

Viability of *A*₄, *S*₄ and *A*₅ Lepton Flavour Symmetries

Arsenii V. Titov

Institute for Particle Physics Phenomenology Durham University, UK

New Frontiers in Theoretical Physics XXXVI Convegno Nazionale di Fisica Teorica

Cortona, Italy

23 May 2018

Horizon 2020 European Union funding for Research & Innovation

- 3-neutrino mixing
- Discrete symmetry approach to flavour
- Neutrino mixing sum rules
- Groups A_4 , S_4 and A_5
- Viability of A_4 , S_4 and A_5 flavour symmetries
- Conclusions

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} \sum_{\ell=e,\mu,\tau} \overline{\ell_L}(x) \gamma_\alpha \nu_{\ell L}(x) W^{\alpha\dagger}(x) + \text{h.c.} \quad \text{charged current weak interactions}$$

$$\nu_{\ell L}(x) = \sum_{j=1}^3 U_{\ell j} \nu_{j L}(x) \quad U \text{ is the Pontecorvo-Maki-Nakagawa-Sakata} \quad (\text{PMNS}) \text{ neutrino mixing matrix } (3 \times 3, \text{ unitary})$$

The standard parametrisation:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$

 $c_{ij} \equiv \cos \theta_{ij} , \quad s_{ij} \equiv \sin \theta_{ij}$

$$\mathcal{L}_{\rm CC} = -\frac{g}{\sqrt{2}} \sum_{\ell=e,\mu,\tau} \overline{\ell_L}(x) \gamma_{\alpha} \nu_{\ell L}(x) W^{\alpha \dagger}(x) + \text{h.c.} \quad \text{charged current weak interactions}$$
$$\nu_{\ell L}(x) = \sum_{j=1}^3 U_{\ell j} \nu_{j L}(x) \quad U \text{ is the Pontecorvo-Maki-Nakagawa-Sakata} \quad (\text{PMNS}) \text{ neutrino mixing matrix (3 × 3, unitary)}$$

The standard parametrisation:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{21}}{2}} \end{pmatrix}$$
$$\frac{\theta_{23}}{atmospheric}_{mixing angle} \qquad \begin{array}{c} \theta_{13} \\ reactor \\ mixing angle \\ \delta \\ Dirac phase \end{array} \qquad \begin{array}{c} \theta_{12} \\ solar \\ mixing angle \\ \delta \\ are Majorana \\ are Majorana \end{pmatrix}$$

Arsenii Titov (IPPP, Durham)

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$
Leptons:

$$\theta_{23} \approx 47^{\circ} \qquad \theta_{13} \approx 8.5^{\circ} \\ \delta \approx 234^{\circ} (278^{\circ}) ?$$
NuFIT 3.2 (January 2018), www.nu-fit.org
Quarks:

$$\theta_{23}^{q} \approx 2.4^{\circ} \qquad \theta_{13}^{q} \approx 0.21^{\circ} \\ \delta^{q} \approx 66^{\circ} \end{pmatrix} \qquad \theta_{12}^{q} \approx 13^{\circ}$$
No Majorana phases (Dirac particles)
Utfit (Summer 2016), www.utfit.org

Parameter	Best fit	3σ range	Best fit	3σ range
$\sin^2 \theta_{12}$	0.307	0.272 - 0.346	0.304	0.265 - 0.346
$\sin^2 \theta_{23} (\text{NO}) \\ \sin^2 \theta_{23} (\text{IO})$	$0.538 \\ 0.554$	0.418 - 0.613 0.435 - 0.616	$0.551 \\ 0.557$	0.430 - 0.602 0.444 - 0.603
$\sin^2 \theta_{13} \text{ (NO)} \\ \sin^2 \theta_{13} \text{ (IO)}$	$0.02206 \\ 0.02227$	$\begin{array}{c} 0.01981 - 0.02436 \\ 0.02006 - 0.02452 \end{array}$	$\begin{array}{c} 0.0214\\ 0.0218\end{array}$	0.0190 - 0.0239 0.0195 - 0.0243
$\begin{array}{l} \delta \ [^{\circ}] \ (\text{NO}) \\ \delta \ [^{\circ}] \ (\text{IO}) \end{array}$	$\begin{array}{c} 234\\ 278 \end{array}$	144 - 374 192 - 354	$\begin{array}{c} 238\\ 274 \end{array}$	149 - 358 193 - 346

NuFIT 3.2 (January 2018), www.nu-fit.org

Capozzi, Lisi, Marrone, Palazzo arXiv:1804.09678 (April 2018)

