Strongly deformed N=4 SYM in the double scaling limit as an integrable CFT

In collaborations with V. Kazakov, F. Levkovich-Maslyuk, E. Olivucci

Michelangelo Preti

Ecole Normale Supérieure - CNRS

ÉCOLE NORMALE
SUPERIEURE

CONVEGNO NAZIONALE DI FISICA TEORICA

γ-deformed $N=4 S Y M$

The most general theory which admits an AdS_{5} dual description in terms of a string σ-model

γ-deformed $N=4 S Y M$

The most general theory which admits an AdS_{5} dual description in terms of astring σ-model
classical level \longrightarrow conformal and integrable quantum level \longrightarrow QSC γ [N.Gromov, V.Kazakov,

γ-deformed $N=4 S Y M$

The most general theory which admits an AdS_{5} dual description in terms of a string σ-model

Correct description of the γ-deformed $\mathrm{N}=4 \mathrm{SYM}$ at any 't Hooft coupling g ?
classical level \longrightarrow conformal and integrable quantum level \longrightarrow QSC γ [N.Gromov, V.Kazakov, S.Leurent, D.Volin '14]

γ-deformed $N=4 S Y M$

The most general theory which admits an AdS_{5} dual description in terms of astring σ-model

Correct description of the γ-deformed $\mathrm{N}=4 \mathrm{SYM}$ at any 't Hooft coupling g ?
classical level \longrightarrow conformal and integrable quantum level \longrightarrow QSC γ [N.Gromov, V.Kazakov,

$$
\mathcal{L}=N_{c} \operatorname{Tr}\left[-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} D^{\mu} \phi_{i}^{\dagger} D_{\mu} \phi^{i}+i \bar{\psi}_{A}^{\dot{\alpha}} D_{\dot{\alpha}}^{\alpha} \psi_{\alpha}^{A}\right]+\mathcal{L}_{\mathrm{int}}
$$

where $i=1,2,3, A=1,2,3,4, D_{\dot{\alpha}}^{\alpha}=D_{\mu}\left(\sigma^{\mu}\right)_{\dot{\alpha}}^{\alpha}$ and

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{int}}=N_{c} g \operatorname{Tr}\left[\frac{g}{4}\left\{\phi_{i}^{\dagger}, \phi^{i}\right\}\left\{\phi_{j}^{\dagger}, \phi^{j}\right\}-g e^{-i \epsilon^{i j k} \gamma_{k}} \phi_{i}^{\dagger} \phi_{j}^{\dagger} \phi^{i} \phi^{j}\right. \\
& -e^{-\frac{i}{2} \gamma_{j}^{-}} \bar{\psi}_{j} \phi^{j} \bar{\psi}_{4}+e^{+\frac{i}{2} \gamma_{j}^{-}} \bar{\psi}_{4} \phi^{j} \bar{\psi}_{j}+i \epsilon_{i j k} e^{\frac{i}{2} \epsilon_{j k m} \gamma_{m}^{+}} \psi^{k} \phi^{i} \psi^{j} \\
& \left.-e^{+\frac{i}{2} \gamma_{j}^{-}} \psi_{4} \phi_{j}^{\dagger} \psi_{j}+e^{-\frac{i}{2} \gamma_{j}^{-}} \psi_{j} \phi_{j}^{\dagger} \psi_{4}+i \epsilon^{i j k} e^{\frac{i}{2} \epsilon_{j k m} \gamma_{m}^{+}} \bar{\psi}_{k} \phi_{i}^{\dagger} \bar{\psi}_{j}\right]
\end{aligned}
$$

We use the notation $\gamma_{1}^{ \pm}=-\frac{\gamma_{3} \pm \gamma_{2}}{2}, \quad \gamma_{2}^{ \pm}=-\frac{\gamma_{1} \pm \gamma_{3}}{2}, \quad \gamma_{3}^{ \pm}=-\frac{\gamma_{2} \pm \gamma_{1}}{2}$ for the twists.

γ-deformed $N=4 S Y M$

The most general theory which admits an AdS_{5} dual description in terms of astring σ-model

Correct description of the γ-deformed $\mathrm{N}=4 \mathrm{SYM}$ at any 't Hooft coupling g ?
classical level \longrightarrow conformal and integrable quantum level \longrightarrow QSC γ [N.Gromov, V.Kazakov,

$$
\mathcal{L}=N_{c} \operatorname{Tr}\left[-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2} D^{\mu} \phi_{i}^{\dagger} D_{\mu} \phi^{i}+i \bar{\psi}_{A}^{\dot{\alpha}} D_{\dot{\alpha}}^{\alpha} \psi_{\alpha}^{A}\right]+\mathcal{L}_{\mathrm{int}}
$$

where $i=1,2,3, A=1,2,3,4, D_{\dot{\alpha}}^{\alpha}=D_{\mu}\left(\sigma^{\mu}\right)_{\dot{\alpha}}^{\alpha}$ and

