

Confinement and asymptotic freedom with Cooper pairs

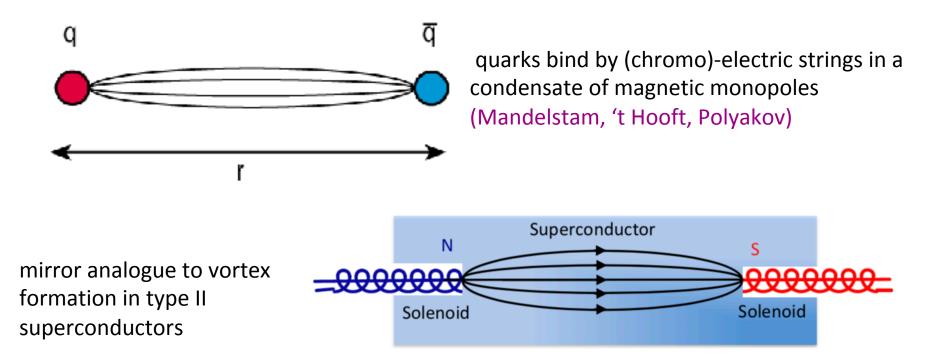
M. Cristina Diamantini

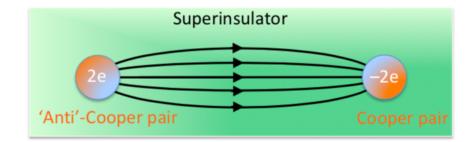
Nips laboratory, INFN and Department of Physics and Geology University of Perugia

Coll:

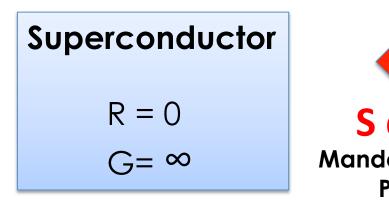
- Igor Lukyanchuk, University of Picardie
- Luca Gammaitoni, University of Perugia
- Carlo A. Trugenberger, SwissScientific
- Valerii Vinokur, Argonne National Laboratory

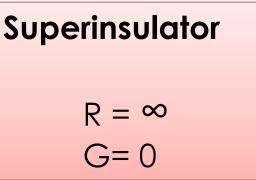
Model of quark confinement:





superinsulator \equiv dual superconductor Polyakov's magnetic monopole condensation \Rightarrow electric string \Rightarrow linear confinement of Cooper pairs





- theoretically predicted in 1996
 - P. Sodano, C.A. Trugenberger, MCD, Nucl. Phys. B474 (1996) 641
- > experimentally observed in TiN films in 2008

Vinokur et al, Nature 452 (2008) 613

Confirmed in NbTin films in 2017

Vinokour et al, Scientific report 2018

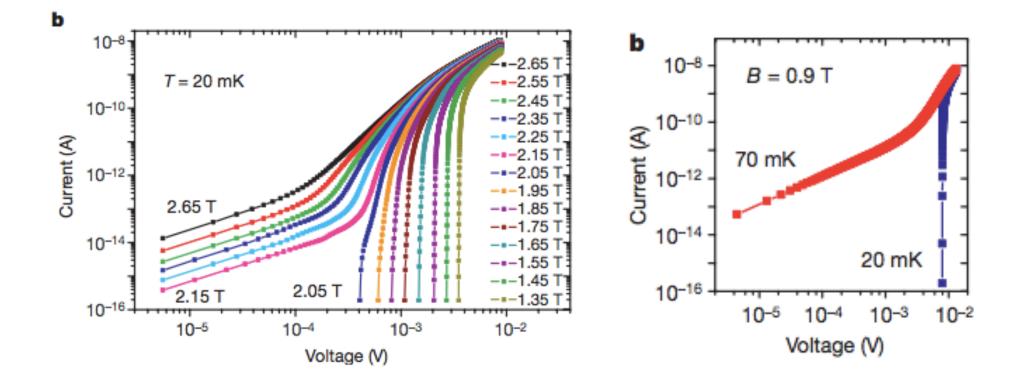
Superinsulation: realization and proof of confinement by monopole condensation and asymptotic freedom in solid state materials