NO = normal ordering of the neutrino mass spectrum: $m_1 < m_2 < m_3$

IO = *inverted ordering* of the neutrino mass spectrum: $m_3 < m_1 < m_2$

Parameter	Best fit	3σ range	-	Best fit	3σ range
$\sin^2 heta_{12}$	0.307	0.272 - 0.346	-	0.304	0.265 - 0.346
$\frac{\sin^2 \theta_{23} \text{ (NO)}}{\sin^2 \theta_{23} \text{ (IO)}}$	$\begin{array}{c} 0.538 \\ 0.554 \end{array}$	0.418 - 0.613 0.435 - 0.616	($0.551 \\ 0.557$	0.430 - 0.602 0.444 - 0.603
$\sin^2 \theta_{13} (\text{NO}) \\ \sin^2 \theta_{13} (\text{IO})$	$0.02206 \\ 0.02227$	0.01981 - 0.02436 0.02006 - 0.02452		$0.0214\\0.0218$	0.0190 - 0.0239 0.0195 - 0.0243
$\begin{array}{l} \delta \ [^{\circ}] \ (\text{NO}) \\ \delta \ [^{\circ}] \ (\text{IO}) \end{array}$	$\begin{array}{c} 234\\ 278\end{array}$	144 - 374 192 - 354	_	$\begin{array}{c} 238\\ 274 \end{array}$	149 - 358 193 - 346

NuFIT 3.2 (January 2018), www.nu-fit.org

Capozzi, Lisi, Marrone, Palazzo arXiv:1804.09678 (April 2018)

- Preference for the second octant
- *Maximal mixing* (sin² $\theta_{23} = 0.5$) is compatible with the global data at 1σ (2σ) for NO (IO)

Parameter	Best fit	3σ range	Best fit	3σ range
$\sin^2 \theta_{12}$	0.307	0.272 - 0.346	0.304	0.265 - 0.346
$\sin^2 \theta_{23} (\text{NO}) \\ \sin^2 \theta_{23} (\text{IO})$	$\begin{array}{c} 0.538 \\ 0.554 \end{array}$	0.418 - 0.613 0.435 - 0.616	$0.551 \\ 0.557$	0.430 - 0.602 0.444 - 0.603
$\sin^2 \theta_{13} (\text{NO}) \\ \sin^2 \theta_{13} (\text{IO})$	$0.02206 \\ 0.02227$	0.01981 - 0.02436 0.02006 - 0.02452	$\begin{array}{c} 0.0214\\ 0.0218\end{array}$	0.0190 - 0.0239 0.0195 - 0.0243
$ \begin{array}{c} \delta \ [^{\circ}] \ (\text{NO}) \\ \delta \ [^{\circ}] \ (\text{IO}) \end{array} \right) $	234 278	144 - 374 192 - 354	$\begin{array}{c} 238\\ 274 \end{array}$	149 - 358 193 - 346

NuFIT 3.2 (January 2018), www.nu-fit.org

Capozzi, Lisi, Marrone, Palazzo arXiv:1804.09678 (April 2018)

- Nearly maximal CP violation: $\delta \sim 270^{\circ}$
- CP-conserving value $\delta = 180^{\circ}$ is disfavoured at $\sim 2\sigma$ (3 σ) for NO (IO) and $\delta = 0^{\circ}$ is disfavoured at $\sim 3\sigma$
- Significant part of the interval $0^{\circ} 180^{\circ}$ is disfavoured at $> 3\sigma$

Parameter	Best fit	3σ range		Best fit	3σ range
$\sin^2 \theta_{12}$	0.307	0.272 - 0.346	~ 1/3	0.304	0.265 - 0.346
$\sin^2 \theta_{23} (\text{NO}) \sin^2 \theta_{23} (\text{IO})$	$\begin{array}{c} 0.538 \\ 0.554 \end{array}$	0.418 - 0.613 0.435 - 0.616	~ 1/2	$0.551 \\ 0.557$	0.430 - 0.602 0.444 - 0.603
$\sin^2 \theta_{13} (\text{NO}) \\ \sin^2 \theta_{13} (\text{IO})$	$0.02206 \\ 0.02227$	$\begin{array}{c} 0.01981 - 0.02436 \\ 0.02006 - 0.02452 \end{array}$	~ 0	$\begin{array}{c} 0.0214\\ 0.0218\end{array}$	0.0190 - 0.0239 0.0195 - 0.0243
$\begin{array}{l} \delta \ [^{\circ}] \ (\text{NO}) \\ \delta \ [^{\circ}] \ (\text{IO}) \end{array}$	$\begin{array}{c} 234\\ 278\end{array}$	144 - 374 192 - 354	~ 270	$\begin{array}{c} 238\\274\end{array}$	149 - 358 193 - 346

NuFIT 3.2 (January 2018), www.nu-fit.org

Capozzi, Lisi, Marrone, Palazzo arXiv:1804.09678 (April 2018)

Is there any symmetry behind the observed pattern of neutrino mixing?