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{int}}=N_{c} g \operatorname{Tr}\left[\frac{g}{4}\left\{\phi_{i}^{\dagger}, \phi^{i}\right\}\left\{\phi_{j}^{\dagger}, \phi^{j}\right\}-g e^{-i \epsilon^{i j k} \gamma_{k}} \phi_{i}^{\dagger} \phi_{j}^{\dagger} \phi^{i} \phi^{j}\right. \\
& -e^{-\frac{i}{2} \gamma_{j}^{-}} \bar{\psi}_{j} \phi^{j} \bar{\psi}_{4}+e^{+\frac{i}{2} \gamma_{j}^{-}} \bar{\psi}_{4} \phi^{j} \bar{\psi}_{j}+i \epsilon_{i j k} e^{\frac{i}{2} \epsilon_{j k m} \gamma_{m}^{+}} \psi^{k} \phi^{i} \psi^{j} \\
& \left.-e^{+\frac{i}{2} \gamma_{j}^{-}} \psi_{4} \phi_{j}^{\dagger} \psi_{j}+e^{-\frac{i}{2} \gamma_{j}^{-}} \psi_{j} \phi_{j}^{\dagger} \psi_{4}+i \epsilon^{i j k} e^{\frac{i}{2} \epsilon_{j k m} \gamma_{m}^{+}} \bar{\psi}_{k} \phi_{i}^{\dagger} \bar{\psi}_{j}\right]
\end{aligned}
$$

We use the notation $\gamma_{1}^{ \pm}=-\frac{\gamma_{3} \pm \gamma_{2}}{2}, \quad \gamma_{2}^{ \pm}=-\frac{\gamma_{1} \pm \gamma_{3}}{2}, \quad \gamma_{3}^{ \pm}=-\frac{\gamma_{2} \pm \gamma_{1}}{2}$ for the twists.
Deformation parameters $q_{j}=e^{-\frac{i}{2} \gamma_{j}} \quad j=1,2,3$, related to the Cartan subalgebras $u(1)^{3} \subset s u(4) \cong s o(6)$, break supersymmetry!!

γ-deformed $N=4$ SYM

It is NOT complete at quantum level

To preserve renormalizability, it has to be supplemented with new double-trace counterterms [J.Fokken, C.Sieg, M.Wilhelm '14]

γ-deformed $N=4 S Y M$

It is NOT complete at quantum level

To preserve renormalizability, it has to be supplemented with new double-trace counterterms [J.Fokken, C.Sieg, M.Wilhelm '14]

The corresponding coupling constants run with the scale, BREAKING the conformal symmetry!!

γ-deformed $N=4 S Y M$

It is NOT complete at quantum level

To preserve renormalizability, it has to be supplemented with new double-trace counterterms [J.Fokken, C.Sieg, M.Wilhelm '14]

The corresponding coupling constants run with the scale, BREAKING the conformal symmetry!!

Example: For the double-trace interaction term $\alpha_{j j}^{2} \operatorname{Tr}\left(\phi_{j} \phi_{j}\right) \operatorname{Tr}\left(\phi_{j}^{\dagger} \phi_{j}^{\dagger}\right)$ at 1-loop

$$
\beta_{\alpha_{j j}^{2}}=\frac{g^{4}}{\pi^{2}} \sin ^{2} \gamma_{j}^{+} \sin ^{2} \gamma_{j}^{-}+\frac{\alpha_{j j}^{4}}{4 \pi^{2}}
$$

At weak coupling the beta function has two fixed points (they should persist for any g, N_{c})

$$
\alpha_{j j}^{2}= \pm 2 i g^{2} \sin \gamma_{j}^{+} \sin \gamma_{j}^{-}+\mathcal{O}\left(g^{4}\right) \quad \longrightarrow \quad \text { Non-Susy CFT at fixed points! }
$$

γ-deformed $N=4$ SYM

It is NOT complete at quantum level
\qquad To preserve renormalizability, it has to be supplemented with new double-trace counterterms [J.Fokken, C.Sieg, M.Wilhelm '14]

The corresponding coupling constants run with the scale, BREAKING the conformal symmetry!!

