Role of neutrino mixing in accelerated proton decay

Luciano Petruzziello*

Università degli Studi di Salerno, Dipartimento di Fisica "E. R. Caianiello" INFN Sezione di Napoli, Gruppo collegato di Salerno

New Frontiers in Theoretical Physics, May 23, 2018

[^0]
Outline

- Motivations
- Preliminary tools
- Fulling-Davies-Unruh effect
- Neutrino mixing
- Historical excursus on inverse β decay
- Inverse β decay in the context of neutrino mixing
- Conclusions and outlook

Motivations

- Testing the consistency of QFT in curved background by comparing the decay rate of an accelerated proton in the inertial and comoving frame: a "theoretical check" of the Unruh effect*.
- Clarifying some conceptual problems in the context of the inverse β decay with mixed neutrinos ${ }^{\dagger}$.
- Investigating the issue of mass or flavor neutrino states as fundamental objects in QFT. \ddagger

[^1]
Unruh effect

- Rindler coordinates

$$
x^{0}=\xi \sinh \eta, \quad x^{3}=\xi \cosh \eta
$$

- Rindler vs Minkowski

$$
\begin{aligned}
& d s_{\mathcal{M}}^{2}=\left(d x^{0}\right)^{2}-\left(d x^{3}\right)^{2}-(d \vec{x})^{2} \rightarrow \\
& d s_{\mathcal{R}}^{2}=\xi^{2} d \eta^{2}-d \xi^{2}-(d \vec{x})^{2}
\end{aligned}
$$

- Worldline of a Rindler observer

$$
\eta=a \tau, \quad \xi=\mathrm{const} \equiv a^{-1}, \quad \vec{x}=\mathrm{const}
$$

Fulling-Davies-Unruh effect

The Rindler observer perceives Minkowski vacuum as a thermal bath

$$
\left\langle 0_{\mathcal{M}}\right| \widehat{N}(\omega)\left|0_{\mathcal{M}}\right\rangle \equiv n(\omega)=\frac{1}{e^{a \omega / T_{F D U}}+1}
$$

where

$$
T_{F D U}=\frac{a}{2 \pi}
$$

is the Fulling-Davies-Unruh temperature.

Neutrino mixing

Pontecorvo mixing transformations (two flavor model)...

$$
\begin{aligned}
& \left|\nu_{e}\right\rangle=\left|\nu_{1}\right\rangle \cos \theta+\left|\nu_{2}\right\rangle \sin \theta \\
& \left|\nu_{\mu}\right\rangle=-\left|\nu_{1}\right\rangle \sin \theta+\left|\nu_{2}\right\rangle \cos \theta
\end{aligned}
$$

Neutrino mixing

Pontecorvo mixing transformations (two flavor model)...

$$
\begin{aligned}
& \left|\nu_{e}\right\rangle=\left|\nu_{1}\right\rangle \cos \theta+\left|\nu_{2}\right\rangle \sin \theta \\
& \left|\nu_{\mu}\right\rangle=-\left|\nu_{1}\right\rangle \sin \theta+\left|\nu_{2}\right\rangle \cos \theta
\end{aligned}
$$

...lead to the quantum mechanical oscillation probability

$$
P_{e \rightarrow \mu}=\sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\Delta m^{2} L}{4 E}\right) .
$$

Decay of accelerated particles

The decay properties of particles are less fundamental than commonly thought*.

Decay of accelerated particles

The decay properties of particles are less fundamental than commonly thought*.

$$
\tau_{\text {proton }}>10^{28} y r s
$$

* R. Muller, Phys. Rev. D 56, 953 (1997).

Decay of accelerated particles

The decay properties of particles are less fundamental than commonly thought*.

$$
\tau_{\text {proton }}>10^{28} y r s
$$

However, in presence of acceleration...
Inverse β decay

$$
p \rightarrow n+e^{+}+\nu_{e}
$$

...the proton decay is not kinematically forbidden!

[^2]
Decay of accelerated particles

The decay properties of particles are less fundamental than commonly thought*.

$$
\tau_{\text {proton }}>10^{28} y r s
$$

However, in presence of acceleration...
Inverse β decay

$$
p \rightarrow n+e^{+}+\nu_{e}
$$

...the proton decay is not kinematically forbidden!

Remark

The lifetime of particles is not an absolute concept.

[^3]
Inverse β decay (inertial frame)

$$
p \rightarrow n+e^{+}+\nu_{e}
$$

Inverse β decay (comoving frame)

$$
\begin{gathered}
\text { (i) } p+e \rightarrow n+\nu_{e} \quad \text { (ii) } p+\bar{\nu}_{e} \rightarrow n+e^{+} \\
\text {(iii) } p+e+\bar{\nu}_{e} \rightarrow n
\end{gathered}
$$

Setting the stage

In 2D with massless neutrino $\left(a \ll M_{Z^{0}}, M_{W^{ \pm}} \approx 10^{36} \mathrm{~cm} / \mathrm{s}^{2}\right)^{*}$:

$$
\begin{gathered}
\widehat{j}^{\mu}=\widehat{q}(\tau) u^{\mu} \delta\left(u-a^{-1}\right), \quad \widehat{q}(\tau)=e^{i \hat{H} \tau} \widehat{q}_{0} e^{-i \widehat{H} \tau} \\
\left.\widehat{H}|n\rangle=m_{n}|n\rangle, \quad \widehat{H}|p\rangle=m_{p}|p\rangle, \quad G_{F}=\left|\langle p| \hat{q}_{0}\right| n\right\rangle \mid
\end{gathered}
$$

In this regime a Fermi current-current interaction can be considered

$$
\widehat{S}_{I}=\int d^{2} x \sqrt{-g} \widehat{j}_{\mu}\left(\widehat{\bar{\Psi}}_{\nu} \gamma^{\mu} \widehat{\Psi}_{e}+\widehat{\bar{\Psi}}_{e} \gamma^{\mu} \widehat{\Psi}_{\nu}\right) .
$$