Charged lepton mass term:

$$\overline{\ell_L} M_e \ell_R + \text{h.c.}, \quad \ell = (e, \mu, \tau)^T$$

Neutrino Majorana mass term (if neutrinos are Majorana particles):

$$\overline{(\nu_L)^c} M_{\nu} \nu_L + \text{h.c.}, \quad \nu_L = (\nu_{eL}, \nu_{\mu L}, \nu_{\tau L})^T, \quad (\nu_{\ell L})^c = C \overline{\nu_{\ell L}}^T$$

Neutrino Dirac mass term (if right-handed neutrinos exist):

$$\overline{\nu_R} M_{\nu}^{\mathrm{D}} \nu_L + \mathrm{h.c.}, \quad \nu_R = (\nu_{1R}, \nu_{2R}, \nu_{3R})^T$$

Lepton masses and mixing originate from the mass matrices:

$$U_e^{\dagger} M_e V_e = \operatorname{diag}(m_e, m_{\mu}, m_{\tau})$$

$$U_{\nu}^{T} M_{\nu} U_{\nu} = \text{diag}(m_1, m_2, m_3)$$

The diagonalising matrices are 3×3 unitary matrices The PMNS matrix:

$$U = U_e^{\dagger} U_{\nu}$$

Arsenii Titov (IPPP, Durham)

Discrete symmetry approach to flavour

(Lepton) flavour symmetry \leftrightarrow non-Abelian discrete (finite) group G_f

A theory at high energies is invariant under

$$\varphi(x) \xrightarrow{G_f} \rho_{\mathbf{r}}(g) \varphi(x), \quad g \in G_f$$

 $\rho_{\mathbf{r}}(g)$ is the unitary representation matrix for g in the irrep \mathbf{r} Usually $\mathbf{r} = \mathbf{3}$ for the left-handed charged lepton and neutrino fields

$$\begin{array}{c|c} G_{f} \\ \hline G_{f} \\ \hline G_{\nu} \subset G_{r} \\ \hline G_{\nu} \\ \hline G$$

Discrete symmetry approach to flavour

 G_e and G_ν are both > Z₂ ⇒ U is fixed (up to Majorana phases and permutations of rows and columns) Example: tri-bimaximal (TBM) mixing from the S₄ group

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0 \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix} \qquad \begin{aligned} \sin^2 \theta_{12} &= 1/3 & \theta_{12} \approx 35^\circ \\ \sin^2 \theta_{23} &= 1/2 & \theta_{23} = 45^\circ \\ \sin^2 \theta_{13} &= 0 & \theta_{13} = 0^\circ \end{aligned}$$

• G_e , G_v or both = $Z_2 \Rightarrow U$ contains free parameters (angles and phases)

$$\rho_{\mathbf{3}} \left(g_{e(\nu)} \right) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad g_{e(\nu)}^2 = E \qquad E \text{ is the identity of } G_f$$

This freedom leads to correlations between the mixing angles and/or the mixing angles and the Dirac phase, which are called neutrino mixing sum rules

Arsenii Titov (IPPP, Durham)

Neutrino mixing sum rules

(A)
$$G_e = Z_2$$
 and $G_\nu = Z_k$, $k > 2$ or $Z_m \times Z_n$, $m, n \ge 2$
 $U = U_{ij}(\theta_{ij}^e, \delta_{ij}^e) U^{\circ}(\theta_{12}^\circ, \theta_{13}^\circ, \theta_{23}^\circ, \delta_{kl}^\circ) Q_0$

Free complex rotation
in the *i-j* plane
 $U^{\circ} = (U_e^{\circ})^{\dagger} U_{\nu}^{\circ}$ is fixed by
symmetries
Contains 2 free phases
contributing to
the Majorana phases

• Case A1: (*ij*) = (12)

$$\sin^2 \theta_{23} = 1 - \frac{\cos^2 \theta_{13}^\circ \cos^2 \theta_{23}^\circ}{1 - \sin^2 \theta_{13}}$$

$$\cos \delta = \frac{\cos^2 \theta_{13} (\sin^2 \theta_{23}^\circ - \cos^2 \theta_{12}) + \cos^2 \theta_{13}^\circ \cos^2 \theta_{23}^\circ (\cos^2 \theta_{12} - \sin^2 \theta_{12} \sin^2 \theta_{13})}{\sin 2\theta_{12} \sin \theta_{13} |\cos \theta_{13}^\circ \cos \theta_{23}^\circ| (\cos^2 \theta_{13} - \cos^2 \theta_{13}^\circ \cos^2 \theta_{23}^\circ)^{\frac{1}{2}}}$$

• Case **A2**: (*ij*) = (13)

Analogous sum rules for $\sin^2 \theta_{23}$ and $\cos \delta$

• Case A3: (ij) = (23) $\sin^2 \theta_{13} = \sin^2 \theta_{13}^{\circ}$ $\sin^2 \theta_{12} = \sin^2 \theta_{12}^{\circ}$