Example: For the double-trace interaction term $\alpha_{j j}^{2} \operatorname{Tr}\left(\phi_{j} \phi_{j}\right) \operatorname{Tr}\left(\phi_{j}^{\dagger} \phi_{j}^{\dagger}\right)$ at 1-loop

$$
\beta_{\alpha_{j j}^{2}}=\frac{g^{4}}{\pi^{2}} \sin ^{2} \gamma_{j}^{+} \sin ^{2} \gamma_{j}^{-}+\frac{\alpha_{j j}^{4}}{4 \pi^{2}}
$$

At weak coupling the beta function has two fixed points (they should persist for any g, N_{c})

$$
\alpha_{j j}^{2}= \pm 2 i g^{2} \sin \gamma_{j}^{+} \sin \gamma_{j}^{-}+\mathcal{O}\left(g^{4}\right) \quad \longrightarrow \quad \text { Non-Susy CFT at fixed points! }
$$

Conjecture: QSC $_{\gamma}=$ integrability description of the theory at large limit in the fixed points!

γ-deformed $N=4 S Y M$

It is NOT complete at quantum level
\qquad To preserve renormalizability, it has to be supplemented with new double-trace counterterms [J.Fokken, C.Sieg, M.Wilhelm '14]

The corresponding coupling constants run with the scale, BREAKING the conformal symmetry!!

Example: For the double-trace interaction term $\alpha_{j j}^{2} \operatorname{Tr}\left(\phi_{j} \phi_{j}\right) \operatorname{Tr}\left(\phi_{j}^{\dagger} \phi_{j}^{\dagger}\right)$ at 1-loop

$$
\beta_{\alpha_{j j}^{2}}=\frac{g^{4}}{\pi^{2}} \sin ^{2} \gamma_{j}^{+} \sin ^{2} \gamma_{j}^{-}+\frac{\alpha_{j j}^{4}}{4 \pi^{2}}
$$

At weak coupling the beta function has two fixed points (they should persist for any g, N_{c})

$$
\alpha_{j j}^{2}= \pm 2 i g^{2} \sin \gamma_{j}^{+} \sin \gamma_{j}^{-}+\mathcal{O}\left(g^{4}\right) \quad \longrightarrow \quad \text { Non-Susy CFT at fixed points! }
$$

Conjecture: QSC $_{\gamma=\text { integrability }}$ description of the theory at large limit in the fixed points!

Example: Anomalous dimension of operators $\operatorname{Tr}\left(\phi_{j}^{L}\right)$ is affected by double-trace terms only for L=2 at large N_{c} limit
[O.Gurdogan and V.Kazakov '16]

$$
\gamma_{L=2}(g)=\mp \frac{i g^{2}}{2 \pi^{2}} \sin \gamma_{j}^{+} \sin \gamma_{j}^{-}+\mathcal{O}\left(g^{4}\right)
$$

γ-deformed N=4 SYM

It is NOT complete at quantum level
\qquad To preserve renormalizability, it has to be supplemented with new double-trace counterterms [J.Fokken, C.Sieg, M.Wilhelm '14]

The corresponding coupling constants run with the scale, BREAKING the conformal symmetry!!

Example: For the double-trace interaction term $\alpha_{j j}^{2} \operatorname{Tr}\left(\phi_{j} \phi_{j}\right) \operatorname{Tr}\left(\phi_{j}^{\dagger} \phi_{j}^{\dagger}\right)$ at 1-loop

$$
\beta_{\alpha_{j j}^{2}}=\frac{g^{4}}{\pi^{2}} \sin ^{2} \gamma_{j}^{+} \sin ^{2} \gamma_{j}^{-}+\frac{\alpha_{j j}^{4}}{4 \pi^{2}}
$$

At weak coupling the beta function has two fixed points (they should persist for any g, N_{c})

$$
\alpha_{j j}^{2}= \pm 2 i g^{2} \sin \gamma_{j}^{+} \sin \gamma_{j}^{-}+\mathcal{O}\left(g^{4}\right) \quad \longrightarrow \quad \text { Non-Susy CFT at fixed points! }
$$

Conjecture: QSC $\gamma=$ integrability description of the theory at large limit in the fixed points!

Example: Anomalous dimension of operators $\operatorname{Tr}\left(\phi_{j}^{L}\right)$ is affected by double-trace terms only for L=2 at large N_{c} limit
[O.Gurdogan and V.Kazakov '16]

$$
\gamma_{L=2}(g)=\mp \frac{i j^{2}}{2 \pi^{2}} \sin \gamma_{j}^{+} \sin \gamma_{j}^{-}+\mathcal{O}\left(g^{4}\right) \quad \text { Non-Unitary CFT!! }
$$

The double scaling limit

DS limit = Weak coupling + Large imaginary twists

$$
\begin{aligned}
& g \rightarrow 0 \quad q_{i} \rightarrow \infty \\
& \xi_{i}:=4 \pi q_{i} g \text { fixed }
\end{aligned}
$$

