

Gravitational lensing by black holes: theory and applications

Giulio Francesco Aldi in collaboration with Valerio Bozza

Università degli Studi di Salerno, INFN Sezione di Napoli

New Frontiers in Theoretical Physics, Cortona, 25/05/2018

Outline

- 1. Gravitational lensing by black holes
- 2. Strong deflection limit
- 3. Higher order images in astrophysical observables
- 4. Conclusions

Gravitational lensing by black holes

The deflection angle α is related to the impact angle θ and diverges as θ tends to θ_{m} .

Gravitational lensing by black holes

- The deflection angle α is related to the impact angle θ and diverges as θ tends to θ_m .
- \blacksquare No gravitational lensing images can be found within $\theta_{\rm m}$ (Shadow of the black hole).

Strong deflection limit

Darwin's formula and SDL

Schwarzschild deflection angle can be exactly expressed as an elliptic integral¹.

¹C. Darwin, Proc. R. Soc. Lond. A 249 180 (1959)

- Schwarzschild deflection angle can be exactly expressed as an elliptic integral¹.
- For large values of the impact angle, we recover the weak deflection limit calculated by Einstein

$$\alpha(\theta) o \frac{4MG}{D_{OL}\theta}.$$

¹C. Darwin, Proc. R. Soc. Lond. A 249 180 (1959)

- Schwarzschild deflection angle can be exactly expressed as an elliptic integral¹.
- For large values of the impact angle, we recover the weak deflection limit calculated by Einstein

$$\alpha(\theta) o rac{4MG}{D_{OL}\theta}.$$

For small values of the impact angle, Darwin proposed the approximate form

$$\alpha(\theta) = -a \log\left(\frac{\theta}{\theta_m} - 1\right) + b + O(\theta - \theta_m),$$

with

$$D_{OL}\theta_m = 3\sqrt{3}/M, \quad a = 1, \quad b = \log(216(7 - 4\sqrt{3})) - \pi.$$

^L C. Darwin, Proc. R. Soc. Lond. A 249 180 (1959)

Strong deflection limit

Darwin's formula and SDL

It can be proved that the divergence in the deflection angle for $\theta \to \theta_m$ is always logarithmic for any kind of black hole metrics².

[∠]V. Bozza, Phys. Rev. D 66 (2002) 103001

- It can be proved that the divergence in the deflection angle for $\theta \to \theta_m$ is always logarithmic for any kind of black hole metrics².
- Therefore, one can write a universal formula for gravitational lensing by spherically symmetric black holes in the Strong Deflection Limit:

$$lpha(heta) = -a \log\left(rac{ heta}{ heta_{
m m}} - 1
ight) + b + O(heta - heta_{
m m}),$$

² V. Bozza, Phys. Rev. D 66 (2002) 103001

- It can be proved that the divergence in the deflection angle for $\theta \to \theta_m$ is always logarithmic for any kind of black hole metrics².
- Therefore, one can write a universal formula for gravitational lensing by spherically symmetric black holes in the Strong Deflection Limit:

$$lpha(heta) = -a \log\left(rac{ heta}{ heta_{
m m}} - 1
ight) + b + O(heta - heta_{
m m}),$$

■ The coefficients $\theta_{\rm m}, a, b$ are functions of the black hole metric.

² V. Bozza, Phys. Rev. D 66 (2002) 103001

- It can be proved that the divergence in the deflection angle for $\theta \to \theta_m$ is always logarithmic for any kind of black hole metrics².
- Therefore, one can write a universal formula for gravitational lensing by spherically symmetric black holes in the Strong Deflection Limit:

$$lpha(heta) = -a \log\left(rac{ heta}{ heta_{
m m}} - 1
ight) + b + O(heta - heta_{
m m}),$$

- The coefficients $\theta_{\rm m}$, a, b are functions of the black hole metric.
- \blacksquare On the observer plane θ_m is the angular radius of the shadow of the black hole.

² V. Bozza, Phys. Rev. D 66 (2002) 103001

Images formation

- The strong deflected photons will form an infinite number of images, named *higher-order images*.
- **These images are very faint**³.
- Their positions are given by:

$$\theta = \theta_{\rm m} \left(1 + e^{\frac{b-\gamma}{a}} \right).$$

³ V. Bozza, Phys. Rev. D 66 (2002) 103001

Strong deflection limit

Images formation

Strong deflection limit

Black hole lensing: where?