Arsenii Titov (IPPP, Durham)

Neutrino mixing sum rules

• Case B1: (*ij*) = (13)

$$\sin^2 \theta_{12} = \frac{\sin^2 \theta_{12}^{\circ}}{1 - \sin^2 \theta_{13}}$$

$$\cos \delta = -\frac{\cos^2 \theta_{13} (\cos^2 \theta_{12}^{\circ} \cos^2 \theta_{23}^{\circ} - \cos^2 \theta_{23}) + \sin^2 \theta_{12}^{\circ} (\cos^2 \theta_{23} - \sin^2 \theta_{13} \sin^2 \theta_{23})}{\sin 2\theta_{23} \sin \theta_{13} |\sin \theta_{12}^{\circ}| (\cos^2 \theta_{13} - \sin^2 \theta_{12}^{\circ})^{\frac{1}{2}}}$$

• Case **B2**: (*ij*) = (23)

Analogous sum rules for $\sin^2 \theta_{12}$ and $\cos \delta$

• Case B3: (*ij*) = (12) $\sin^2 \theta_{13} = \sin^2 \theta_{13}^{\circ}$ $\sin^2 \theta_{23} = \sin^2 \theta_{23}^{\circ}$

Arsenii Titov (IPPP, Durham)

Neutrino mixing sum rules

(C)
$$G_e = Z_2$$
 and $G_\nu = Z_2$ Girardi, Petcov, Stuart, AVT, NPB 902 (2016) 1
 $U = U_{ij}(\theta_{ij}^e, \delta_{ij}^e) U^{\circ}(\theta_{12}^{\circ}, \theta_{13}^{\circ}, \theta_{23}^{\circ}, \delta_{kl}^{\circ}) U_{rs}(\theta_{rs}^\nu, \delta_{rs}^\nu) Q_0$ 2 free phases contributing to the Majorana in the *i*-*j* plane $U^{\circ} = (U_e^{\circ})^{\dagger} U_{\nu}^{\circ}$ Free complex rotation in the *r*-*s* plane r -*s* plan

 A_4 is the group of even permutations on 4 objects \cong the group of rotational symmetries of a regular tetrahedron (12 elements)

$$S^2 = T^3 = (ST)^3 = E$$

 S_4 is the group of permutations on 4 objects \cong the group of rotational symmetries of a cube (24 elements)

$$S^{2} = T^{3} = U^{2} = (ST)^{3}$$

= $(SU)^{2} = (TU)^{2} = (STU)^{4} = E$

 A_5 is the group of even permutations on 5 objects \cong the group of rotational symmetries of a regular icosahedron (60 elements)

$$S^2 = T^5 = (ST)^3 = E$$

Figures are adapted from Ishimori et al., PTPS 183 (2010) 1

Abelian subgroups

- A_4 : 3 Z_2 , 4 Z_3 , 1 $K_4 \cong Z_2 \times Z_2$ (Klein)
- S_4 : 9 Z_2 , 4 Z_3 , 3 Z_4 , 4 $Z_2 \times Z_2$
- A_5 : 15 Z_2 , 10 Z_3 , 5 $Z_2 \times Z_2$, 6 Z_5

For each pair of the residual symmetries (G_e, G_v)

$$\begin{split} (U_e^{\circ})^{\dagger} \rho_{\mathbf{3}}(g_e) U_e^{\circ} &= \rho_{\mathbf{3}}(g_e)^{\text{diag}} \qquad (U_{\nu}^{\circ})^{\dagger} \rho_{\mathbf{3}}(g_{\nu}) U_{\nu}^{\circ} &= \rho_{\mathbf{3}}(g_{\nu})^{\text{diag}} \\ U^{\circ} &= (U_e^{\circ})^{\dagger} U_{\nu}^{\circ} \end{split}$$

Suitable parametrisation of $U^{0} \Rightarrow$ values of the fixed parameters $\sin^{2} \theta_{ij}^{0}$

Arsenii Titov (IPPP, Durham)

A₄: only 1 phenomenologically viable case
 Sing NuFIT 3.2 (January 2018) data for NO
 Girardi, Petcov, Stuart, AVT
 NPB 902 (2016) 1
 Petcov, AVT, arXiv:1804.00182

(G_e, G_ν)	Case	$\sin^2 heta_{ij}^\circ$	$\cos\delta$	$\sin^2 \theta_{ij}$
(Z_3, Z_2)	B1	$(\sin^2 heta_{12}^\circ, \sin^2 heta_{23}^\circ) = (1/3, 1/2)$	-0.353	$\sin^2\theta_{12} = 0.341$

