and $D^{\pm}_{s} \rightarrow \eta' \pi^{\pm}$ decays (Phys. Lett. B 771 (2017) 21-30)
 - Updated determination of $D^{0}-\overline{D}^{0}$ mixing and *CP* violation parameters with $D^{0}\rightarrow K^{+}\pi^{-}$ decays [arxiv:1712.03220]

Conclusion

CP violation and mixing in charm decays

- CP violation (CPV) observed in down-quark sector (kaons, $B_{(s)}$ mesons).
 - Leading order for charm in Standard Model is $(1/m_c) \rightarrow$ non-observation is compatible with expectations.
 - However NP coupling solely to up-type quarks could enhance CPV effects.
- In the Standard Model (SM), no CPV in single amplitude processes.
 - Single-Cabibbo suppressed decays have different competing amplitudes \rightarrow CPV possible

The LHCb detector

Single-arm forward spectrometer [JINST 3(2008) S08005.]

Recent results on CPV and mixing in charm decays at LHCb

ΔA_{CP} in $\Lambda_c^+ \rightarrow pK^+K^-$ and $p\pi^+\pi^-$ decays (Run 1) arxiv:1712.07051, submitted to JHEP

- Both modes are selected as part of the $\Lambda_b^0 \rightarrow \Lambda_c^+ \mu$ -X decay chain.
- We measure A_{raw} as:

$$A_{\text{raw}}(f) = \frac{N(f\mu^{-}) - N(\bar{f}\mu^{+})}{N(f\mu^{-}) + N(\bar{f}\mu^{+})} \text{related to } A_{\text{CP}} \text{ by: } A_{\text{raw}} = A_{\text{CP}} + A_{\text{detection}} + A_{\text{production}}$$

- Measure $A_{\rm raw}$ for two modes and correct for kinematical differences in order to access to $\Delta A_{CP}.$

Louis Henry - Les Rencontres de physique de la Vallée d'Aoste (2018)

Large source of systematic uncertainties

$\Delta A_{CP} \text{ in } \Lambda_c^+ \rightarrow pK^+K^- \text{ and } p\pi^+\pi^- \text{ decays (Run 1)}$ arxiv:1712.07051, submitted to JHEP

CPV in $D^{\pm} \rightarrow \eta' \pi^{\pm}$ and $D_s^{\pm} \rightarrow \eta' \pi^{\pm}$ decays (Run 1)

Phys. Lett. B 771 (2017) 21-30

• We measure the difference in A_{CP} between the studied modes and modes where A_{CP} is already measured precisely.

$$\begin{split} \Delta \mathcal{A}_{CP}(D^{\pm} \to \eta' \pi^{\pm}) &\equiv \mathcal{A}_{CP}(D^{\pm} \to \eta' \pi^{\pm}) - \mathcal{A}_{CP}(D^{\pm} \to K_{s}^{0} \pi^{\pm}) \\ &= \mathcal{A}_{raw}(D^{\pm} \to \eta' \pi^{\pm}) - \mathcal{A}_{raw}(D^{\pm} \to K_{s}^{0} \pi^{\pm}) + \mathcal{A}(\overline{K}^{0} - K^{0}), \\ \Delta \mathcal{A}_{CP}(D_{s}^{\pm} \to \eta' \pi^{\pm}) &\equiv \mathcal{A}_{CP}(D_{s}^{\pm} \to \eta' \pi^{\pm}) - \mathcal{A}_{CP}(D_{s}^{\pm} \to \phi \pi^{\pm}) \\ &= \mathcal{A}_{raw}(D_{s}^{\pm} \to \eta' \pi^{\pm}) - \mathcal{A}_{raw}(D_{s}^{\pm} \to \phi \pi^{\pm}). \end{split}$$

8

- Three different trigger requirements:
 - Energy deposit in hadronic calorimeter from decay particle (T1)
 - Energy deposit in hadronic calorimeter from unrelated particle (T2)
 - Energy deposit in electromagnetic calorimeter or high-pT muon from unrelated particle (T3).

CPV in $D^{\pm} \rightarrow \eta' \pi^{\pm}$ and $D_s^{\pm} \rightarrow \eta' \pi^{\pm}$ decays (Run 1)

Phys. Lett. B 771 (2017) 21-30

• Fits are performed in nine bins of $(p_T-\eta)$, then A_{raw} are combined using a weighted average.

Most precise measurement to date

Charm mixing and CPV with $D^0 \rightarrow K^{\pm} \pi^{\mp}$ decays arxiv:1712.03220, submitted to PRD

• D⁰ decay to $K^+\pi^-$ is doubly Cabibbo-suppressed (DCS) \rightarrow interfere with $D^0 \rightarrow \overline{D}^0$ mixing.