[^4]
Inertial frame calculation

Field quantization:

$$
\begin{gathered}
\widehat{\psi}=\sum_{\sigma= \pm} \int_{-\infty}^{+\infty} d k\left[\widehat{b}_{k \sigma} \psi_{k \sigma}^{(+\omega)}+\widehat{d}_{k \sigma}^{\dagger} \psi_{-k-\sigma}^{(-\omega)}\right], \quad \omega=\sqrt{m^{2}+\mathbf{k}^{2}} \\
\psi_{k+}^{(\pm \omega)}=\frac{e^{i\left(\mp \omega x^{0}+k x^{3}\right)}}{\sqrt{2 \pi}}\left(\begin{array}{c}
\pm \sqrt{(\omega \pm m) / 2 \omega} \\
0 \\
k / \sqrt{2 \omega(\omega \pm m)} \\
0
\end{array}\right) \\
\psi_{k-}^{(\pm \omega)}=\frac{e^{i\left(\mp \omega x^{0}+k x^{3}\right)}}{\sqrt{2 \pi}}\left(\begin{array}{c}
0 \\
\pm \sqrt{(\omega \pm m) / 2 \omega} \\
0 \\
-k / \sqrt{2 \omega(\omega \pm m)}
\end{array}\right)
\end{gathered}
$$

Inertial frame calculation

The tree-level transition amplitude...

$$
\mathcal{A}^{p \rightarrow n}=\langle n| \otimes\left\langle e_{k_{e} \sigma_{e}}^{+}, \nu_{k_{\nu} \sigma_{\nu}}\right| \widehat{S}_{,}|0\rangle \otimes|p\rangle
$$

Inertial frame calculation

The tree-level transition amplitude...

$$
\mathcal{A}^{p \rightarrow n}=\langle n| \otimes\left\langle e_{k_{e} \sigma_{e}}^{+}, \nu_{k_{\nu} \sigma_{\nu}}\right| \widehat{S}_{,}|0\rangle \otimes|p\rangle
$$

... and the related differential transition rate...

$$
\frac{d^{2} \mathcal{P}_{i n}^{p \rightarrow n}}{d k_{e} d k_{\nu}}=\sum_{\sigma_{e}= \pm} \sum_{\sigma_{\nu}= \pm}\left|\mathcal{A}^{p \rightarrow n}\right|^{2}, \quad \frac{\mathcal{P}^{p \rightarrow n}}{T}=\Gamma^{p \rightarrow n}
$$

Inertial frame calculation

The tree-level transition amplitude...

$$
\mathcal{A}^{p \rightarrow n}=\langle n| \otimes\left\langle e_{k_{e} \sigma_{e}}^{+}, \nu_{k_{\nu} \sigma_{\nu}}\right| \widehat{S}_{,}|0\rangle \otimes|p\rangle
$$

... and the related differential transition rate...

$$
\frac{d^{2} \mathcal{P}_{i n}^{p \rightarrow n}}{d k_{e} d k_{\nu}}=\sum_{\sigma_{e}= \pm} \sum_{\sigma_{\nu}= \pm}\left|\mathcal{A}^{p \rightarrow n}\right|^{2}, \quad \frac{\mathcal{P}^{p \rightarrow n}}{T}=\Gamma^{p \rightarrow n}
$$

... give the inertial decay rate

$$
\Gamma_{i n}^{p \rightarrow n}=\frac{4 G_{F}^{2} a}{\pi^{2} e^{\pi \Delta m / a}} \int_{0}^{\infty} d \tilde{k}_{e} \int_{0}^{\infty} d \tilde{k}_{\nu} K_{2 i \Delta m / a}\left[2\left(\tilde{\omega}_{e}+\tilde{\omega}_{\nu}\right)\right]
$$

Comoving frame calculation

Field quantization:

$$
\begin{gathered}
\widehat{\psi}=\sum_{\sigma= \pm} \int_{0}^{+\infty} d \omega\left[\widehat{b}_{\omega \sigma} \psi_{\omega \sigma}+\widehat{d}_{\omega \sigma}^{\dagger} \psi_{-\omega-\sigma}\right] \\
\psi_{\omega+}=\sqrt{\frac{m \cosh (\pi \omega / a)}{2 \pi^{2} a}}\left(\begin{array}{c}
K_{i \omega / a+1 / 2}(m \xi)+i K_{i \omega / a-1 / 2}(m \xi) \\
0 \\
-K_{i \omega / a+1 / 2}(m \xi)+i K_{i \omega / a-1 / 2}(m \xi) \\
0
\end{array}\right) e^{-i \omega \eta / a} \\
\psi_{\omega-}=\sqrt{\frac{m \cosh (\pi \omega / a)}{2 \pi^{2} a}}\left(\begin{array}{c}
0 \\
K_{i \omega / a+1 / 2}(m \xi)+i K_{i \omega / a-1 / 2}(m \xi) \\
0 \\
K_{i \omega / a+1 / 2}(m \xi)-i K_{i \omega / a-1 / 2}(m \xi)
\end{array}\right) e^{-i \omega \eta / a}
\end{gathered}
$$

Comoving frame calculation

The transition amplitude for each process...

$$
\mathcal{A}_{(\mathcal{I})}^{p \rightarrow n}=\langle n| \otimes\langle e m i t| \widehat{S}_{l}|a b s\rangle \otimes|p\rangle, \quad \mathcal{I}=i, i i, i i i
$$

Comoving frame calculation

The transition amplitude for each process...