[O.Gurdogan and V.Kazakov '16]

The double scaling limit

DS limit = Weak coupling + Large imaginary twists

$$
\begin{aligned}
& g \rightarrow 0 \quad q_{i} \rightarrow \infty \\
& \xi_{i}:=4 \pi q_{i} g \text { fixed }
\end{aligned}
$$

In the DS limit the gauge field decouples
[O.Gurdogan and V.Kazakov '16]

$$
\mathcal{L}_{\phi \psi}=N_{c} \operatorname{Tr}\left(-\frac{1}{2} \partial^{\mu} \phi_{j}^{\dagger} \partial_{\mu} \phi^{j}+i \bar{\psi}_{j}^{\dot{\alpha}}\left(\sigma^{\mu}\right)_{\dot{\alpha}}^{\alpha} \partial_{\mu} \psi_{\alpha}^{j}\right)+\mathcal{L}_{\mathrm{int}}
$$

and only a certain class of Yukawa and 4-scalar interactions survive

$$
\begin{aligned}
\mathcal{L}_{\mathrm{int}} & =N_{c} \operatorname{Tr}\left(\xi_{1}^{2} \phi_{2}^{\dagger} \phi_{3}^{\dagger} \phi^{2} \phi^{3}+\xi_{2}^{2} \phi_{3}^{\dagger} \phi_{1}^{\dagger} \phi^{3} \phi^{1}+\xi_{3}^{2} \phi_{1}^{\dagger} \phi_{2}^{\dagger} \phi^{1} \phi^{2}\right. \\
& \left.+i \sqrt{\xi_{2} \xi_{3}}\left(\psi^{3} \phi^{1} \psi^{2}+\bar{\psi}_{3} \phi_{1}^{\dagger} \bar{\psi}_{2}\right)+i \sqrt{\xi_{1} \xi_{3}}\left(\psi^{1} \phi^{2} \psi^{3}+\bar{\psi}_{1} \phi_{2}^{\dagger} \bar{\psi}_{3}\right)+i \sqrt{\xi_{1} \xi_{2}}\left(\psi^{2} \phi^{3} \psi^{1}+\bar{\psi}_{2} \phi_{3}^{\dagger} \bar{\psi}_{1}\right)\right)
\end{aligned}
$$

The double scaling limit

DS limit = Weak coupling + Large imaginary twists

$$
\begin{aligned}
& g \rightarrow 0 \quad q_{i} \rightarrow \infty \\
& \xi_{i}:=4 \pi q_{i} g \text { fixed }
\end{aligned}
$$

In the DS limit the gauge field decouples
[O.Gurdogan and V.Kazakov '16]

$$
\mathcal{L}_{\phi \psi}=N_{c} \operatorname{Tr}\left(-\frac{1}{2} \partial^{\mu} \phi_{j}^{\dagger} \partial_{\mu} \phi^{j}+i \bar{\psi}_{j}^{\dot{\alpha}}\left(\sigma^{\mu}\right)_{\dot{\alpha}}^{\alpha} \partial_{\mu} \psi_{\alpha}^{j}\right)+\mathcal{L}_{\mathrm{int}}
$$

and only a certain class of Yukawa and 4-scalar interactions survive

$$
\begin{aligned}
\mathcal{L}_{\mathrm{int}} & =N_{c} \operatorname{Tr}\left(\xi_{1}^{2} \phi_{2}^{\dagger} \phi_{3}^{\dagger} \phi^{2} \phi^{3}+\xi_{2}^{2} \phi_{3}^{\dagger} \phi_{1}^{\dagger} \phi^{3} \phi^{1}+\xi_{3}^{2} \phi_{1}^{\dagger} \phi_{2}^{\dagger} \phi^{1} \phi^{2}\right. \\
& \left.+i \sqrt{\xi_{2} \xi_{3}}\left(\psi^{3} \phi^{1} \psi^{2}+\bar{\psi}_{3} \phi_{1}^{\dagger} \bar{\psi}_{2}\right)+i \sqrt{\xi_{1} \xi_{3}}\left(\psi^{1} \phi^{2} \psi^{3}+\bar{\psi}_{1} \phi_{2}^{\dagger} \bar{\psi}_{3}\right)+i \sqrt{\xi_{1} \xi_{2}}\left(\psi^{2} \phi^{3} \psi^{1}+\bar{\psi}_{2} \phi_{3}^{\dagger} \bar{\psi}_{1}\right)\right)
\end{aligned}
$$

