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Model of quark confinement: 

	quarks	bind	by	(chromo)-electric	strings	in	a		
condensate	of	magnetic	monopoles	
(Mandelstam,	‘t	Hooft,	Polyakov)	

mirror	analogue	to	vortex	
formation	in	type	II	
superconductors	

superinsulator	≡	dual	superconductor	
	Polyakov's	magnetic	monopole		
condensation⟹	electric	string	
⟹	linear	confinement	of	Cooper	pairs		



Superconductor 
 
         R = 0 

         G= ∞ 

Superinsulator 
 

         R = ∞ 
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S	duality		
Mandelstam ’tHooft 

Polyakov 

Ø  theoretically predicted in 1996  
     P. Sodano, C.A. Trugenberger, MCD, Nucl. Phys. B474 (1996)  641 

Ø experimentally observed in TiN films in 2008   
     Vinokur et al, Nature 452 (2008) 613 

Ø   confirmed in NbTin films in 2017 
    Vinokour et al, Scientific report 2018 

Superinsulation: realization and proof of confinement  
by monopole condensation and asymptotic freedom 
in solid state materials  

Cooper pairs Quarks 



(Vinokur et al. Nature) 

Results for homogeneously disordered  TiN film (2D)  
transition driven by:  
•  tuning disorder (thickness of the film) 
•  external magnetic field 



‘’The	film	in	a	critical	region	of	D-SIT	can	be	viewed	as		
self-organized	2D		JJ		array!!!’’	(Baturina) 

films  modeled on Josephson junctions arrays	

(Fazio, Nature 452 (2008) 542) 

Joule loss  
P = IV = 0 

V=0 

I=0 

•  superinsulating state 
dual to the 
superconducting state 

•  experiments carried out 
on homogeneous 
disordered films → 

    emergent granularity 
	



The possibility of the existence of the superinsulating state  
can be established from  

the most fundamental quantum-mechanical standpoint:  
uncertainty principle  

Wave function of the condensate 

Meissner effect ⟹ phase coherence 

Superconductor Superinsulator 

∆	φ =   0	 ∆N=   0	

Cooper pairs get pinned φ well defined across the systems	



FQH states: 
•  gapped in the bulk; gapless edge excitations; 
•  low energy effective field theory, Chern-Simons: 
     background independent; 
     ground state degeneracy; 
     quasiparticles have fractional charge and statistics; 

•  Wen's idea: 
conserved matter current, bµ U(1) 
pseudovector gauge field if jµ is a charge 
current 

•  topological field theory at low energy (Euclidean): 

 CS, P (T) breaking 



mixed CS � BF , P(T) invariant 
U(1) x U(1)  

conserved vortex current aµ  is a vector 

can we have P and T symmetries? 

•  two fluids model: 
conserved charge current, bµ is a pseudovector  

•  add kinetic term for the fictitious gauge fields    

2d 



�	

charge current, bµν pseudotensor 
vortex current, aµ vector 

3d 

+ kinetic for aµ and bµν 

BF , P(T) invariant 
U(1) x U(1)  

STM was first proposed in 2 and 3d as a field theory description of 
 topological phases of condensed matter systems in 1996 (Sodano, 
Trugenberger, MCD)	



•  aµ  and bµ (bµν ) acquires a topological mass  m =( k ef eg ) /2π  

•  k is a dimensionless parameter, it determines the ground state 

degeneracy on manifold with non trivial topology and the 

statitistics 

•  [ef
2] = m –d+3     [eg

2] = m d-1  naively irrelevant  (first one marginal 

in 3d) but necessary to correctly define the limit m →∞ (pure CS 
limit) 

     (Dunne, Jackiw, Trugenberger, 1990) 
 

•  they enter in the phase structure of the theory 

 



superconducting island 
C0 = ground capacitance 

Josephson coupling EJ ; C nearest neighbours   
capacitance, EC = e2 /2C charging energy 

V=  electric potential of the island; φ = phase of its order parameter ;  
C�C0  (C0=0) ⟹ two relevant parameter:  (8 EJ EC)1/2  Josephson plasma 
frequency;  EJ / EC  

Planar arrays of spacing l 

Vx, φx 



T=0 exact mapping (Sodano Trugenberger MCD) between  the action of JJA  
and (Euclidean lattice, with lattice spacing l) 

conserved charge current 

conserved vortex current 

Action: 
•  two Coulomb gases for charges and vortices + kinetic term for the charges 