$$
\mathcal{A}_{(\mathcal{I})}^{p \rightarrow n}=\langle n| \otimes\langle\text { emit }| \hat{S}_{S}|a b s\rangle \otimes|p\rangle, \quad \mathcal{I}=i, i i, i i i
$$

... and the respective differential transition rates...

$$
\frac{d^{2} \mathcal{P}_{\mathcal{I}}^{p \rightarrow n}}{d \omega_{e} d \omega_{\nu}}=\sum_{\sigma_{e}= \pm} \sum_{\sigma_{\nu}= \pm}\left|\mathcal{A}_{\mathcal{I}}^{p \rightarrow n}\right|^{2} n_{F}^{(a b s)}\left(\omega_{e(\nu)}\right)\left[1-n_{F}^{(e m i t)}\left(\omega_{\nu(e)}\right)\right],
$$

$$
n_{F}(\omega)=\frac{1}{1+e^{2 \pi \omega / a}}
$$

Comoving frame calculation

... give the total decay rate

$$
\begin{aligned}
\Gamma_{c o m}^{p \rightarrow n} & =\Gamma_{(i)}^{p \rightarrow n}+\Gamma_{(i i)}^{p \rightarrow n}+\Gamma_{(i i i)}^{p \rightarrow n} \\
& =\frac{G_{F}^{2} m_{e}}{a \pi^{2} e^{\pi \Delta m / a}} \int_{-\infty}^{+\infty} d \omega \frac{K_{i \omega / a+1 / 2}\left(m_{e} / a\right) K_{i \omega / a-1 / 2}\left(m_{e} / a\right)}{\cosh [\pi(\omega-\Delta m) / a]} .
\end{aligned}
$$

Comoving frame calculation

... give the total decay rate

$$
\begin{aligned}
\Gamma_{c o m}^{p \rightarrow n} & =\Gamma_{(i)}^{p \rightarrow n}+\Gamma_{(i i)}^{p \rightarrow n}+\Gamma_{(i i i)}^{p \rightarrow n} \\
& =\frac{G_{F}^{2} m_{e}}{a \pi^{2} e^{\pi \Delta m / a}} \int_{-\infty}^{+\infty} d \omega \frac{K_{i \omega / a+1 / 2}\left(m_{e} / a\right) K_{i \omega / a-1 / 2}\left(m_{e} / a\right)}{\cosh [\pi(\omega-\Delta m) / a]} .
\end{aligned}
$$

Result

At tree level

$$
\Gamma_{i n}^{p \rightarrow n}=\Gamma_{c o m}^{p \rightarrow n}
$$

Remarks

The equality of the two decay rates confirms:

- the necessity of Unruh effect in QFT
- the General Covariance of QFT in curved background

Generalizing to 4D with massive neutrino*...

$$
\begin{gathered}
\hat{j}^{\mu}=\widehat{q}(\tau) u^{\mu} \delta\left(u-a^{-1}\right) \delta\left(x^{1}\right) \delta\left(x^{2}\right), \quad \widehat{q}(\tau)=e^{i \hat{H} \tau} \widehat{q}_{0} e^{-i \hat{H} \tau} \\
\left.\widehat{H}|n\rangle=m_{n}|n\rangle, \quad \widehat{H}|p\rangle=m_{p}|p\rangle, \quad G_{F}=\left|\langle p| \hat{q}_{0}\right| n\right\rangle \mid \\
\widehat{S}_{I}=\int d^{4} x \sqrt{-g} \widehat{j}_{\mu}\left(\widehat{\widehat{\Psi}}_{\nu} \gamma^{\mu} \widehat{\Psi}_{e}+\widehat{\widehat{\Psi}}_{e} \gamma^{\mu} \widehat{\Psi}_{\nu}\right)
\end{gathered}
$$

[^5]
Inertial frame calculation

Field quantization:

$$
\begin{gathered}
\widehat{\psi}=\sum_{\sigma= \pm} \int d^{3} k\left[\widehat{b}_{\mathbf{k} \sigma} \psi_{\mathbf{k} \sigma}^{(+\omega)}+\widehat{d}_{\mathbf{k} \sigma}^{\dagger} \psi_{-\mathbf{k}-\sigma}^{(-\omega)}\right] \\
\psi_{\mathbf{k}+}^{(\pm \omega)}\left(x^{0}, \mathbf{x}\right)=\frac{e^{i\left(\mp \omega x^{0}+\mathbf{k} \cdot \mathbf{x}\right)}}{2^{2} \pi^{\frac{3}{2}}} \frac{1}{\sqrt{\omega(\omega \pm m)}}\left(\begin{array}{c}
m \pm \omega \\
0 \\
k^{3} \\
k^{1}+i k^{2}
\end{array}\right) \\
\psi_{\mathbf{k}-}^{(\pm \omega)}\left(x^{0}, \mathbf{x}\right)=\frac{e^{i\left(\mp \omega x^{0}+\mathbf{k} \cdot \mathbf{x}\right)}}{2^{2} \pi^{\frac{3}{2}}} \frac{1}{\sqrt{\omega(\omega \pm m)}}\left(\begin{array}{c}
0 \\
m \pm \omega \\
k^{1}-i k^{2} \\
-k^{3}
\end{array}\right)
\end{gathered}
$$

Inertial frame calculation

Using the integral representation of the Bessel function

$$
K_{\mu}(z)=\frac{1}{2} \int_{C_{1}} \frac{d s}{2 \pi i} \Gamma(-s) \Gamma(-s-\mu)\left(\frac{z}{2}\right)^{2 s+\mu}
$$

together with the expansion formula...

$$
(A+B)^{z}=\int_{C} \frac{d t}{2 \pi i} \frac{\Gamma(-t) \Gamma(t-z)}{\Gamma(-z)} A^{t+z} B^{t}
$$