Cooper pairs

Results for homogeneously disordered TiN film (2D)

transition driven by:

- tuning disorder (thickness of the film)
- external magnetic field

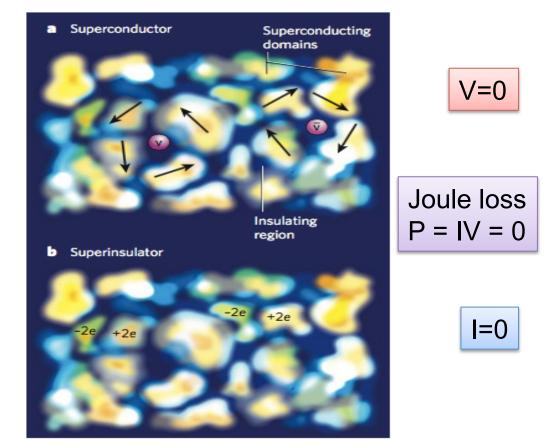


(Vinokur et al. Nature)

films modeled on Josephson junctions arrays

"The film in a critical region of D-SIT can be viewed as **self-organized 2D JJ array!!!**" (Baturina)

- superinsulating state
 dual to the
 superconducting state
- experiments carried out on homogeneous disordered films → emergent granularity



(Fazio, Nature 452 (2008) 542)

SUPERCONDUCTIVITY – SUPERINSULATION DUALITY AND UNCERTAINTY PRINCIPLE

 $\text{Meissner effect} \Rightarrow \text{phase coherence}$

The possibility of the existence of the superinsulating state can be established from the most fundamental quantum-mechanical standpoint: uncertainty principle

Wave function of the condensate

 $[N,\varphi]=i\hbar$

Superconductor

 $\Delta \phi = 0$

 $\boldsymbol{\phi}$ well defined across the systems

$$\Psi = |\Psi| \exp(i\varphi)$$
$$\Rightarrow \quad \Delta \varphi \Delta N \ge 1$$

Superinsulator

 $\Delta N = 0$

Cooper pairs get pinned

PT BREAKING TOPOLOGICAL STATES OF MATTER

FQH states:

- gapped in the bulk; gapless edge excitations;
- low energy effective field theory, Chern-Simons: background independent;
 - ground state degeneracy;
 - quasiparticles have fractional charge and statistics;
- Wen's idea:

conserved matter current, b_{μ} U(1) pseudovector gauge field if j_{μ} is a charge current

• topological field theory at low energy (Euclidean):

 $S = i \int d^3x \frac{k}{2\pi} b_\mu \epsilon_{\mu\nu\alpha} \partial_\nu b_\alpha \longrightarrow CS, P (T) breaking$

PT INVARIANT TOPOLOGICAL STATES OF MATTER

can we have P and T symmetries?

2d

• two fluids model:

 $j_{\mu} \propto \epsilon_{\mu
ulpha} \partial_{
u} b_{lpha} \ \phi_{\mu} \propto \epsilon_{\mu
ulpha} \partial_{
u} a_{lpha}$

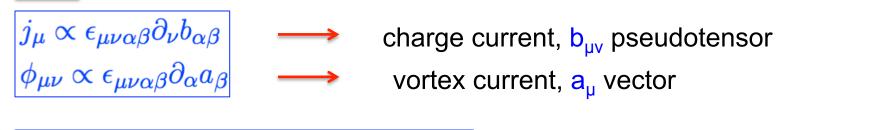
conserved charge current, \boldsymbol{b}_{μ} is a pseudovector

conserved vortex current a_{μ} is a vector

• add kinetic term for the fictitious gauge fields

$$S_{\rm TM} = \int d^3x \; \frac{1}{4e_f^2} f_{\mu\nu} f_{\mu\nu} + i \frac{k}{2\pi} a_\mu \epsilon_{\mu\nu\alpha} \partial_\nu b_\alpha + \frac{1}{4e_g^2} g_{\mu\nu} g_{\mu\nu}$$