By integrating geodesics in General Relativity we have found fascinating phenomena created by photons winding closely around black holes.

⁴Bozza V. and Mancini L., ApJ 753 56 (2012)

[>] Aldi G.F. and Bozza V., JCAP02(2017)033

⁶Aldi G.F. and Bozza V., in preparation

Black hole lensing: where?

- By integrating geodesics in General Relativity we have found fascinating phenomena created by photons winding closely around black holes.
- The best case to observe lensing phenomena is Sgr A*, the central black hole of our galaxy.

⁴Bozza V. and Mancini L., ApJ 753 56 (2012)

[>] Aldi G.F. and Bozza V., JCAP02(2017)033

⁶Aldi G.F. and Bozza V., in preparation

Black hole lensing: where?

- By integrating geodesics in General Relativity we have found fascinating phenomena created by photons winding closely around black holes.
- The best case to observe lensing phenomena is Sgr A*, the central black hole of our galaxy.
- One of the effects due to the bending of light is the astrometric shift of S-stars around the black hole⁴.

⁴Bozza V. and Mancini L., ApJ 753 56 (2012)

[>] Aldi G.F. and Bozza V., JCAP02(2017)033

^bAldi G.F. and Bozza V., in preparation

Strong deflection limit

Black hole lensing: where?

- By integrating geodesics in General Relativity we have found fascinating phenomena created by photons winding closely around black holes.
- The best case to observe lensing phenomena is Sgr A*, the central black hole of our galaxy.
- One of the effects due to the bending of light is the astrometric shift of S-stars around the black hole⁴.
- Characterisation of the Fe Kα line emitted by an accretion disk surrounding a central black hole⁵⁶.

⁴Bozza V. and Mancini L., ApJ 753 56 (2012)

[>] Aldi G.F. and Bozza V., JCAP02(2017)033

^bAldi G.F. and Bozza V., in preparation

Iron K α line emitted by an accretion disk

Credits: NASA and ESO

Iron K α line emitted by an accretion disk

On the observer plane (θ_1, θ_2) *the specific flux* is given by:

$$F_o(\mu_o, E_o) = \int \int g^3 r_e^{-3} (1+2.06\mu_e) \,\mathrm{d} heta_1 \mathrm{d} heta_2.$$

 E_o is the observed energy, μ_e is the cosine of the emission angle of a single photon, g is the frequency shift factor, r_e is the distance between the source and the centre of the black hole and μ_o is the cosine of the inclination angle of the accretion disk with respect to the line of sight.

Higher order images in Fe K α line spectra

The disk is supposed to be in Keplerian rotation.

Higher order images in Fe K α line spectra

- The disk is supposed to be in Keplerian rotation.
- We consider strongly deflected photons, i.e., photons that perform one or more revolutions around the black hole before reaching the observer.

Higher order images in Fe Klpha line spectra

- The disk is supposed to be in *Keplerian rotation*.
- We consider strongly deflected photons, i.e., photons that perform one or more revolutions around the black hole before reaching the observer.
- Their contribution produces distortions of iron line profile.

Figure: Comparison of iron line models produced with the KYRLINE model. (Svoboda J., arXiv:1007.5196v2, 2010)

Our approach

We have to solve the geodesics equation in the ${\rm SDL}^7$ in order to link the observer plane to the source plane

Strategy

Bozza V. and Scarpetta G., Physical Review D 76, 0830080 (2007).

G.F. Aldi • Gravitational lensing by black holes • New Frontiers in Theoretical Physics, Cortona, 25/05/2018

The geodesics equations are⁸

$$\pm \int \frac{1}{\sqrt{R}} \, \mathrm{d}r = \pm \int \frac{1}{\sqrt{\Theta}} \, \mathrm{d}\vartheta,$$

$$\phi_f - \phi_i = a \int \frac{r^2 + a^2 - aJ}{\Delta \sqrt{R}} \mathrm{d}r - a \int \frac{r}{\sqrt{R}} \mathrm{d}r + J \int \frac{\csc^2 \vartheta}{\sqrt{\Theta}} \mathrm{d}\vartheta,$$

with

$$\Theta = Q + a^2 \cos^2 \vartheta - J^2 \cot^2 \vartheta, \quad R = r^4 + (a^2 - J^2 - Q)r^2 + ((J - a)^2 + Q)r - a^2 Q.$$

Where *a* is the *spin* of the black hole and *J* and *Q* are respectively the projection of the *specific angular momentum* of the photon along the spin axis and the *Carter integral*.