Inertial frame calculation

...the decay rate in the inertial frame becomes

$$
\begin{aligned}
\Gamma_{i n}^{p \rightarrow n} & =\frac{a^{5} G_{F}^{2}}{2^{5} \pi^{7 / 2} e^{\Delta m / a}} \int_{C_{s}} \frac{d s}{2 \pi i} \int_{C_{t}} \frac{d t}{2 \pi i} \frac{\left(\frac{m_{e}}{a}\right)^{2}\left(\frac{m_{\nu}}{a}\right)^{2}}{\Gamma(-s-t+3) \Gamma(-s-t+7 / 2)} \\
& \times\left[|\Gamma(-s-t+i \Delta m / a+3)|^{2} \Gamma(-s) \Gamma(-t) \Gamma(-s+2) \Gamma(-t+2)\right. \\
& +\operatorname{Re}\{\Gamma(-s-t+i \Delta m / a+2) \Gamma(-s-t-i \Delta m / a+4)\} \\
& \times \Gamma(-s+1 / 2) \Gamma(-t+1 / 2) \Gamma(-s+3 / 2) \Gamma(-t+3 / 2))],
\end{aligned}
$$

where $C_{s(t)}$ is the path picking up all poles of gamma functions in $s(t)$ complex plane.

Comoving frame calculation

Field quantization:

$$
\widehat{\Psi}=\sum_{\sigma= \pm} \int_{0}^{+\infty} d \omega \int d^{2} k\left[\widehat{b}_{\mathbf{w} \sigma} \psi_{\mathbf{w} \sigma}^{(+\omega)}+\hat{d}_{\mathbf{w} \sigma}^{\dagger} \psi_{\mathbf{w}-\sigma}^{(-\omega)}\right], \quad \mathbf{w} \equiv\left(\omega, k^{x}, k^{y}\right)
$$

$$
\psi_{\mathbf{w}+}^{(\omega)}=N \frac{e^{i\left(-\omega \eta / a+K_{x} x+K_{y} y\right)}}{(2 \pi)^{\frac{3}{2}}}\left(\begin{array}{c}
i / K_{i \omega / a-1 / 2}(\xi l)+m K_{i \omega / a+1 / 2}(\xi I) \\
-\left(k^{1}+i k^{2}\right) K_{i \omega / a+1 / 2}(\xi l) \\
i l K_{i \omega / a-1 / 2}(\xi l)-m K_{i \omega / a+1 / 2}(\xi l) \\
-\left(k^{1}+i k^{2}\right) K_{i \omega / a+1 / 2}(\xi l)
\end{array}\right)
$$

with $I=\sqrt{m^{2}+\left(k^{x}\right)^{2}+\left(k^{y}\right)^{2}}$.

Comoving frame calculation

Summing up the contributions of the three processes and using
$x^{\sigma} K_{\nu} K_{\mu}=\frac{\sqrt{\pi}}{2} G_{24}^{40}\left(\left.x^{2}\right|_{\frac{1}{2}(\nu+\mu+\sigma), \frac{1}{2}(\nu-\mu+\sigma), \frac{1}{2}(-\nu+\mu+\sigma), \frac{1}{2}(-\nu-\mu+\sigma)}\right)$,
the total decay rate in the comoving frame becomes

$$
\begin{aligned}
\Gamma_{c o m}^{p \rightarrow n} & =\frac{a^{5} G_{F}^{2}}{2^{5} \pi^{7 / 2} e^{\Delta m / a}} \int_{C_{s}} \frac{d s}{2 \pi i} \int_{C_{t}} \frac{d t}{2 \pi i} \frac{\left(\frac{m_{e}}{a}\right)^{2}\left(\frac{m_{\nu}}{a}\right)^{2}}{\Gamma(-s-t+3) \Gamma(-s-t+7 / 2)} \\
& \times\left[|\Gamma(-s-t+i \Delta m / a+3)|^{2} \Gamma(-s) \Gamma(-t) \Gamma(-s+2) \Gamma(-t+2)\right. \\
& +\operatorname{Re}\{\Gamma(-s-t+i \Delta m / a+2) \Gamma(-s-t-i \Delta m / a+4)\} \\
& \times \Gamma(-s+1 / 2) \Gamma(-t+1 / 2) \Gamma(-s+3 / 2) \Gamma(-t+3 / 2))] .
\end{aligned}
$$

Proton decay and neutrino mixing: a theoretical paradox?

Recently, it has been argued that neutrino mixing can spoil the agreement between the two results*.

The leitmotiv is the violation of the Kubo-Martin-Schwinger (KMS) definition of thermal state for the accelerated neutrino vacuum in the context of mixing.

It is claimed that the contradiction must be solved experimentally.

[^6]
It is claimed that the contradiction must be-solved experimentally.

Remark

An experiment cannot be used as a tool for checking the internal consistency of theory against a theoretical paradox.

The question must be settled at a theoretical level, in conformity with the General Covariance of QFT in curved background.

An attempt to solve the ambiguity has been proposed*, but...

Inverse β decay with neutrino mixing

$$
p \rightarrow n+\bar{\ell}_{\alpha}+\nu_{i}, \quad \ell=\{e, \tau, \mu\}, \quad i=\{1,2,3\}
$$

...there are several problems related to the use of definite mass neutrinos!

It is possible to prove that their choice leads to ambiguities ${ }^{\dagger}$.