3d



$$S_{BF} = i \frac{k}{2\pi} \int d^4 x \ b_{\mu\nu} \epsilon_{\mu\nu\alpha\beta} \partial_{\alpha} a_{\beta} \longrightarrow \qquad \begin{array}{c} \mathsf{BF}, \mathsf{P(T)} \text{ invariant} \\ \mathsf{U}(1) \times \mathsf{U}(1) \end{array}$$

+ kinetic for a_{μ} and $b_{\mu\nu}$

$$S_{TM} = \int d^4x \frac{1}{12e_g^2} h_{\mu\nu\rho} h_{\mu\nu\rho} - \frac{i\kappa}{8\pi} b_{\mu\nu} \epsilon_{\mu\nu\lambda\rho} f_{\lambda\rho} + \frac{1}{4e_f^2} f_{\mu\nu} f_{\mu\nu}$$

S_{TM} was first proposed in 2 and 3d as a field theory description of topological phases of condensed matter systems in 1996 (Sodano, Trugenberger, MCD)

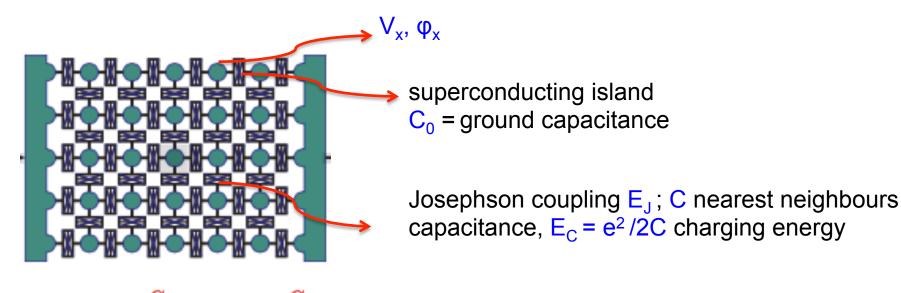
- a_{μ} and $b_{\mu}(b_{\mu\nu})$ acquires a topological mass $m = (k e_f e_g)/2\pi$
- k is a dimensionless parameter, it determines the ground state degeneracy on manifold with non trivial topology and the statitistics
- [e_f²] = m^{-d+3} [e_g²] = m^{d-1} naively irrelevant (first one marginal in 3d) but necessary to correctly define the limit m →∞ (pure CS limit)

(Dunne, Jackiw, Trugenberger, 1990)

• they enter in the phase structure of the theory

JOSEPHSON JUNCTION ARRAYS

Planar arrays of spacing I



$$H = \sum_{\mathbf{x}} \frac{C_0}{2} V_{\mathbf{x}} + \sum_{\langle \mathbf{x}\mathbf{y} \rangle} \frac{C}{2} \left(V_{\mathbf{y}} - V_{\mathbf{x}} \right)^2 + E_J \left(1 - \cos 2 \left(\Phi_{\mathbf{y}} - \Phi_{\mathbf{x}} \right) \right)$$

V= electric potential of the island; ϕ = phase of its order parameter ; $C \gg C_0 \ (C_0=0) \Rightarrow$ two relevant parameter: $(8 E_J E_C)^{1/2}$ Josephson plasma frequency; E_J / E_C Action:

- two Coulomb gases for charges and vortices + kinetic term for the charges +Aharonov-Bohm topological interaction between charges and vortices (Fazio, Schön; Phys.Rev.B 43 (1991) 5307)
- add kinetic term for vortices ⇒ perfect duality between charges and vortices (Sodano Trugenberger MCD)