• S₄: 6 more phenomenologically viable cases

(G_e, G_ν)	Case	$\sin^2 heta_{ij}^{\circ}$	$\cos\delta$	$\sin^2 heta_{ij}$
(Z_3, Z_2)	$\begin{array}{c} B1\\ B2S_4 \end{array}$	$(\sin^2 \theta_{12}^{\circ}, \sin^2 \theta_{23}^{\circ}) = (1/3, 1/2)$ $(\sin^2 \theta_{12}^{\circ}, \sin^2 \theta_{13}^{\circ}) = (1/6, 1/5)$	-0.353 0.167	$\sin^2 \theta_{12} = 0.341$ $\sin^2 \theta_{12} = 0.318$
(Z_2, Z_2)	$\begin{array}{c} C1\\ C2S_4\\ C3\\ C7S_4\\ C8 \end{array}$	$ \sin^2 \theta_{23}^{\circ} = 1/4 \sin^2 \theta_{23}^{\circ} = 1/2 \sin^2 \theta_{13}^{\circ} = 1/4 \sin^2 \theta_{23}^{\circ} = 1/2 \sin^2 \theta_{23}^{\circ} = 3/4 $	-1^* not fixed -1^* not fixed 1^*	not fixed $\sin^2 \theta_{23} = 0.511$ not fixed $\sin^2 \theta_{23} = 0.489$ not fixed

• A_5 : 7 more phenomenologically viable cases

Arsenii Titov (IPPP, Durham)

Cases predicting $\sin^2 \theta_{12}$: present

Petcov, AVT, arXiv:1804.00182

Future: $\sin^2 \theta_{12}^{\text{true}} = 0.307$ (current best fit value) $\sigma(\sin^2 \theta_{12}) = 0.007 \times \sin^2 \theta_{12}^{\text{true}}$ (medium-baseline JUNO experiment)

Arsenii Titov (IPPP, Durham)

Cases predicting $\sin^2 \theta_{23}$: present

Petcov, AVT, arXiv:1804.00182

Future: $\sin^2 \theta_{23}^{\text{true}} = 0.538 \ (0.554)$ for NO (IO) (current best fit value) $\sigma(\sin^2 \theta_{23}) = 0.03 \times \sin^2 \theta_{23}^{\text{true}}$ (long-baseline T2HK and DUNE)

Arsenii Titov (IPPP, Durham)

Cases predicting $\cos \delta$: present

Petcov, AVT, arXiv:1804.00182

Future 1: $\delta^{\text{true}} = 234^{\circ} (278^{\circ})$ for NO (IO) (current b.f.v.), $\sigma(\delta) = 10^{\circ}$ Future 2: $\delta^{\text{true}} = 270^{\circ}$, $\sigma(\delta) = 10^{\circ}$

Cases predicting $\cos \delta$: present

Petcov, AVT, arXiv:1804.00182

Future 1: $\delta^{\text{true}} = 234^{\circ} (278^{\circ})$ for NO (IO) (current b.f.v.), $\sigma(\delta) = 10^{\circ}$ Future 2: $\delta^{\text{true}} = 270^{\circ}$, $\sigma(\delta) = 10^{\circ}$

Arsenii Titov (IPPP, Durham)

Cortona, Italy, 23 May 2018

23

Cases predicting $\sin^2 \theta_{23}$: future

Petcov, AVT, arXiv:1804.00182

• current best fit values of s_{12}^2 , s_{13}^2 , s_{23}^2

- 0.7% on s_{12}^2 (JUNO), 3% on s_{13}^2 (Daya Bay), 3% on s_{23}^2 (T2HK/DUNE)
- no experimental information on δ

Arsenii Titov (IPPP, Durham)

Cases predicting $\cos \delta$: future

Petcov, AVT, arXiv:1804.00182

• current best fit values of s_{12}^2 , s_{13}^2 , s_{23}^2

- 0.7% on s_{12}^2 (JUNO), 3% on s_{13}^2 (Daya Bay), 3% on s_{23}^2 (T2HK/DUNE)
- no experimental information on δ

Arsenii Titov (IPPP, Durham)

Cases predicting $\cos \delta$: future

Petcov, AVT, arXiv:1804.00182

• current best fit values of s_{12}^2 , s_{13}^2 , s_{23}^2

- 0.7% on s_{12}^2 (JUNO), 3% on s_{13}^2 (Daya Bay), 3% on s_{23}^2 (T2HK/DUNE)
- no experimental information on δ

Arsenii Titov (IPPP, Durham)

Conclusions

- ✤ A₄, S₄ and A₅ discrete flavour symmetries broken down to non-trivial residual symmetries in such a way that at least one of them is a Z₂ represent a viable possibility
- ✤ 14 cases in total are compatible at 3σ with the present global neutrino oscillation data
- 6 cases survive the prospective constraints on the neutrino mixing angles
- The number of viable cases is likely to be further reduced by a high precision measurement of δ