[^7]
Inertial frame calculation

Applying Pontecorvo transformations on both neutrino fields and states, the transition amplitude becomes*

$$
\mathcal{A}_{i n}^{p \rightarrow n}=G_{F}\left[\cos ^{2} \theta \mathcal{I}_{\sigma_{\nu} \sigma_{e}}\left(\omega_{\nu_{1}}, \omega_{e}\right)+\sin ^{2} \theta \mathcal{I}_{\sigma_{\nu} \sigma_{e}}\left(\omega_{\nu_{2}}, \omega_{e}\right)\right],
$$

$\mathcal{I}_{\sigma_{\nu} \sigma_{e}}\left(\omega_{\nu_{i}}, \omega_{e}\right)=\int_{-\infty}^{+\infty} d \tau e^{i \Delta m \tau} u_{\mu}\left[\bar{\psi}_{\sigma_{\nu}}^{\left(+\omega_{\nu_{i}}\right)} \gamma^{\mu} \psi_{-\sigma_{e}}^{\left(-\omega_{e}\right)}\right], \quad i=1,2$

[^8]Consequently, the total decay rate is

$$
\begin{gathered}
\Gamma_{j}^{p \rightarrow n} \equiv \frac{1}{T} \sum_{\sigma_{\nu}, \sigma_{e}} G_{F}^{2} \int d^{3} k_{\nu} \int d^{3} k_{e}\left|\mathcal{I}_{\sigma_{\nu} \sigma_{e}}\left(\omega_{\nu_{j}}, \omega_{e}\right)\right|^{2}, \quad j=1,2, \\
\Gamma_{12}^{p \rightarrow n} \equiv \frac{1}{T} \sum_{\sigma_{\nu}, \sigma_{e}} G_{F}{ }^{2} \int d^{3} k_{\nu} \int d^{3} k_{e}\left[\mathcal{I}_{\sigma_{\nu} \sigma_{e}}\left(\omega_{\nu_{1}}, \omega_{e}\right) \mathcal{I}_{\sigma_{\nu} \sigma_{e}}^{*}\left(\omega_{\nu_{2}}, \omega_{e}\right)+\text { c.c. }\right]
\end{gathered}
$$

Comoving frame calculation

Assuming neutrino asymptotic states to be mass eigenstates, calculations in the comoving frame give for the process (i)

$$
\begin{aligned}
\mathcal{A}_{(i)}^{p \rightarrow n} & =\frac{G_{F}}{a}\left[\cos \theta \mathcal{J}_{\sigma_{\nu} \sigma_{e}}^{(1)}\left(\omega_{\nu}, \omega_{e}\right)+\sin \theta \mathcal{J}_{\sigma_{\nu} \sigma_{e}}^{(2)}\left(\omega_{\nu}, \omega_{e}\right)\right] \\
& \mathcal{J}_{\sigma_{\nu} \sigma_{e}}=\int_{-\infty}^{+\infty} d \eta e^{i \Delta m \eta} u_{\mu}\left[\bar{\psi}_{\mathbf{w}_{\nu} \sigma_{\nu}}^{\left(\omega_{\nu}\right)} \gamma^{\mu} \psi_{\mathbf{w}_{e} \sigma_{e}}^{\left(\omega_{e}\right)}\right]
\end{aligned}
$$

Comoving frame calculation

Assuming neutrino asymptotic states to be mass eigenstates, calculations in the comoving frame give for the process (i)

$$
\begin{gathered}
\mathcal{A}_{(i)}^{p \rightarrow n}=\frac{G_{F}}{a}\left[\cos \theta \mathcal{J}_{\sigma_{\nu} \sigma_{e}}^{(1)}\left(\omega_{\nu}, \omega_{e}\right)+\sin \theta \mathcal{J}_{\sigma_{\nu} \sigma_{e}}^{(2)}\left(\omega_{\nu}, \omega_{e}\right)\right] \\
\mathcal{J}_{\sigma_{\nu} \sigma_{e}}=\int_{-\infty}^{+\infty} d \eta e^{i \Delta m \eta} u_{\mu}\left[\bar{\psi}_{\mathbf{w}_{\nu} \sigma_{\nu}}^{\left(\omega_{\nu}\right)} \gamma^{\mu} \psi_{\mathbf{w}_{e} \sigma_{e}}^{\left(\omega_{e}\right)}\right]
\end{gathered}
$$

Similar calculations for the other two processes lead to

$$
\begin{aligned}
\Gamma_{c o m}^{p \rightarrow n} & \equiv \Gamma_{(i)}^{p \rightarrow n}+\Gamma_{(i i)}^{p \rightarrow n}+\Gamma_{(i i i)}^{p \rightarrow n} \\
& =\cos ^{2} \theta \widetilde{\Gamma}_{1}^{p \rightarrow n}+\sin ^{2} \theta \widetilde{\Gamma}_{2}^{p \rightarrow n} .
\end{aligned}
$$

Comoving frame calculation

$$
\begin{gathered}
\Gamma_{c o m}^{p \rightarrow n}=\cos ^{2} \theta \widetilde{\Gamma}_{1}^{p \rightarrow n}+\sin ^{2} \theta \widetilde{\Gamma}_{2}^{p \rightarrow n}, \\
\widetilde{\Gamma}_{j}^{p \rightarrow n}=\frac{2 G_{F}^{2}}{a^{2} \pi^{7} e^{\pi \Delta m / a}} \int_{-\infty}^{+\infty} d \omega \int d^{2} k_{\nu} l_{\nu_{j}}\left|K_{i(\omega-\Delta m) / a+1 / 2}\left(\frac{l_{\nu_{j}}}{a}\right)\right|^{2} \\
\times \int d^{2} k_{e} l_{e}\left|K_{i \omega / a+1 / 2}\left(\frac{l_{e}}{a}\right)\right|^{2}+m_{\nu_{j}} m_{e} \\
\times \operatorname{Re}\left\{\int d^{2} k_{\nu} K_{i(\omega-\Delta m) / a-1 / 2}^{2}\left(\frac{I_{\nu_{j}}}{a}\right) \int d^{2} k_{e} K_{i \omega / a+1 / 2}^{2}\left(\frac{l_{e}}{a}\right)\right\}
\end{gathered}
$$