T=0 exact mapping (Sodano Trugenberger MCD) between the action of JJA and (Euclidean lattice, with lattice spacing I)

$$Z = \sum_{\{M_{\mu}, Q_{\mu}\}} \int \mathcal{D}a_{\mu}\mathcal{D}b_{\mu} \exp -S \qquad e_{f}^{2} = 2\pi^{2}E_{j}$$

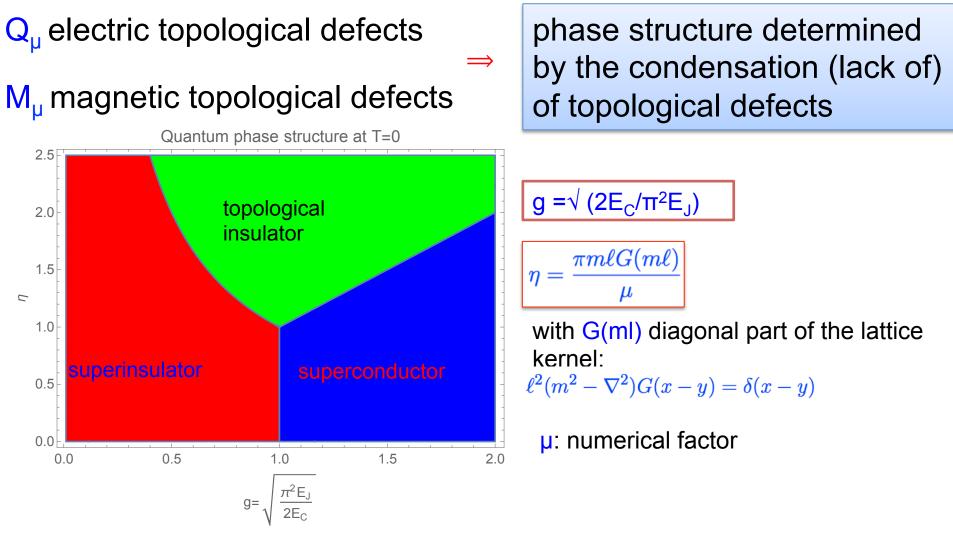
$$S = \sum_{x} \frac{\ell^{3}}{4e_{f}^{2}} f_{\mu\nu}f_{\mu\nu} + i\frac{\ell^{3}}{\pi}a_{\mu}\epsilon_{\mu\nu\alpha}d_{\nu}b_{\alpha} + \frac{\ell^{3}}{4e_{g}^{2}}g_{\mu\nu}g_{\mu\nu} + e_{g}^{2} = 4E_{c}$$

$$+i\ell\sqrt{2}a_{\mu}Q_{\mu} + i\ell\sqrt{2}b_{\mu}M_{\mu}$$

$$f^{\mu} = \frac{1}{2}\epsilon^{\mu\nu\alpha}f_{\nu\alpha} = \epsilon^{\mu\nu\alpha}\partial_{\nu}b_{\alpha} \qquad j^{\mu} = \frac{\sqrt{2}}{2\pi}f^{\mu} \qquad \text{conserved charge current}$$

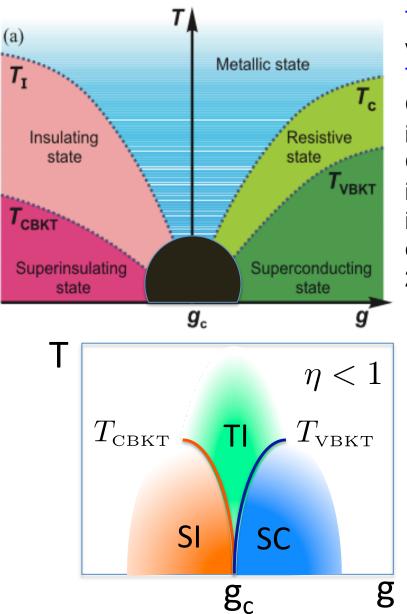
$$g^{\mu} = \frac{1}{2}\epsilon^{\mu\nu\alpha}g_{\nu\alpha} = \epsilon^{\mu\nu\alpha}\partial_{\nu}a_{\alpha} \qquad \phi^{\mu} = \frac{\sqrt{2}}{2\pi}g^{\mu} \qquad \text{conserved vortex current}$$