Backup slides

Summary of sum rules for mixing angles

\mathbf{Case}	Parametrisation of the PMNS matrix \boldsymbol{U}	Sum rule for $\sin^2 \theta_{ij}$
A1	$U_{12}(\theta_{12}^{e}, \delta_{12}^{e}) U_{12}(\theta_{12}^{\circ}, \delta_{12}^{\circ}) R_{23}(\theta_{23}^{\circ}) R_{13}(\theta_{13}^{\circ}) Q_{0}$	$\sin^2 \theta_{23} = \frac{\sin^2 \theta_{13}^\circ - \sin^2 \theta_{13} + \cos^2 \theta_{13}^\circ \sin^2 \theta_{23}^\circ}{1 - \sin^2 \theta_{13}}$
A2	$U_{13}(\theta_{13}^e, \delta_{13}^e) U_{13}(\theta_{13}^\circ, \delta_{13}^\circ) R_{23}(\theta_{23}^\circ) R_{12}(\theta_{12}^\circ) Q_0$	$\sin^2 heta_{23} = rac{\sin^2 heta_{23}^\circ}{1-\sin^2 heta_{13}}$
A3	$U_{23}(\theta_{23}^e, \delta_{23}^e) U_{23}(\theta_{23}^\circ, \delta_{23}^\circ) R_{13}(\theta_{13}^\circ) R_{12}(\theta_{12}^\circ) Q_0$	$\sin^2 \theta_{13} = \sin^2 \theta_{13}^{\circ} , \sin^2 \theta_{12} = \sin^2 \theta_{12}^{\circ}$
B1	$R_{23}(\theta_{23}^{\circ}) R_{12}(\theta_{12}^{\circ}) U_{13}(\theta_{13}^{\circ}, \delta_{13}^{\circ}) U_{13}(\theta_{13}^{\nu}, \delta_{13}^{\nu}) Q_0$	$\sin^2 \theta_{12} = \frac{\sin^2 \theta_{12}^{\circ}}{1 - \sin^2 \theta_{13}}$
B2	$R_{13}(\theta_{13}^{\circ}) R_{12}(\theta_{12}^{\circ}) U_{23}(\theta_{23}^{\circ}, \delta_{23}^{\circ}) U_{23}(\theta_{23}^{\nu}, \delta_{23}^{\nu}) Q_0$	$\sin^2 \theta_{12} = \frac{\cos^2 \theta_{13} - \cos^2 \theta_{12}^\circ \cos^2 \theta_{13}^\circ}{1 - \sin^2 \theta_{13}}$
B3	$R_{23}(\theta_{23}^{\circ}) R_{13}(\theta_{13}^{\circ}) U_{12}(\theta_{12}^{\circ}, \delta_{12}^{\circ}) U_{12}(\theta_{12}^{\nu}, \delta_{12}^{\nu}) Q_0$	$\sin^2 \theta_{13} = \sin^2 \theta_{13}^{\circ}, \sin^2 \theta_{23} = \sin^2 \theta_{23}^{\circ}$
	(A) $G_e = Z_2$ and $G_\nu = Z_n, n >$	2 or $Z_n \times Z_m, n, m \ge 2$
	(B) $G_e = Z_n, n > 2 \text{ or } Z_n \times Z_n$	$G_{ u}, n,m \geq 2 { m and} G_{ u} = Z_2$

Arsenii Titov (IPPP, Durham)

Summary of sum rules for the Dirac phase

$$\begin{array}{ll} \text{Case} & \text{Sum rule for } \cos \delta \\ \text{A1} & \frac{\cos^2 \theta_{13} (\sin^2 \theta_{23}^\circ - \cos^2 \theta_{12}) + \cos^2 \theta_{13}^\circ \cos^2 \theta_{23}^\circ (\cos^2 \theta_{12} - \sin^2 \theta_{12} \sin^2 \theta_{13})}{\sin 2\theta_{12} \sin \theta_{13} |\cos \theta_{13}^\circ \cos \theta_{23}^\circ| (\cos^2 \theta_{13} - \cos^2 \theta_{13}^\circ \cos^2 \theta_{23}^\circ)^{\frac{1}{2}}} \\ \text{A2} & -\frac{\cos^2 \theta_{13} (\cos^2 \theta_{12}^\circ \cos^2 \theta_{23}^\circ - \cos^2 \theta_{12}) + \sin^2 \theta_{23}^\circ (\cos^2 \theta_{12} - \sin^2 \theta_{12} \sin^2 \theta_{13})}{\sin 2\theta_{12} \sin \theta_{13} |\sin \theta_{23}^\circ| (\cos^2 \theta_{13} - \sin^2 \theta_{23}^\circ)^{\frac{1}{2}}} \\ \text{A3} & \pm \cos \hat{\delta}_{23} \\ \text{B1} & -\frac{\cos^2 \theta_{13} (\cos^2 \theta_{12}^\circ \cos^2 \theta_{23}^\circ - \cos^2 \theta_{23}) + \sin^2 \theta_{12}^\circ (\cos^2 \theta_{23} - \sin^2 \theta_{13} \sin^2 \theta_{23})}{\sin 2\theta_{23} \sin \theta_{13} |\sin \theta_{12}^\circ| (\cos^2 \theta_{13} - \sin^2 \theta_{12}^\circ)^{\frac{1}{2}}} \\ \text{B2} & \frac{\cos^2 \theta_{13} (\sin^2 \theta_{12}^\circ - \cos^2 \theta_{23}) + \cos^2 \theta_{12}^\circ \cos^2 \theta_{13}^\circ (\cos^2 \theta_{23} - \sin^2 \theta_{13} \sin^2 \theta_{23})}{\sin 2\theta_{23} \sin \theta_{13} |\cos \theta_{12}^\circ \cos \theta_{13}^\circ| (\cos^2 \theta_{13} - \cos^2 \theta_{12}^\circ \cos^2 \theta_{13}^\circ)^{\frac{1}{2}}} \\ \text{B3} & \pm \cos \hat{\delta}_{12} \end{array}$$