10

- D⁰ flavor tagged at production by using D⁰ from D^{*}±
- Ratio of suppressed-to-favored decay rates approximated as:

$$R^{\pm}(t) = R_D^{\pm} + \sqrt{R_D^{\pm}} y'^{\pm}t + \frac{(x'^{\pm})^2 + (y'^{\pm})^2}{4} t^2,$$

+(-) refers to the decay from a D⁰ (D
⁰).
x' = xcos(δ) + ysin(δ), y' = ycos(δ) - xsin(δ),
δ: strong-phase difference between the suppressed and favored amplitudes (CLEO-c, BESIII)

(Phys. Rev. D86 (2012) 112001, Phys. Lett. B734 (2014) 227)

Charm mixing and CPV with $D^0 \rightarrow K^{\pm}\pi^{\mp}$ decays arxiv:1712.03220, submitted to PRD

• Separated in 13 bins of lifetime.

 Statistical uncertainty dominates, main sources of systematic uncertainties are residual D*+ from B mesons and spurious soft pions → statistical in nature.

 $\begin{aligned} \mathbf{x'}^2 &= (3.9 \pm 2.7) \times 10^{-5} , \, \mathbf{y'} = (5.28 \pm 0.52) \times 10^{-3} \\ \mathbf{R}_{\mathrm{D}} &= (3.454 \pm 0.031) \times 10^{-3} \\ A_D &= (-0.1 \pm 9.1) \times 10^{-3} \text{ and } 1.00 < |q/p| < 1.35 \end{aligned}$ Twice as precise as previous LHCb measurement (Phys. Rev. Lett. 111 (2013)) Most stringent limits to date on charm CPV

Louis Henry - Les Rencontres de physique de la Vallée d'Aoste (2018)

6

(a)

Conclusion and prospects

- A lot of activity in Charm physics in LHCb.
 - Could not present all of the recent results, for instance:
 - Measurement of CP asymmetry in $D^0 \rightarrow K^+K^-$ decays (Phys. Lett. B 767 (2017), 177-187)
 - Measurement of the CP violation parameter A_{Γ} in $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decays (Phys. Rev. Lett. 118, 261803 (2017))
 - Search for CP violation in the phase space of $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$ decays (Phys. Lett. B 769 (2017) 345-356)
- Wealth of experience from Run 1 analyses \rightarrow fast and improved analyses.
- Analysis of Run 2 data directly on trigger output! ("turbo" trigger).
- Systematic use of control modes, consistency checks and difference of observables allow to keep systematic uncertainties under control.

 \rightarrow Despite often huge datasets (order 10⁵-10⁷ signal candidates), presented measurements are all statistically limited.

Stay tuned!

Thank you!

The LHCb detector

The LHCb detector: tracking subsystems

The LHCb detector: particle identification

Louis Henry - Les Rencontres de physique de la Vallée d'Aoste (2018)

CPV in $D^{\pm} \rightarrow \eta' \pi^{\pm}$ and $D_s^{\pm} \rightarrow \eta' \pi^{\pm}$ decays (Run 1)

- Eta or eta': 30% of the BR
- CPV expected at the < 1% level.
- Tree-level: (phi: eta-eta' mixing = -11°) • $D_s^+ \to \eta \pi^+ (CF): V_{cs}^* V_{ud}(\sqrt{2}A \cos \phi - T \sin \phi);$ • $D_s^+ \to \eta' \pi^+ (CF): V_{cs}^* V_{ud}(\sqrt{2}A \sin \phi + T \cos \phi);$ • $D^+ \to \eta \pi^+ (SCS): \frac{1}{\sqrt{2}} V_{cd}^* V_{ud}(T' + C' + 2A') \cos \phi - V_{cs}^* V_{us}C' \sin \phi;$ • $D^+ \to \eta' \pi^+ (SCS): \frac{1}{\sqrt{2}} V_{cd}^* V_{ud}(T' + C' + 2A') \sin \phi + V_{cs}^* V_{us}C' \cos \phi;$ • $D_s^+ \to \eta K^+ (SCS): V_{cs}^* V_{us}[\frac{1}{\sqrt{2}}A'' \cos \phi - (T'' + C'' + A'') \sin \phi] + \frac{V_{cd}^* V_{ud}}{\sqrt{2}}C'' \cos \phi;$ • $D_s^+ \to \eta' K^+ (SCS): V_{cs}^* V_{us}[\frac{1}{\sqrt{2}}A'' \cos \phi + (T'' + C'' + A'') \sin \phi] + \frac{V_{cd}^* V_{ud}}{\sqrt{2}}C'' \cos \phi;$ • $D^+ \to \eta K^+ (DCS): V_{cd}^* V_{us}[\frac{1}{\sqrt{2}}(T''' + A''') \cos \phi - A''' \sin \phi];$ • $D^+ \to \eta' K^+ (DCS): V_{cd}^* V_{us}[\frac{1}{\sqrt{2}}(T''' + A''') \sin \phi + A''' \cos \phi];$

- Signal form: Johnson distributions, tails shared between signals and (p_T-eta) bins $f(x;\mu,\sigma,\delta,\gamma) \propto \left[1 + \left(\frac{x-\mu}{\sigma}\right)^2\right]^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}\left[\gamma + \delta \sinh^{-1}\left(\frac{x-\mu}{\sigma}\right)\right]^2\right\}.$
- Background: 4th order polynomial with parameters Gaussian-constrained by sideband fit.
- Peaking backgrounds: all suppressed except $D_s \rightarrow \phi(\rightarrow \pi^+\pi^-\pi^0)\pi$, A_{CP} from control sample.
- ACP computed as inverse-variance weighted average over the (p_T-eta) bins.
- Dominant systematic: background model.
 - Background → second-order polynomial, ARGUS
 - Fix parameters from sideband, change peaking background contribution
 - Neglected contributions, signal leaking in sidebands, remaining nonresonant (K+K-) in control sample
 - Independently assessed by lifting constraints and observing increase of statistical uncertainty.