Comparing the rates

Inertial vs comoving rates

$$
\begin{gathered}
\Gamma_{i n}^{p \rightarrow n}=\cos ^{4} \theta \Gamma_{1}^{p \rightarrow n}+\sin ^{4} \theta \Gamma_{2}^{p \rightarrow n}+\cos ^{2} \theta \sin ^{2} \theta \Gamma_{12}^{p \rightarrow n} \\
\Gamma_{c o m}^{p \rightarrow n}=\cos ^{2} \theta \widetilde{\Gamma}_{1}^{p \rightarrow n}+\sin ^{2} \theta \widetilde{\Gamma}_{2}^{p \rightarrow n}
\end{gathered}
$$

Although:

$$
\Gamma_{j}^{p \rightarrow n}=\widetilde{\Gamma}_{j}^{p \rightarrow n}, \quad j=1,2
$$

Comparing the rates

Inertial vs comoving rates

$$
\begin{gathered}
\Gamma_{i n}^{p \rightarrow n}= \\
\cos ^{4} \theta \Gamma_{1}^{p \rightarrow n}+\sin ^{4} \theta \Gamma_{2}^{p \rightarrow n}+\cos ^{2} \theta \sin ^{2} \theta \Gamma_{12}^{p \rightarrow n} \\
\Gamma_{c o m}^{p \rightarrow n}=\cos ^{2} \theta \widetilde{\Gamma}_{1}^{p \rightarrow n}+\sin ^{2} \theta \widetilde{\Gamma}_{2}^{p \rightarrow n}
\end{gathered}
$$

Although:

$$
\Gamma_{j}^{p \rightarrow n}=\widetilde{\Gamma}_{j}^{p \rightarrow n}, \quad j=1,2
$$

- there is no counterpart of $\Gamma_{12}^{p \rightarrow n}$ in $\Gamma_{c o m}^{p \rightarrow n}$
- Pontecorvo matrix elements appear with different powers.

Remark

Neutrino asymptotic states must be inevitably flavor eigenstates

Violating the KMS condition?

Assuming asymptotic neutrinos to be flavor eigenstates would violate the KMS definition of a thermal state of a quantum system by adding coherent, off-diagonal correlations in the density matrix. Consequently, the accelerated neutrino vacuum state would not be thermal, contradicting the essential characteristic of the Unruh effect*.

[^9]
Non-thermal Unruh effect for mixed neutrinos

Two Bogoliubov transformations involved*:

$$
\begin{aligned}
& \text { thermal Bogol. (a) } \\
& \phi_{\mathcal{R}} \quad \longrightarrow \quad \phi_{\mathcal{M}} \Rightarrow \text { condensate in }\left|0_{\mathcal{M}}\right\rangle \\
& \text { mixing Bogol. (} \theta \text {) } \\
& \phi_{1}, \phi_{2} \\
& \phi_{e}, \phi_{\mu} \Rightarrow \text { condensate in }\left|0_{e, \mu}\right\rangle
\end{aligned}
$$

[^10]
Non-thermal Unruh effect for mixed neutrinos

Two Bogoliubov transformations involved*:

```
thermal Bogol. (a)
\(\phi_{\mathcal{R}} \quad \longrightarrow \quad \phi_{\mathcal{M}} \Rightarrow\) condensate in \(\left|0_{\mathcal{M}}\right\rangle\)
    mixing Bogol. ( \(\theta\) )
\(\phi_{1}, \phi_{2} \quad \longrightarrow \quad \phi_{e}, \phi_{\mu} \Rightarrow\) condensate in \(\left|0_{e, \mu}\right\rangle\)
```

How do they combine when flavor mixing for an accelerated observer is considered?

[^11]
Non-thermal Unruh effect for mixed fields

Condensation density of Rindler mixed neutrinos in $|0\rangle_{\mathcal{M}}$:

$$
\begin{aligned}
& \left\langle 0_{\mathcal{M}}\right| \widehat{N}(\theta, \omega)\left|0_{\mathcal{M}}\right\rangle=\underbrace{\frac{1}{e^{a \omega / T_{F D U}+1}}+\underbrace{\sin ^{2} \theta\left\{\mathcal{O}\left(\frac{\delta m^{2}}{m_{\nu_{1}}^{2}}\right)\right\}} \text {, } \underbrace{\frac{\delta}{2}})}_{\text {Unruh thermal spectrum }} \\
& \text { Unruh thermal spectrum } \\
& \text { non-thermal mixing corrections }
\end{aligned}
$$

Remark

Non-thermal corrections only appear at orders higher than $\mathcal{O}\left(\frac{\delta m}{m}\right)$

Comoving frame calculation with flavor eigenstates

Taking neutrino asymptotic states to be flavor eigenstates, calculations in the comoving frame give for the process (i)

$$
\begin{gathered}
\mathcal{A}_{(i)}^{p \rightarrow n}=\frac{G_{F}}{a}\left[\cos ^{2} \theta \mathcal{J}_{\sigma_{\nu} \sigma_{e}}^{(1)}\left(\omega_{\nu}, \omega_{e}\right)+\sin ^{2} \theta \mathcal{J}_{\sigma_{\nu} \sigma_{e}}^{(2)}\left(\omega_{\nu}, \omega_{e}\right)\right] \\
\mathcal{J}_{\sigma_{\nu} \sigma_{e}}\left(\omega_{\nu}, \omega_{e}\right)=\int_{-\infty}^{+\infty} d \eta e^{i \Delta m \eta} u_{\mu}\left[\bar{\psi}_{\mathbf{w}_{\nu} \sigma_{\nu}}^{\left(\omega_{\nu}\right)} \gamma^{\mu} \psi_{\mathbf{w}_{e} \sigma_{e}}^{\left(\omega_{e}\right)}\right]
\end{gathered}
$$