(A)
$$G_e = Z_2$$
 and $G_\nu = Z_n$, $n > 2$ or $Z_n \times Z_m$, $n, m \ge 2$
(B) $G_e = Z_n$, $n > 2$ or $Z_n \times Z_m$, $n, m \ge 2$ and $G_\nu = Z_2$

Arsenii Titov (IPPP, Durham)

Summary of sum rules for mixing angles

Case	Parametrisation of the PMNS matrix ${\cal U}$	Sum rule for $\sin^2\theta_{ij}$
C1	$U_{12}(\theta_{12}^e, \delta_{12}^e) U_{12}(\theta_{12}^\circ, \delta_{12}^\circ) R_{23}(\theta_{23}^\circ) U_{13}(\theta_{13}^\circ, \delta_{13}^\circ) U_{13}(\theta_{13}^\nu, \delta_{13}^\nu) Q_0$	not fixed
C2	$U_{13}(\theta_{13}^e, \delta_{13}^e) U_{13}(\theta_{13}^\circ, \delta_{13}^\circ) R_{23}(\theta_{23}^\circ) U_{12}(\theta_{12}^\circ, \delta_{12}^\circ) U_{12}(\theta_{12}^\nu, \delta_{12}^\nu) Q_0$	$\sin^2\theta_{23}=\frac{\sin^2\theta_{23}^\circ}{1-\sin^2\theta_{13}}$
C3	$U_{12}(\theta_{12}^e, \delta_{12}^e) U_{12}(\theta_{12}^\circ, \delta_{12}^\circ) R_{13}(\theta_{13}^\circ) U_{23}(\theta_{23}^\circ, \delta_{23}^\circ) U_{23}(\theta_{23}^\nu, \delta_{23}^\nu) Q_0$	not fixed
C4	$U_{13}(\theta_{13}^e, \delta_{13}^e) U_{13}(\theta_{13}^\circ, \delta_{13}^\circ) R_{12}(\theta_{12}^\circ) U_{23}(\theta_{23}^\circ, \delta_{23}^\circ) U_{23}(\theta_{23}^\nu, \delta_{23}^\nu) Q_0$	not fixed
C5	$U_{23}(\theta^e_{23}, \delta^e_{23}) U_{23}(\theta^\circ_{23}, \delta^\circ_{23}) R_{12}(\theta^\circ_{12}) U_{13}(\theta^\circ_{13}, \delta^\circ_{13}) U_{13}(\theta^\nu_{13}, \delta^\nu_{13}) Q_0$	$\sin^2\theta_{12}=\frac{\sin^2\theta_{12}^\circ}{1-\sin^2\theta_{13}}$
C6	$U_{23}(\theta^e_{23}, \delta^e_{23}) U_{23}(\theta^\circ_{23}, \delta^\circ_{23}) R_{13}(\theta^\circ_{13}) U_{12}(\theta^\circ_{12}, \delta^\circ_{12}) U_{12}(\theta^\nu_{12}, \delta^\nu_{12}) Q_0$	$\sin^2\theta_{13}=\sin^2\theta_{13}^\circ$
C7	$U_{12}(\theta_{12}^e, \delta_{12}^e) U_{12}(\theta_{12}^\circ, \delta_{12}^\circ) R_{23}(\theta_{23}^\circ) U_{12}(\tilde{\theta}_{12}^\circ, \tilde{\delta}_{12}^\circ) U_{12}(\theta_{12}^\nu, \delta_{12}^\nu) Q_0$	$\sin^2 \theta_{23} = \frac{\sin^2 \theta_{23}^\circ - \sin^2 \theta_{13}}{1 - \sin^2 \theta_{13}}$
C8	$U_{13}(\theta_{13}^e, \delta_{13}^e) U_{13}(\theta_{13}^\circ, \delta_{13}^\circ) R_{23}(\theta_{23}^\circ) U_{13}(\tilde{\theta}_{13}^\circ, \tilde{\delta}_{13}^\circ) U_{13}(\theta_{13}^\nu, \delta_{13}^\nu) Q_0$	not fixed
C9	$U_{23}(\theta_{23}^e, \delta_{23}^e) U_{23}(\theta_{23}^\circ, \delta_{23}^\circ) R_{12}(\theta_{12}^\circ) U_{23}(\tilde{\theta}_{23}^\circ, \tilde{\delta}_{23}^\circ) U_{23}(\theta_{23}^\nu, \delta_{23}^\nu) Q_0$	$\sin^2 \theta_{12} = \frac{\sin^2 \theta_{12}^\circ - \sin^2 \theta_{13}}{1 - \sin^2 \theta_{13}}$