⁸ Chandrasekar S., The Mathematical Theory of Black Holes, Oxford University Press (2009).

θ

■ *J* and *Q* can be related to the angular coordinates in the sky (θ_1, θ_2) from which the photon reaches the observer⁹

$$heta_1 = -rac{J}{r_o\sqrt{1-\mu_o^2}},$$
 $extsf{2}_2 = \pm r_o^{-1}\sqrt{Q+\mu_o^2\left(a^2-rac{J^2}{1-\mu_o^2}
ight)}$

 r_o is the distance of the observer from the black hole.

⁹ Chandrasekar S., The Mathematical Theory of Black Holes, Oxford University Press (2009).

■ *J* and *Q* can be related to the angular coordinates in the sky (θ_1, θ_2) from which the photon reaches the observer⁹

$$\theta_1 = -\frac{J}{r_o\sqrt{1-\mu_o^2}},$$

$$heta_2 = \pm r_o^{-1} \sqrt{Q + \mu_o^2 \left(a^2 - rac{J^2}{1 - \mu_o^2}\right)}.$$

 r_o is the distance of the observer from the black hole.

The photon trajectories around the black holes are characterized by the existence of an *unstable circular orbit*.

⁹ Chandrasekar S., The Mathematical Theory of Black Holes, Oxford University Press (2009).

■ We introduce a parameter $\xi \in [-1, 1]$ along the shadow border and a parameter $\epsilon \in [-1, +\infty)$ quantifying the radial distance from the shadow.

¹¹Aldi G.F. and Bozza V., JCAP02(2017)033 Aldi G.F. and Bozza V. in preparation

 $^{^{10}}$ Bozza V., De Luca F., Scarpetta G. and Sereno M., Physical Review D 72, 083003 (2005).

- We introduce a parameter $\xi \in [-1, 1]$ along the shadow border and a parameter $\epsilon \in [-1, +\infty)$ quantifying the radial distance from the shadow.
- It is possible to express the integrals of motion in terms of these parameters.¹⁰

¹¹Aldi G.F. and Bozza V., JCAP02(2017)033 Aldi G.F. and Bozza V. in preparation

 $^{^{10}}$ Bozza V., De Luca F., Scarpetta G. and Sereno M., Physical Review D 72, 083003 (2005).

- We introduce a parameter $\xi \in [-1, 1]$ along the shadow border and a parameter $\epsilon \in [-1, +\infty)$ quantifying the radial distance from the shadow.
- It is possible to express the integrals of motion in terms of these parameters.¹⁰
- We can solve the geodesic equations for a spinning black hole in the SDL formalism and we obtain¹¹

 $^{^{10}}$ Bozza V., De Luca F., Scarpetta G. and Sereno M., Physical Review D 72, 083003 (2005).

¹¹Aldi G.F. and Bozza V., JCAP02(2017)033 Aldi G.F. and Bozza V. in preparation

- We introduce a parameter $\xi \in [-1, 1]$ along the shadow border and a parameter $\epsilon \in [-1, +\infty)$ quantifying the radial distance from the shadow.
- It is possible to express the integrals of motion in terms of these parameters.¹⁰
- We can solve the geodesic equations for a spinning black hole in the SDL formalism and we obtain¹¹

Transformation rules

$$r_e(\epsilon,\xi) = r_0(\epsilon,\xi) + a\,\delta r_e(\epsilon,\xi) + o(a^2)$$

$$\phi_e(\epsilon,\xi) = \phi_0(\xi) + a\,\delta\phi_e(\epsilon,\xi) + o(a^2)$$

 $^{^{10}}$ Bozza V., De Luca F., Scarpetta G. and Sereno M., Physical Review D 72, 083003 (2005).