mixed Chern-Simons term is periodic \Rightarrow presence of topological defects



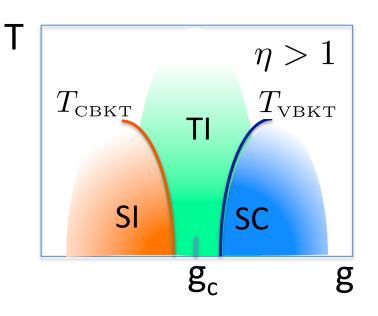
 $\eta < 1$: $\eta < g < 1/\eta$ coexistence region for electric and magnetic charges \Rightarrow first-order direct transition

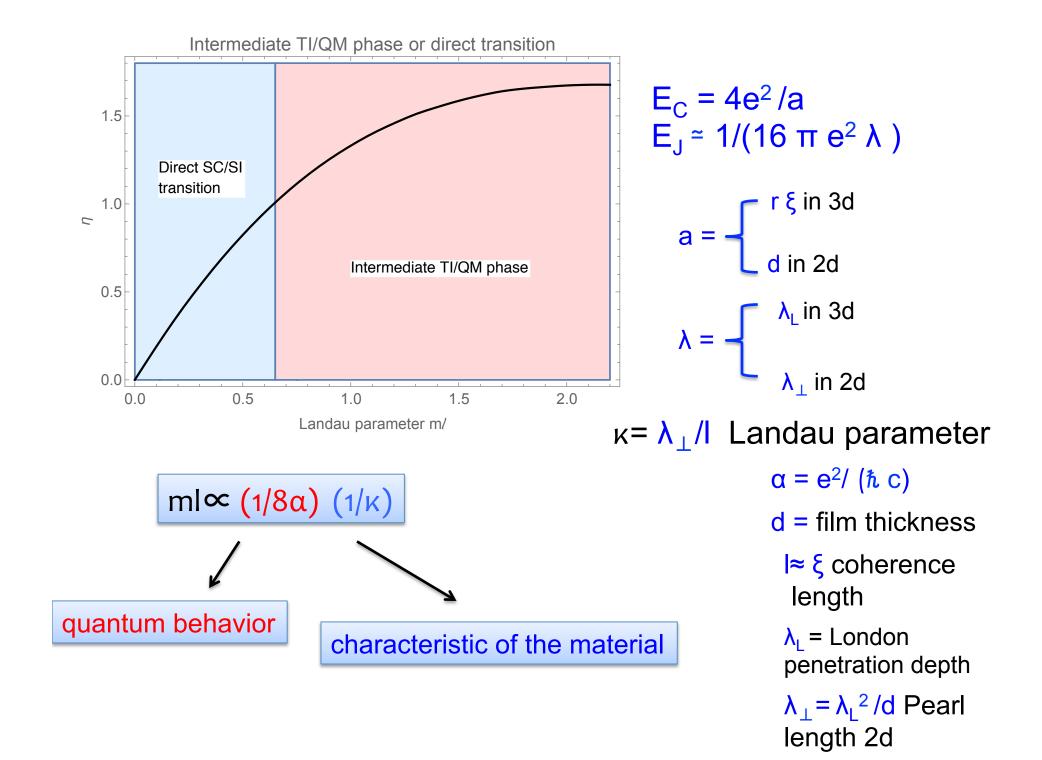
(Baturina and Vinokour 2013)



 T_{VBKT} : Kosterlitz –Thouless transition for vortex/antivortex pairs T_{CBKT} : Kosterlitz –Thouless transition for Cooper pairs/anti-Cooper pairs dipole in the region $T_{CBKT} < T < T_1$ and $T_{VBKT} < T < T_C$ Cooper pairs are present insulating and resistive states are topological insulating states charge BKT experimentally observed in

