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and

Y3 = Y2 Y1 = Y3 Yo =71 .
5 ,ng—— 5 ,%,i:— 5 for the twists.

We use the notation ’hi = -

Deformation parameters q; = e 27 7 =1,2,3 , related to the Cartan subalgebras

w(1)? C su(4) = s0(6) , break supersymmetry!!
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It is NOT complete To preserve renormalizability, it has to be supplemented
at quantum level with new double-trace counterterms [J.Fokken, C.Sieg, M.Wilhelm *14]

The corresponding coupling constants run with the scale,
BREAKING the conformal symmetry!!

Example: For the double-trace interaction term o, Tr(¢;¢;)Tr(¢l¢!) at 1-loop
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At weak coupling the beta function has two fixed points (they should persist for any g, IV.)

cv?j = ::22'92 Sin fy;-L Sin Y, T (9(94) Non-Susy CFT at fixed points!

Conjecture: QSC~ = integrability description
of the theory at large limit in the fixed points!

Example: Anomalous dimension of operators Tr(¢ ) is affected by double-trace terms
only for L=2 at large V. limit [0.Gurdogan and V.Kazakov ‘16]

1 ( . _
TL=2(9) = :—2;— siny" siny; + O(g") Non-Unitary CFT!!
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In the DS limit the gauge field decouples [O.Gurdogan and V.Kazakov "16]
1 TG oY '
£¢¢ = NCTI' (—5((9“@3%13‘7 + ij (O"u)d Mbé) + L:int
and only a certain class of Yukawa and 4-scalar interactions survive
Lins = NoTr (€] 00}0%0° + & 0ol 6%6" + & ololo'e?
+iVEE(W " + ol ) +iVEEW 62 + Dol +iVEG(W M + Paolin) )

We can build a tamily of other theories playing with the couplings
« & — 0 . 3-scalar, 2-fermion theory

+ §1,862— 0 . 2-scalar theory 1 SUSY restored!!
* & = &9 = &3 = & (B-deformed theory
All these theories are chiral = their action is not invariant w.r.t. hermitian conjugation.

Missing terms with opposite chirality can be g — 0 q; — 0
retrieved in the opposite DS limit £ = 4mq; /g fixed
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Consider the two point function <Tr¢f(0)Trgb;fL(x)> in the 2-scalar theory

Hamiltonian evolution in
the radial direction (41 = 1)

L | L
_ —1
=1l 12
=1 =1
This spin-chain is shown to be |dentified as a transfer matrix of a
integrable for fishnet diagrams non-compact Heisenberg spin-chain
[A.B.Zamolodchikov ‘80] [N. Gromov, V. Kazakov, G.Korchemsky, S.Negro, G.Sizov ‘17]

Example: Scaling dimension for L=2 and spin 5=0 from QSC~

(A —4)(A —2)*A = 16¢*

* Can | reproduce the same result from the 2-scalar field theory?

* |s it possible to compute the spectrum of the most general DS theory in both ways?

Fermionic fishnet!!
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The integral kernels ) and H commute with the (2,0,0)x(2,0,0) spin-chain (generators of
the conformal group). This property fixes their eigenstates
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Expanding (G on this basis of states, it will depend only on h the eigenvalue of H.

Taking the residue at h_l = 54 we can compute the OPE coefficients!
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To compute the scaling dimension we have to solve h~! = £*computing the eigenvalue

HOA = = h = h®x

where black dots are integrated. Solving it with the “star-triangle” relations we have
(A —4)(A — 2)2A = 16¢*

Solution of this equation together with OPE coefficients define exact conformal data of
operators appearing in the OPE of Tr|¢1(x1)¢1(x2)]

7

* twist-2 operators A =2 — 2i§2 i§6 1 '510 0(514)
. 4 O 3 21 12 16
* twist-4 operators A =4 —l—f — Zf + gf + O(f )
+ 2 shadow operators A BN 4 o A [D.Grabner, N.Gromov, V.Kazakov,

G.Korchemsky ‘17]
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Consider the same 4-point function G = <Tr[qb1(a?1)¢1(x2)]TI‘[¢J{ (ws)(bJ{ (x4)])