(C) $G_e = Z_2$ and $G_\nu = Z_2$

Arsenii Titov (IPPP, Durham)

Summary of sum rules for the Dirac phase

Arsenii Titov (IPPP, Durham)

Girardi, Petcov, Stuart, AVT NPB 902 (2016) 1

$\sin^2 \theta_{ij}^{\circ}$ $\sin^2 \theta_{ij}$ (G_e, G_ν) Case $\cos \delta$ $(\sin^2 \theta_{13}^\circ, \sin^2 \theta_{23}^\circ) = (0.226, 0.436)$ $\sin^2 \theta_{23} = 0.554$ A1A5 0.727 (Z_2, Z_3) $(\sin^2 \theta_{12}^{\circ}, \sin^2 \theta_{23}^{\circ}) = (0.226, 0.436)$ -0.727 $\sin^2 \theta_{23} = 0.446$ $A2A_5$ $(\sin^2 \theta_{12}^{\circ}, \sin^2 \theta_{23}^{\circ}) = (1/3, 1/2)$ $\sin^2 \theta_{12} = 0.341$ -0.353 (Z_3, Z_2) B1 $(\sin^2 \theta_{12}^\circ, \sin^2 \theta_{23}^\circ) = (0.276, 1/2)$ (Z_5, Z_2) -0.405 $\sin^2 \theta_{12} = 0.283$ $B1A_5$ $(\sin^2 \theta_{12}^\circ, \sin^2 \theta_{13}^\circ) = (0.095, 0.276)$ $\sin^2 \theta_{12} = 0.331$ $B2A_5$ -0.936 $(Z_2 \times Z_2, Z_2)$ $(\sin^2 \theta_{12}^\circ, \sin^2 \theta_{13}^\circ) = (1/4, 0.127)$ $\sin^2 \theta_{12} = 0.331$ $B2A_5II$ 1* $\sin^2 \theta_{23}^{\circ} = 1/4$ -1^{*} C1not fixed $\sin^2 \theta_{13}^{\circ} = 0.095$ 1* $C3A_5$ not fixed $\sin^2 \theta_{13}^{\circ} = 1/4$ C3 -1^{*} not fixed $\sin^2 \theta_{12}^{\circ} = 0.095$ (Z_2, Z_2) $C4A_5$ -0.799not fixed $\sin^2 \theta_{12}^{\circ} = 1/4$ C41* not fixed $\sin^2 \theta_{23}^{\circ} = 3/4$ C81* not fixed $C9A_5$ $\sin^2 \theta_{12}^{\circ} = 0.345$ $\sin^2 \theta_{12} = 0.331$ not fixed

Using NuFIT 3.2 (January 2018) data for NO

Petcov, AVT, arXiv:1804.00182

Details of statistical analysis

Total χ^2 function (present):

$$\chi^2(\vec{x}) = \sum_{i=1}^4 \chi_i^2(x_i)$$

 $\vec{x} = (\sin^2 \theta_{12}, \sin^2 \theta_{13}, \sin^2 \theta_{23}, \delta)$

 χ_i^2 are the 1-dimensional projections from a global analysis

Total
$$\chi^2$$
 function (future):
 $\chi^2(\vec{x}) = \sum_{i=1}^3 \frac{(x_i - \overline{x}_i)^2}{\sigma_{x_i}^2}$

 $\vec{x} = (\sin^2 \theta_{12}, \sin^2 \theta_{13}, \sin^2 \theta_{23}), \ \overline{x}_i$ are the potential best fit values σ_{x_i} are the prospective 1σ uncertainties

Minimisation of total χ^2 for a fixed value of $\cos \delta$:

$$\chi^2(\cos\delta) = \min\left[\chi^2(\vec{x})\Big|_{\cos\delta = \text{const}}\right]$$

Likelihood:

$$L(\cos \delta) = \exp\left(-\frac{\chi^2(\cos \delta)}{2}\right)$$

Arsenii Titov (IPPP, Durham)