Charm mixing and CPV with $D^0 \rightarrow K^{\pm} \pi^{\mp}$ decays: systematics

No CP violation									
Source	$R_D \ [10^{-3}]$	$y' \ [10^{-3}]$	$x^{\prime 2} [10^{-3}]$						
Instrumental asymm.	< 0.001	< 0.01	< 0.001						
Peaking background	± 0.003	± 0.04	± 0.002						
Secondary D decays	± 0.010	± 0.21	± 0.011						
Ghost soft pions	± 0.008	± 0.15	± 0.008						
Total syst. uncertainty	± 0.014	± 0.27	± 0.014						
Statistical uncertainty	± 0.028	± 0.45	± 0.023						

No direct <i>CP</i> violation					
Source	R_D	y'^+	y'^-	x'^{2+}	x'^{2-}
	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$
Instrumental asymm.	< 0.001	± 0.08	± 0.08	± 0.003	± 0.004
Peaking background	± 0.003	± 0.04	± 0.04	± 0.002	± 0.002
Secondary D decays	± 0.010	± 0.21	± 0.21	± 0.011	± 0.012
Ghost soft pions	± 0.008	± 0.16	± 0.16	± 0.009	± 0.009
Total syst. uncertainty	± 0.014	± 0.29	± 0.29	± 0.016	± 0.016
Statistical uncertainty	± 0.028	± 0.48	± 0.48	± 0.026	± 0.026

Direct and indirect CP violation								
Source	R_D^+	R_D^-	y'^+	y'^-	x'^{2+}	x'^{2-}		
	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$	$[10^{-3}]$		
Instrumental asymm.	± 0.006	± 0.006	± 0.04	± 0.03	± 0.002	± 0.001		
Peaking background	± 0.003	± 0.003	± 0.04	± 0.04	± 0.002	± 0.002		
Secondary D decays	± 0.014	± 0.014	± 0.29	± 0.29	± 0.015	± 0.015		
Ghost soft pions	± 0.012	± 0.012	± 0.21	± 0.21	± 0.011	± 0.011		
Total syst. uncertainty	± 0.020	± 0.020	± 0.38	± 0.38	± 0.019	± 0.020		
Statistical uncertainty	± 0.040	± 0.040	± 0.64	± 0.64	± 0.032	± 0.033		

Master formula

• What do we mean when we say that "asymmetries are small"?

$$\begin{split} A_{CP}^{\text{Raw}}(f) &= \frac{\mathcal{P}(\Lambda_b^0)\epsilon(\mu^-)\epsilon(f)\Gamma(f) - \mathcal{P}(\overline{\Lambda}_b^0)\epsilon(\mu^+)\epsilon(\overline{f})\Gamma(\overline{f})}{\mathcal{P}(\Lambda_b^0)\epsilon(\mu^-)\epsilon(f)\Gamma(f) + \mathcal{P}(\overline{\Lambda}_b^0)\epsilon(\mu^+)\epsilon(\overline{f})\Gamma(\overline{f})}, \\ A_P^{\Lambda_b^0}(f) &= \frac{\mathcal{P}(\Lambda_b^0) - \mathcal{P}(\overline{\Lambda}_b^0)}{\mathcal{P}(\Lambda_b^0) + \mathcal{P}(\overline{\Lambda}_b^0)}, \\ A_D^{\mu}(f) &= \frac{\epsilon(\mu^-) - \epsilon(\mu^+)}{\epsilon(\mu^-) + \epsilon(\mu^+)}, \\ A_D^f(f) &= \frac{\epsilon(f) - \epsilon(\overline{f})}{\epsilon(f) + \epsilon(\overline{f})}. \end{split} , \text{ using} \begin{array}{l} x &= \frac{1}{2}(x+y)(1+X), \\ y &= \frac{1}{2}(x+y)(1-X). \end{array} \\ p_{\mu}(f) &= \frac{\lambda_b^{\Lambda_b^0}}{\epsilon(f) + \epsilon(\overline{f})}. \end{array}$$

$$A_{CP}^{\text{Raw}}(f) = \frac{A_P^{\circ} A_D^{\circ} A_D^{\circ} + A_P^{\circ} A_D^{\circ} A_{CP}^{\circ} + A_P^{\circ} A_D^{\circ} A_{CP}^{\circ} + A_D^{\circ} A_D^{\circ} A_D^{\circ} + A_D^{\circ} +$$