An arbitrary diagram is composed by the following bosonic and fermionic kernels

Bty >
¢1 ¢1 ¢1 \\\ ¢2 ///
\ /7
¢3 ¢2 ¢3 /\/\/\
/ \
// \\
/ \
¢---F--- e
d45131/d4332/ 1
T N S B ) TR TR T A

Then the spectral equation reads h_l — g%fgh_lhf = §§ —+ fgl where

;1‘1) + meot (4 — %))]

hy = _2[h+F(% - DI'(1 - %)<
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Let’s focus only on the scaling dimension of the twist-2 operator Tr[¢1(x1)p1(x2)]

r
A= 2-i/e2y (@)466,6) +1 (79)- @2 66+ 56) M08 D) -

where € = €31~ €2 Jand €23 =Eoly-

It's the scaling dimension of the Terms generated only by h
2-scalar theory with €2 — £2

The spectrum of the other two operators with i=2,3 can be written in terms of A1
Ag=A1(§ = &1,&3) and Ag = A1(€2>€3 — 51)
Spectrum of the DS sub-theories? (7,7, k =1,2,3)
2-scal
. gz%o AfmAg;ﬁz:A scalar
« &y &i#i =0 Apzi =2, A; = A = AFscalar

_ _ _ _ : : J.Fokken, C.Sieq,
e S1 =86 =E3=¢ A; =2 inagreementwith | Wil ,14]9
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The general DS theory has a second non-protected operator, then we want to study also

G' = (Tr[¢py (x1)Bh (22)] T[] (23) do(4)])
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The general DS theory has a second non-protected operator, then we want to study also

G = (Tr[py (1) 5 (x2)] Tr[p] (x3) o (24)])
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The general DS theory has a second non-protected operator, then we want to study also

G = (Tr[py (1) 5 (x2)] Tr[p] (x3) o (24)])

< — <L -9 -—<~ 9 —————-->F-9
| |
l l
* A YV  d o o o o o Y +
| |
l l
| |
> — > S« -0 —>"— @ ——>— - -—<--¢
d4x1/d4x2/ 1
/ / /
G :/ 55— (T1, T2 : 7 R T A G (A LY
T3 Ty 1 —ai,V — §8H 7 §1685H (D, Lo ST HPIH

The combination of all the fermionic Hamiltonian commutes with the bosonic spin-chain

— hhl'h

HHyH > E?%H’g> hihH
N—— ' N——
H s I h g




Spectrum of the DS theories for L=2

16263
hy b — &1

Let’s focus only on the scaling dimension of the twist-2 operator Tl'[gbl(ZEl)qb;(Qfg)]

The spectral equation reads ht |

= &163

Ay =2— 22'\/512 (&2 +&3) —
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16263
hy ' — &6

Let’s focus only on the scaling dimension of the twist-2 operator Tl'[gbl(ZEl)qb;(Qfg)]

= &163

The spectral equation reads ht |

167563 i ( 12

3/2
_ 4 3 192 2 2 17 4 6
Véiz (§12 +&3) "1 10 + g%) (4875 + 1267565 + 1761265 + 8£3) +

Ay =2— 22'\/512 (&2 +&3) —

The spectrum of the other two operators can be written in terms of Ajs

Agg = A19(&12 — €23,83 = &1) and Azyp = A1a(&12 = €31,83 — &2)



Spectrum of the DS theories for L=2
b6

The spectral equation reads ht —1
hb _5152

Let’s focus only on the scaling dimension of the twist-2 operator Tl'[gbl(ZEl)qb;(Qfg)]
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The spectrum of the other two operators can be written in terms of Ajs

Agg = A19(&12 — €23,83 = &1) and Azyp = A1a(&12 = €31,83 — &2)

Spectrum of the DS sub-theories? (7,4, k,l =1,2,3)
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Final Remarks

We have computed the scaling dimension of operator for L=2 for the family of DS theories

The next steps are [Work in progress...]

e Check of the spectrum with the QSC
* Check with direct computations of the diagrams

* Computation of the 5 function and critical points at higher order

Biggest future goal: solve QSC (numerics) for the general deformed theory

[Work in progress...]
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