We can build a family of other theories playing with the couplings

- $\xi_{1} \rightarrow 0 \quad$: 3-scalar, 2-fermion theory
- $\xi_{1}, \xi_{2} \rightarrow 0 \quad: 2$-scalar theory
- $\xi_{1}=\xi_{2}=\xi_{3}=\xi: \beta$-deformed theory

The double scaling limit

DS limit = Weak coupling + Large imaginary twists

$$
\begin{aligned}
& g \rightarrow 0 \quad q_{i} \rightarrow \infty \\
& \xi_{i}:=4 \pi q_{i} g \text { fixed }
\end{aligned}
$$

In the DS limit the gauge field decouples
[O.Gurdogan and V.Kazakov '16]

$$
\mathcal{L}_{\phi \psi}=N_{c} \operatorname{Tr}\left(-\frac{1}{2} \partial^{\mu} \phi_{j}^{\dagger} \partial_{\mu} \phi^{j}+i \bar{\psi}_{j}^{\dot{\alpha}}\left(\sigma^{\mu}\right)_{\dot{\alpha}}^{\alpha} \partial_{\mu} \psi_{\alpha}^{j}\right)+\mathcal{L}_{\mathrm{int}}
$$

and only a certain class of Yukawa and 4-scalar interactions survive

$$
\begin{aligned}
\mathcal{L}_{\mathrm{int}} & =N_{c} \operatorname{Tr}\left(\xi_{1}^{2} \phi_{2}^{\dagger} \phi_{3}^{\dagger} \phi^{2} \phi^{3}+\xi_{2}^{2} \phi_{3}^{\dagger} \phi_{1}^{\dagger} \phi^{3} \phi^{1}+\xi_{3}^{2} \phi_{1}^{\dagger} \phi_{2}^{\dagger} \phi^{1} \phi^{2}\right. \\
& \left.+i \sqrt{\xi_{2} \xi_{3}}\left(\psi^{3} \phi^{1} \psi^{2}+\bar{\psi}_{3} \phi_{1}^{\dagger} \bar{\psi}_{2}\right)+i \sqrt{\xi_{1} \xi_{3}}\left(\psi^{1} \phi^{2} \psi^{3}+\bar{\psi}_{1} \phi_{2}^{\dagger} \bar{\psi}_{3}\right)+i \sqrt{\xi_{1} \xi_{2}}\left(\psi^{2} \phi^{3} \psi^{1}+\bar{\psi}_{2} \phi_{3}^{\dagger} \bar{\psi}_{1}\right)\right)
\end{aligned}
$$

We can build a family of other theories playing with the couplings

- $\xi_{1} \rightarrow 0$
: 3-scalar, 2-fermion theory
- $\xi_{1}, \xi_{2} \rightarrow 0 \quad:$ 2-scalar theory

1 SUSY restored!!

- $\xi_{1}=\xi_{2}=\xi_{3}=\xi: \beta$-deformed theory

The double scaling limit

DS limit = Weak coupling + Large imaginary twists

$$
\begin{aligned}
& g \rightarrow 0 \quad q_{i} \rightarrow \infty \\
& \xi_{i}:=4 \pi q_{i} g \text { fixed }
\end{aligned}
$$

In the DS limit the gauge field decouples
[O.Gurdogan and V.Kazakov '16]

$$
\mathcal{L}_{\phi \psi}=N_{c} \operatorname{Tr}\left(-\frac{1}{2} \partial^{\mu} \phi_{j}^{\dagger} \partial_{\mu} \phi^{j}+i \bar{\psi}_{j}^{\dot{\alpha}}\left(\sigma^{\mu}\right)_{\dot{\alpha}}^{\alpha} \partial_{\mu} \psi_{\alpha}^{j}\right)+\mathcal{L}_{\mathrm{int}}
$$

and only a certain class of Yukawa and 4-scalar interactions survive

$$
\begin{aligned}
\mathcal{L}_{\text {int }} & =N_{c} \operatorname{Tr}\left(\xi_{1}^{2} \phi_{2}^{\dagger} \phi_{3}^{\dagger} \phi^{2} \phi^{3}+\xi_{2}^{2} \phi_{3}^{\dagger} \phi_{1}^{\dagger} \phi^{3} \phi^{1}+\xi_{3}^{2} \phi_{1}^{\dagger} \phi_{2}^{\dagger} \phi^{1} \phi^{2}\right. \\
& \left.+i \sqrt{\xi_{2} \xi_{3}}\left(\psi^{3} \phi^{1} \psi^{2}+\bar{\psi}_{3} \phi_{1}^{\dagger} \bar{\psi}_{2}\right)+i \sqrt{\xi_{1} \xi_{3}}\left(\psi^{1} \phi^{2} \psi^{3}+\bar{\psi}_{1} \phi_{2}^{\dagger} \bar{\psi}_{3}\right)+i \sqrt{\xi_{1} \xi_{2}}\left(\psi^{2} \phi^{3} \psi^{1}+\bar{\psi}_{2} \phi_{3}^{\dagger} \bar{\psi}_{1}\right)\right)
\end{aligned}
$$