+Aharonov-Bohm  topological interaction between charges and vortices  
      (Fazio, Schön; Phys.Rev.B 43 (1991) 5307) 
•  add kinetic term for vortices ⟹  perfect duality between charges and 

vortices (Sodano Trugenberger MCD) 



η < 1:  η <   g   < 1/η  coexistence region for electric and 
magnetic charges � first-order direct transition  

with G(ml) diagonal part of the lattice 
kernel: 

mixed Chern-Simons term is periodic ⟹ presence of topological defects 

phase structure determined 
by the condensation (lack of)  
of topological defects 

Qµ electric topological defects 

Mµ magnetic topological defects 
⟹	

g =√ (2EC/π2EJ)  

µ: numerical factor 
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TVBKT :  Kosterlitz –Thouless  transition for 
vortex/antivortex pairs 
TCBKT : Kosterlitz –Thouless  transition for 
Cooper pairs/anti-Cooper pairs dipole 
in the region TCBKT < T < TI and TVBKT < T < TC  
Cooper pairs are present 
insulating and resistive states are topological   
insulating states 
charge BKT experimentally observed in 
2017 (Baturina,Vinokour  et al) 
 

(Baturina and Vinokour 2013) 



κ= λ�/l  Landau parameter 
α = e2/ (� c) 
d = film thickness 

λ�= λL
2 /d Pearl  

length 2d 

l≈ ξ coherence 
 length  

quantum behavior  
characteristic of the material 

a = 

λ = 	

ml�	(1/8α)		(1/κ)	

λL = London  
penetration depth	
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Intermediate TI/QM phase or direct transition

EC = 4e2 /a    
EJ � 1/(16 π e2 λ )    

r ξ in 3d	

d in 2d 	

λL in 3d	

λ� in 2d	



2d : Mµ condense, Qµ diluted 

SQED = γ/2π2
 ∑x [ 1 – cos( 2e l2 Fµ )] 

Villain approximation compact QED in 2d  

(Polyakov) 

 induced effective action Seff (Aµ) for the electromagnetic gauge potential Aµ 

Mµ  can be open ending in  magnetic monopole  	

dual	Meissner	effect,	charge	confinement	in	a	monopole	
condensate,	true	also	in	3d	�	superinsulation	can	exist	
also	in	3d	

W(C) � T→∞ exp –V(R) T 
W(C) � exp –σA ⟹ V(R) = σ R 

2e -2e 

T 

R 
area law:  

exp (-Seff) = ∑Mµexp ∑x [ - γ (Mµ - e l2Fµ\π)2] γ = gµη 



string	tension	

QCD confining string like picture : 
linear	confinement	of	Cooper	pairs	into	neutral	"U(1)	mesons”	

typical size 

		

! � (1/σ)1/2 

! ≥ O(l) near the direct superconductor to superinsulator transition for η < 1  
(but not too small) � new spatial scale spontaneously emerging near these 
transitions, describing U(1) mesons extending over several lengths of 
the UV cutoff 

2d: 

3d: 

(Polyakov; Kogan and  Kovner; Quevedo, Trugenberger, and MCD) 



reverse of the confinement on scales smaller than the typical 
string size 

SIT:  string scale can be inferred from experimental data  
dstring= � vc / KTCBKT  
KTCBKT  energy required to break up the string  
dstring scale associated with this energy 
TiN films: TCBKT= 60 mKᴼ  
vc = c/4.10^5  (Baturina and Vinokour ) 
dstring ≈ 60 µm 
study of formation of superinsulators in TiN films of different sizes 
(Kalok et al): samples of size ≤ 20µm 2d thermally activated 
behavior saturates to the metallic 





TiN and NbTiN films: 
2 d: superinsulating critical temperature ≡ TCBKT of the charge BKT transition 
logarithmic and linear confinement (Yaffe  and Svetiski ) ⟹ Berezinski-Kosterlitz-
Thouless critical scaling 
 
 
strong support for superinsulation as Mandelstam-'t Hooft-Polyakov 
confinement mechanism 
	
InO films: “more” 3d than TiN and NbTiN films( ξ >> d) ( Shahar et al) 
	
	
 
Vogel-Fulcher-Tamman criticality ≡ behaviour of one-dimensional 
confining strings in 3d (Diamantini, Gammaitoni, Trugenberger and Vinokour) 
 
gauge theory of the BKT transition in the disordered XY-model (Vasin, Ryhzov and 
Vinokour): BKT criticality ⟹ VFT behavior in 3D 