2017 (Baturina, Vinokour et al)





SUPERINSULATING PHASE

induced effective action $S^{eff}(A_{\mu})$ for the electromagnetic gauge potential A_{μ}

 ${\bf 2d}$: M_{μ} condense, Q_{μ} diluted M_{μ} can be open ending in magnetic monopole

$$exp (-S^{eff}) = \sum_{M\mu} exp \sum_{x} [-\gamma (M_{\mu} - e I^{2}F_{\mu} \backslash \pi)^{2}] \qquad \gamma = g\mu\eta$$

Villain approximation compact QED in 2d

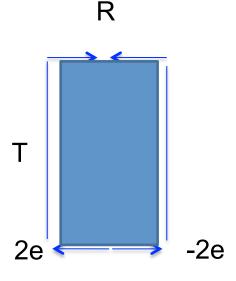
$$S_{QED} = \gamma/2\pi^2 \sum_{x} [1 - \cos(2e I^2 F_{\mu})]$$

(Polyakov)

area law:

W(C) $\propto _{T \to \infty} \exp -V(R) T$ W(C) $\propto \exp -\sigma A \Longrightarrow V(R) = \sigma R$

dual Meissner effect, charge confinement in a monopole condensate, true also in $3d \Rightarrow$ superinsulation can exist also in 3d



string tension (Polyakov; Kogan and Kovner; Quevedo, Trugenberger, and MCD)

2d:
$$\sigma = \frac{\pi^{3/2}}{l^2} \exp\left(-\frac{\mu\eta}{16\pi e^2} \sqrt{\frac{\pi^2 E_J}{2E_C}}\right)$$

3d:
$$\sigma = \frac{1}{64\pi l^2} K_0(\gamma/2)$$

QCD confining string like picture :

linear confinement of Cooper pairs into neutral "U(1) mesons"

typical size
$$L \approx (1/\sigma)^{1/2}$$

O(I) near the direct superconductor to superinsula

 $L \ge O(I)$ near the direct superconductor to superinsulator transition for $\eta < 1$ (but not too small) \Rightarrow new spatial scale spontaneously emerging near these transitions, describing U(1) mesons extending over several lengths of the UV cutoff

HINT OF ASYMPTOTIC FREEDOM

reverse of the confinement on scales smaller than the typical string size

SIT: string scale can be inferred from experimental data

$d_{string} = \hbar vc / KT_{CBKT}$

KT_{CBKT} energy required to break up the string

d_{string} scale associated with this energy

TiN films: T_{CBKT}= 60 mK^o

vc = c/4.10⁵ (Baturina and Vinokour)

d_{string} ≈ 60 µm

study of formation of superinsulators in TiN films of different sizes (Kalok et al): samples of size $\leq 20\mu m$ 2d thermally activated behavior saturates to the metallic

TiN and NbTiN films:

2 d: superinsulating critical temperature $\equiv T_{CBKT}$ of the charge BKT transition logarithmic and linear confinement (Yaffe and Svetiski) \Rightarrow Berezinski-Kosterlitz-Thouless critical scaling

 $R_{\Box} \propto \exp[-\mathrm{const}(\sqrt{\mathrm{T}_{\mathrm{BKT}} - \mathrm{T}}]]$

strong support for superinsulation as Mandelstam-'t Hooft-Polyakov confinement mechanism

InO films: "more" 3d than TiN and NbTiN films($\xi >> d$) (Shahar et al)

 $R_{\Box} \propto \exp[-\mathrm{const}/(\mathrm{T}_0 - \mathrm{T})]$

Vogel-Fulcher-Tamman criticality ≡ behaviour of one-dimensional confining strings in 3d (Diamantini, Gammaitoni, Trugenberger and Vinokour)

gauge theory of the BKT transition in the disordered XY-model (Vasin, Ryhzov and Vinokour): BKT criticality \Rightarrow VFT behavior in 3D