We can build a family of other theories playing with the couplings

- $\xi_{1} \rightarrow 0$
: 3-scalar, 2-fermion theory
- $\xi_{1}, \xi_{2} \rightarrow 0 \quad:$ 2-scalar theory 1 SUSY restored!!
- $\xi_{1}=\xi_{2}=\xi_{3}=\xi: \beta$-deformed theory

All these theories are chiral $=$ their action is not invariant w.r.t. hermitian conjugation.
Missing terms with opposite chirality can be

$$
\begin{aligned}
& g \rightarrow 0 \quad q_{i} \rightarrow 0 \\
& \xi_{i}:=4 \pi q_{i} / g \text { fixed }
\end{aligned}
$$retrieved in the opposite DS limit

Fishnet Theories \& Integrability

Consider the two point function $\left\langle\operatorname{Tr} \phi_{i}^{L}(0) \operatorname{Tr} \phi_{i}^{\dagger L}(x)\right\rangle$ in the 2-scalar theory

Fishnet Theories \& Integrability

Consider the two point function $\left\langle\operatorname{Tr} \phi_{i}^{L}(0) \operatorname{Tr} \phi_{i}^{\dagger L}(x)\right\rangle$ in the 2-scalar theory

Fishnet Theories \& Integrability

Consider the two point function $\left\langle\operatorname{Tr} \phi_{i}^{L}(0) \operatorname{Tr} \phi_{i}^{\dagger L}(x)\right\rangle$ in the 2-scalar theory

Fishnet Theories \& Integrability

Consider the two point function $\left\langle\operatorname{Tr} \phi_{i}^{L}(0) \operatorname{Tr} \phi_{i}^{\dagger L}(x)\right\rangle$ in the 2-scalar theory

$$
\begin{aligned}
& \text { Hamiltonian evolution in } \\
& \text { the radial direction }\left(x_{L+1}=x_{1}\right) \\
& \mathcal{H}_{L}=\prod_{l=1}^{L} \frac{1}{\left(x_{l+1}-x_{l}\right)^{2}} \prod_{l=1}^{L} \Delta_{x_{l}}^{-1}
\end{aligned}
$$

Fishnet Theories \& Integrability

Consider the two point function $\left\langle\operatorname{Tr} \phi_{i}^{L}(0) \operatorname{Tr} \phi_{i}^{\dagger L}(x)\right\rangle$ in the 2-scalar theory

This spin-chain is shown to be
integrable for fishnet diagrams
[A.B.Zamolodchikov '80]

Hamiltonian evolution in the radial direction $\left(x_{L+1}=x_{1}\right)$
$\mathcal{H}_{L}=\prod_{l=1}^{L} \frac{1}{\left(x_{l+1}-x_{l}\right)^{2}} \prod_{l=1}^{L} \Delta_{x_{l}}^{-1}$

Identified as a transfer matrix of a non-compact Heisenberg spin-chain
[N. Gromov, V. Kazakov, G.Korchemsky, S.Negro, G.Sizov '17]

Fishnet Theories \& Integrability

Consider the two point function $\left\langle\operatorname{Tr} \phi_{i}^{L}(0) \operatorname{Tr} \phi_{i}^{\dagger L}(x)\right\rangle$ in the 2-scalar theory

Hamiltonian evolution in the radial direction $\left(x_{L+1}=x_{1}\right)$

$$
\mathcal{H}_{L}=\prod_{l=1}^{L} \frac{1}{\left(x_{l+1}-x_{l}\right)^{2}} \prod_{l=1}^{L} \Delta_{x_{l}}^{-1}
$$

This spin-chain is shown to be integrable for fishnet diagrams
[A.B.Zamolodchikov '80]

Identified as a transfer matrix of a non-compact Heisenberg spin-chain
[N. Gromov, V. Kazakov, G.Korchemsky, S.Negro, G.Sizov '17]

Example: Scaling dimension for $\mathrm{L}=2$ and spin $\mathrm{S}=0$ from $\mathrm{QSC} \gamma$

$$
(\Delta-4)(\Delta-2)^{2} \Delta=16 \xi^{4}
$$

Fishnet Theories \& Integrability

Consider the two point function $\left\langle\operatorname{Tr} \phi_{i}^{L}(0) \operatorname{Tr} \phi_{i}^{\dagger L}(x)\right\rangle$ in the 2-scalar theory