Comoving frame calculation with flavor eigenstates

Taking neutrino asymptotic states to be flavor eigenstates, calculations in the comoving frame give for the process (i)

$$
\begin{gathered}
\mathcal{A}_{(i)}^{p \rightarrow n}=\frac{G_{F}}{a}\left[\cos ^{2} \theta \mathcal{J}_{\sigma_{\nu} \sigma_{e}}^{(1)}\left(\omega_{\nu}, \omega_{e}\right)+\sin ^{2} \theta \mathcal{J}_{\sigma_{\nu} \sigma_{e}}^{(2)}\left(\omega_{\nu}, \omega_{e}\right)\right], \\
\mathcal{J}_{\sigma_{\nu} \sigma_{e}}\left(\omega_{\nu}, \omega_{e}\right)=\int_{-\infty}^{+\infty} d \eta e^{i \Delta m \eta} u_{\mu}\left[\bar{\psi}_{\mathbf{w}_{\nu} \sigma_{\nu}}^{\left(\omega_{\nu}\right)} \gamma^{\mu} \psi_{\mathbf{w}_{e} \sigma_{e}}^{\left(\omega_{e}\right)}\right]
\end{gathered}
$$

Analogous procedures for the other processes lead to

$$
\begin{aligned}
\Gamma_{c o m}^{p \rightarrow n} & \equiv \Gamma_{(i)}^{p \rightarrow n}+\Gamma_{(i i)}^{p \rightarrow n}+\Gamma_{(i i i)}^{p \rightarrow n} \\
& =\cos ^{4} \theta \widetilde{\Gamma}_{1}^{p \rightarrow n}+\sin ^{4} \theta \widetilde{\Gamma}_{2}^{p \rightarrow n}+\cos ^{2} \theta \sin ^{2} \theta \widetilde{\Gamma}_{12}^{p \rightarrow n}
\end{aligned}
$$

$$
\Gamma_{c o m}^{p \rightarrow n}=\cos ^{4} \theta \widetilde{\Gamma}_{1}^{p \rightarrow n}+\sin ^{4} \theta \widetilde{\Gamma}_{2}^{p \rightarrow n}+\cos ^{2} \theta \sin ^{2} \theta \widetilde{\Gamma}_{12}^{p \rightarrow n}
$$

$$
\begin{aligned}
\widetilde{\Gamma}_{12}^{p \rightarrow n}= & \frac{2 G_{F}^{2}}{a^{2} \pi^{7} \sqrt{I_{\nu_{1}} I_{\nu_{2}}}} e^{\pi \Delta m / a} \\
& \times \int d^{2} k_{\nu}\left(\kappa_{\nu}^{2}+m_{\nu_{1}} m_{\nu_{2}}+I_{\nu_{1}} I_{\nu_{2}}\right) \\
& \times \operatorname{Re}\left\{K_{i(\omega-\Delta m) / a+1 / 2}\left(\frac{I_{\nu_{1}}}{a}\right) K_{i(\omega-\Delta m) / a-1 / 2}\left(\frac{I_{\nu_{2}}}{a}\right)\right\} \\
& +\left.m_{e} \int d_{i \omega / a+1 / 2}\left(\frac{I_{e}}{a}\right)\right|^{2} k_{e} \int d^{2} k_{\nu}\left(I_{\nu_{1}} m_{\nu_{2}}+I_{\nu_{2}} m_{\nu_{1}}\right) \\
& \times \operatorname{Re}\left\{K_{i \omega / a+1 / 2}^{2}\left(\frac{I_{e}}{a}\right) K_{i(\omega-\Delta m) / a-1 / 2}\left(\frac{I_{\nu_{1}}}{a}\right)\right. \\
& \left.\left.\times K_{i(\omega-\Delta m) / a-1 / 2}\left(\frac{I_{\nu_{2}}}{a}\right)\right\}\right\}, \quad \kappa_{\nu} \equiv\left(k_{\nu}^{x}, k_{\nu}^{y}\right)
\end{aligned}
$$

Comparing the rates

Inertial vs comoving rates

$$
\begin{aligned}
\Gamma_{i n}^{p \rightarrow n} & =\cos ^{4} \theta \Gamma_{1}^{p \rightarrow n}+\sin ^{4} \theta \Gamma_{2}^{p \rightarrow n}+\cos ^{2} \theta \sin ^{2} \theta \Gamma_{12}^{p \rightarrow n}, \\
\Gamma_{c o m}^{p \rightarrow n} & =\cos ^{4} \theta \widetilde{\Gamma}_{1}^{p \rightarrow n}+\sin ^{4} \theta \widetilde{\Gamma}_{2}^{p \rightarrow n}+\cos ^{2} \theta \sin ^{2} \theta \widetilde{\Gamma}_{12}^{p \rightarrow n}
\end{aligned}
$$

$$
\Gamma_{j}^{p \rightarrow n}=\widetilde{\Gamma}_{j}^{p \rightarrow n}, \quad j=1,2
$$

...what about the "off-diagonal" terms?

$$
\Gamma_{12}^{p \rightarrow n} \stackrel{?}{=} \widetilde{\Gamma}_{12}^{p \rightarrow n}
$$

Small neutrino mass approximation

Evaluating these terms is non-trivial.

Small neutrino mass approximation

Evaluating these terms is non-trivial.