¹¹Aldi G.F. and Bozza V., JCAP02(2017)033 Aldi G.F. and Bozza V. in preparation

Results

$$F_o(\mu_o, E_o) = \int \int g^3 r_e^{-3} (1 + 2.06 \,\mu_e) \,\mathrm{d}\theta_1 \mathrm{d}\theta_2$$

Results

$$F_o(\mu_o, E_o) = \int \int g^3 r_e^{-3} (1 + 2.06 \,\mu_e) \,\mathrm{d}\theta_1 \mathrm{d}\theta_2$$

Results

$$F_o(\mu_o, E_o) = \int \int g^3 r_e^{-3} (1 + 2.06 \,\mu_e) \,\mathrm{d}\theta_1 \mathrm{d}\theta_2$$

$$F_o(\mu_o, E_0) = \int \int g^3(\epsilon, \xi) r^{-3} (1 + 2.06 \mu_e(\epsilon, \xi)) A(\epsilon, \xi) \mathrm{d}\epsilon \mathrm{d}\xi$$

Results

$$F_o(\mu_o, E_o) = \int \int g^3 r_e^{-3} (1 + 2.06 \,\mu_e) \,\mathrm{d}\theta_1 \mathrm{d}\theta_2$$

$$F_o(\mu_o, E_0) = \int \int g^3(\epsilon, \xi) r^{-3} (1 + 2.06 \mu_e(\epsilon, \xi)) A(\epsilon, \xi) \mathrm{d}\epsilon \mathrm{d}\xi.$$

Thanks to a numerical code, Fe K α lines are processed for different inclinations of accretions disk with respect to the line of sight, from $\mu_o = 0.01$ (edge-on) to $\mu_o = 0.99$ (face-on).

Results

$$F_o(\mu_o, E_o) = \int \int g^3 r_e^{-3} (1 + 2.06 \,\mu_e) \,\mathrm{d}\theta_1 \mathrm{d}\theta_2$$

$$F_o(\mu_o, E_0) = \int \int g^3(\epsilon, \xi) r^{-3} (1 + 2.06 \mu_e(\epsilon, \xi)) A(\epsilon, \xi) \mathrm{d}\epsilon \mathrm{d}\xi.$$

Thanks to a numerical code, Fe K α lines are processed for different inclinations of accretions disk with respect to the line of sight, from $\mu_o = 0.01$ (edge-on) to $\mu_o = 0.99$ (face-on).

The shapes are the same for a generic high order image.

Results

$$F_o(\mu_o, E_o) = \int \int g^3 r_e^{-3} (1 + 2.06 \,\mu_e) \,\mathrm{d}\theta_1 \mathrm{d}\theta_2$$

$$F_o(\mu_o, E_0) = \int \int g^3(\epsilon, \xi) r^{-3} (1 + 2.06 \mu_e(\epsilon, \xi)) A(\epsilon, \xi) \mathrm{d}\epsilon \mathrm{d}\xi.$$

Thanks to a numerical code, Fe K α lines are processed for different inclinations of accretions disk with respect to the line of sight, from $\mu_o = 0.01$ (edge-on) to $\mu_o = 0.99$ (face-on).

- The shapes are the same for a generic high order image.
- Each order is suppressed by a factor $e^{-\pi} = 0.043$ with respect to the previous one.

Results

Figure: Contribution of the second order images of the accretion disk to a relativistic emission line for observer inclinations μ_o for a Schwarzschild black hole.

G.F. Aldi • Gravitational lensing by black holes • New Frontiers in Theoretical Physics, Cortona, 25/05/2018

Results

Figure: Contribution of second order images of the accretion disk to a relativistic emission line for observer inclinations μ_o for a Kerr black hole with a = 0.03.

G.F. Aldi • Gravitational lensing by black holes • New Frontiers in Theoretical Physics, Cortona, 25/05/2018

Position of the peak

We are able to determine the position of the peak of each line in terms of the inclination of the disk w.r.t. the line of sight.

Position of the peak

- We are able to determine the position of the peak of each line in terms of the inclination of the disk w.r.t. the line of sight.
- It corresponds to a saddle point of the frequency shift factor g

Results

Figure: Peak frequency and boundaries in terms of μ_o .

Conclusions

Conclusions and perspectives

Conclusions

- Black holes are able to form an infinite number of images of a given source.
- The strong deflection limit formalism can be applied to several interesting observational contexts.
- Line profiles emitted by an accretion disk have a very simple shape.
- Interesting analytical results are produced.

Perspectives

- To figure out the phenomenology of the Fe Kα emission lines for a Kerr black hole deeper and deeper.
- Modify the nature of the source with more advanced scenarios.