This spin-chain is shown to be integrable for fishnet diagrams [A.B.Zamolodchikov '80]

Hamiltonian evolution in the radial direction $\left(x_{L+1}=x_{1}\right)$

$$
\mathcal{H}_{L}=\prod_{l=1}^{L} \frac{1}{\left(x_{l+1}-x_{l}\right)^{2}} \prod_{l=1}^{L} \Delta_{x_{l}}^{-1}
$$

Identified as a transfer matrix of a non-compact Heisenberg spin-chain
[N. Gromov, V. Kazakov, G.Korchemsky, S.Negro, G.Sizov '17]

Example: Scaling dimension for $\mathrm{L}=2$ and spin $\mathrm{S}=0$ from $\mathrm{QSC} \gamma$

$$
(\Delta-4)(\Delta-2)^{2} \Delta=16 \xi^{4}
$$

- Can I reproduce the same result from the 2 -scalar field theory?
- Is it possible to compute the spectrum of the most general DS theory in both ways?

Spectrum of 2-scalar theory for $\mathrm{L}=2$

Consider the 4-point function of the only length-two non-protected operator at spin S=0

$$
G=\left\langle\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right] \operatorname{Tr}\left[\phi_{1}^{\dagger}\left(x_{3}\right) \phi_{1}^{\dagger}\left(x_{4}\right)\right]\right\rangle
$$

Spectrum of 2-scalar theory for $\mathrm{L}=2$

Consider the 4-point function of the only length-two non-protected operator at spin S=0

$$
G=\left\langle\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right] \operatorname{Tr}\left[\phi_{1}^{\dagger}\left(x_{3}\right) \phi_{1}^{\dagger}\left(x_{4}\right)\right]\right\rangle
$$

Spectrum of 2-scalar theory for $\mathrm{L}=2$

Consider the 4-point function of the only length-two non-protected operator at spin S=0

$$
G=\left\langle\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right] \operatorname{Tr}\left[\phi_{1}^{\dagger}\left(x_{3}\right) \phi_{1}^{\dagger}\left(x_{4}\right)\right]\right\rangle
$$

$$
G=\sum_{k=0}^{\infty}\left(\alpha^{2} \mathcal{V}+\xi^{4} \mathcal{H}\right)^{k} \frac{1}{x_{13}^{2} x_{24}^{2}}=\int \frac{d^{4} x_{1^{\prime}} d^{4} x_{2^{\prime}}}{x_{1^{\prime} 3}^{2} x_{2^{\prime} 4}^{2}}\left\langle x_{1}, x_{2}\right| \frac{1}{1-\alpha^{2} \mathcal{V}-\xi^{4} \mathcal{H}}\left|x_{1^{\prime}}, x_{2^{\prime}}\right\rangle
$$

Spectrum of 2-scalar theory for $\mathrm{L}=2$

Consider the 4-point function of the only length-two non-protected operator at spin S=0

Spectrum of 2-scalar theory for $\mathrm{L}=2$

Consider the 4-point function of the only length-two non-protected operator at spin S=0

$$
G=\left\langle\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right] \operatorname{Tr}\left[\phi_{1}^{\dagger}\left(x_{3}\right) \phi_{1}^{\dagger}\left(x_{4}\right)\right]\right\rangle
$$

The integral kernels \mathcal{V} and \mathcal{H} commute with the $(2,0,0) \times(2,0,0)$ spin-chain (generators of the conformal group). This property fixes their eigenstates

$$
\Phi_{\Delta}\left(x_{1}, x_{2}, x_{0}\right)=\frac{1}{x_{12}^{2}}\left(\frac{x_{12}^{2}}{x_{10}^{2} x_{20}^{2}}\right)^{\Delta / 2}=\stackrel{\stackrel{N}{4}}{\frac{1}{4}}
$$

Spectrum of 2-scalar theory for $\mathrm{L}=2$

Consider the 4-point function of the only length-two non-protected operator at spin S=0

$$
G=\left\langle\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right] \operatorname{Tr}\left[\phi_{1}^{\dagger}\left(x_{3}\right) \phi_{1}^{\dagger}\left(x_{4}\right)\right]\right\rangle
$$

The integral kernels \mathcal{V} and \mathcal{H} commute with the $(2,0,0) \times(2,0,0)$ spin-chain (generators of the conformal group). This property fixes their eigenstates

$$
\Phi_{\Delta}\left(x_{1}, x_{2}, x_{0}\right)=\frac{1}{x_{12}^{2}}\left(\frac{x_{12}^{2}}{x_{10}^{2} x_{20}^{2}}\right)^{\Delta / 2}=\stackrel{\substack{4 \\ \frac{1}{4}}}{\frac{1}{2}}
$$

Expanding G on this basis of states, it will depend only on h the eigenvalue of \mathcal{H}. Taking the residue at $h^{-1}=\xi^{4}$, we can compute the OPE coefficients!