However, for $\frac{\delta m}{m_{\nu_{1}}} \equiv \frac{m_{\nu_{2}}-m_{\nu_{1}}}{m_{\nu_{1}}} \ll 1$,

$$
\begin{aligned}
& \Gamma_{12}^{p \rightarrow n}=2 \Gamma_{1}^{p \rightarrow n}+\frac{\delta m}{m_{\nu_{1}}} \Gamma_{\delta_{m}}+\mathcal{O}\left(\frac{\delta m^{2}}{m_{\nu_{1}}^{2}}\right) \\
& \widetilde{\Gamma}_{12}^{p \rightarrow n}=2 \widetilde{\Gamma}_{1}^{p \rightarrow n}+\frac{\delta m}{m_{\nu_{1}}} \widetilde{\Gamma}_{\delta_{m}}+\mathcal{O}\left(\frac{\delta m^{2}}{m_{\nu_{1}}^{2}}\right)
\end{aligned}
$$

Taking a suitable limit

The calculation of $\Gamma_{\delta_{m}}$ and $\widetilde{\Gamma}_{\delta_{m}}$ for $m_{\nu_{1}} \neq 0$ is still an hard task.

Taking a suitable limit

The calculation of $\Gamma_{\delta_{m}}$ and $\widetilde{\Gamma}_{\delta_{m}}$ for $m_{\nu_{1}} \neq 0$ is still an hard task.

Significant simplifications arise from the limit

$$
m_{\nu_{1}} \rightarrow 0 .
$$

Taking a suitable limit

The calculation of $\Gamma_{\delta_{m}}$ and $\widetilde{\Gamma}_{\delta_{m}}$ for $m_{\nu_{1}} \neq 0$ is still an hard task.

Significant simplifications arise from the limit

$$
m_{\nu_{1}} \rightarrow 0
$$

Remark

The limit has a purely mathematical meaning.

Result...

$$
\frac{\Gamma_{\delta_{m}}}{m_{\nu_{1}}}=\frac{\widetilde{\Gamma}_{\delta_{m}}}{m_{\nu_{1}}}
$$

... and its full expression

$$
\begin{aligned}
\frac{\Gamma_{\delta_{m}}}{m_{\nu_{1}}}= & \lim _{\varepsilon \rightarrow 0} \frac{G_{F}^{2} m_{e} a^{3}}{\pi^{3} e^{\pi \Delta m / a}} \int_{C_{s}} \frac{d s}{2 \pi i} \int_{C_{t}} \frac{d t}{2 \pi i}\left(\frac{\varepsilon}{a}\right)^{2 s+2}\left(\frac{m_{e}}{a}\right)^{2 t+2} \\
& \times \frac{\Gamma(-2 s) \Gamma(-2 t) \Gamma(-t-1) \Gamma(-s-1)}{\Gamma\left(-s+\frac{1}{2}\right) \Gamma\left(-t+\frac{1}{2}\right) \Gamma(-2 s-2 t)} \\
& \times\left[\Gamma\left(-s-t+1+i \frac{\Delta m}{a}\right) \Gamma\left(-s-t-1-i \frac{\Delta m}{a}\right)\right. \\
& \left.+\Gamma\left(-s-t+1-i \frac{\Delta m}{a}\right) \Gamma\left(-s-t-1+i \frac{\Delta m}{a}\right)\right]
\end{aligned}
$$

Conclusions

- Unruh radiation gets non-trivially modified in the context of flavor mixing.
- Neutrino asymptotic states must be inevitably flavor eigenstates for the General Covariance of QFT to be preserved.
- The agreement between the two decay rates is restored in the first-order approximation.

Outlook

What happens beyond the first-order approximation?

$$
\Gamma_{i n}^{p \rightarrow n}=\Gamma_{c o m}^{p \rightarrow n}
$$

The paradox would be solved at a theoretical level

$$
\Gamma_{i n}^{p \rightarrow n} \neq \Gamma_{c o m}^{p \rightarrow n}
$$

$$
\downarrow
$$

- neutrino mixing is at odds with General Covariance
- Unruh effect with neutrino mixing should be revised
- Pontecorvo transformations are not consistent with QFT*

[^12]
THANKS FOR YOUR ATTENTION
 AND
 PLEASE ASK BUT NOT TOO MUCH

[^0]: * M. Blasone, G. Lambiase, G. G. Luciano, L. P. , Phys. Rev. D 97, 105008 (2018).

[^1]: * G. E. A. Matsas and D. A. T. Vanzella, Phys. Rev. D 59, 094004 (1999).
 ${ }^{\dagger}$ D. V. Ahluwalia, L. Labun and G. Torrieri, Eur. Phys. J. A 52, 189 (2016).
 ${ }^{\ddagger}$ M. Blasone and G. Vitiello, Annals Phys. 244, 283 (1995).

[^2]: * R. Muller, Phys. Rev. D 56, 953 (1997).

[^3]: * R. Muller, Phys. Rev. D 56, 953 (1997).

[^4]: *D. A. T. Vanzella and G. E. A. Matsas, Phys. Rev. Lett. 87151301 (2001).

[^5]: *H. Suzuki and K. Yamada, Phys. Rev. D 67 (2003).

[^6]: * D. V. Ahluwalia, L. Labun and G. Torrieri, Eur. Phys. J. A 52, 189 (2016).

[^7]: *G. Cozzella, S. A. Fulling, A. G. S. Landulfo, G. E. A. Matsas and D. A. T. Vanzella, arXiv:1803.06400, to appear in Phys. Rev. D.
 ${ }^{\dagger}$ S. M. Bilenky, F. von Feilitzsch and W. Potzel, J. Phys. G 38, 115002 (2011).

[^8]: * M. Blasone, G. Lambiase, G. G. Luciano, L. P., Phys. Rev. D 97, 105008 (2018).

[^9]: * D. V. Ahluwalia, L. Labun and G. Torrieri, Eur. Phys. J. A 52, 189 (2016).

[^10]: *M. Blasone, G. Lambiase and G. G. Luciano, Phys. Rev. D 96025023 (2017).

[^11]: *M. Blasone, G. Lambiase and G. G. Luciano, Phys. Rev. D 96025023 (2017).

[^12]: *M. Blasone and G. Vitiello Annals Phys. 244283 (1995).