Spectrum of 2-scalar theory for $\mathrm{L}=2$

To compute the scaling dimension we have to solve $h^{-1}=\xi^{4}$ computing the eigenvalue

where black dots are integrated. Solving it with the "star-triangle" relations we have

$$
(\Delta-4)(\Delta-2)^{2} \Delta=16 \xi^{4}
$$

Spectrum of 2-scalar theory for $\mathrm{L}=2$

To compute the scaling dimension we have to solve $h^{-1}=\xi^{4}$ computing the eigenvalue

where black dots are integrated. Solving it with the "star-triangle" relations we have

$$
(\Delta-4)(\Delta-2)^{2} \Delta=16 \xi^{4}
$$

Solution of this equation together with OPE coefficients define exact conformal data of operators appearing in the OPE of $\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right]$

- twist-2 operators

$$
\Delta=2-2 i \xi^{2}+i \xi^{6}-\frac{7}{4} i \xi^{10}+\mathcal{O}\left(\xi^{14}\right)
$$

- twist-4 operators

$$
\Delta=4+\xi^{4}-\frac{5}{4} \xi^{8}+\frac{21}{8} \xi^{12}+\mathcal{O}\left(\xi^{16}\right)
$$

- 2 shadow operators

$$
\Delta \rightarrow 4-\Delta
$$

Spectrum of the DS theories for $L=2$

Consider the same 4-point function $\quad G=\left\langle\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right] \operatorname{Tr}\left[\phi_{1}^{\dagger}\left(x_{3}\right) \phi_{1}^{\dagger}\left(x_{4}\right)\right]\right\rangle$
An arbitrary diagram is composed by the following bosonic and fermionic kernels

Spectrum of the DS theories for $L=2$

Consider the same 4-point function $\quad G=\left\langle\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right] \operatorname{Tr}\left[\phi_{1}^{\dagger}\left(x_{3}\right) \phi_{1}^{\dagger}\left(x_{4}\right)\right]\right\rangle$
An arbitrary diagram is composed by the following bosonic and fermionic kernels

Spectrum of the DS theories for $L=2$

Consider the same 4-point function $\quad G=\left\langle\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right] \operatorname{Tr}\left[\phi_{1}^{\dagger}\left(x_{3}\right) \phi_{1}^{\dagger}\left(x_{4}\right)\right]\right\rangle$
An arbitrary diagram is composed by the following bosonic and fermionic kernels

Spectrum of the DS theories for $L=2$

Consider the same 4-point function $\quad G=\left\langle\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right] \operatorname{Tr}\left[\phi_{1}^{\dagger}\left(x_{3}\right) \phi_{1}^{\dagger}\left(x_{4}\right)\right]\right\rangle$
An arbitrary diagram is composed by the following bosonic and fermionic kernels

Spectrum of the DS theories for $\mathrm{L}=2$

Consider the same 4-point function $\quad G=\left\langle\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right] \operatorname{Tr}\left[\phi_{1}^{\dagger}\left(x_{3}\right) \phi_{1}^{\dagger}\left(x_{4}\right)\right]\right\rangle$
An arbitrary diagram is composed by the following bosonic and fermionic kernels

$$
G=\int \frac{d^{4} x_{1^{\prime}} d^{4} x_{2^{\prime}}}{x_{31^{\prime}}^{2} x_{42^{\prime}}^{2}}\left\langle x_{1}, x_{2}\right| \frac{1}{1-\alpha^{2} \mathcal{V}-\left(\xi_{2}^{4}+\xi_{3}^{4}\right) \mathcal{H}-\xi_{2}^{2} \xi_{3}^{2} \mathcal{H}_{f}}\left|x_{1}^{\prime}, x_{2}^{\prime}\right\rangle
$$

Spectrum of the DS theories for $\mathrm{L}=2$

Consider the same 4-point function $G=\left\langle\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right] \operatorname{Tr}\left[\phi_{1}^{\dagger}\left(x_{3}\right) \phi_{1}^{\dagger}\left(x_{4}\right)\right]\right\rangle$
An arbitrary diagram is composed by the following bosonic and fermionic kernels

Spectrum of the DS theories for $L=2$

Consider the same 4-point function $G=\left\langle\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right] \operatorname{Tr}\left[\phi_{1}^{\dagger}\left(x_{3}\right) \phi_{1}^{\dagger}\left(x_{4}\right)\right]\right\rangle$
An arbitrary diagram is composed by the following bosonic and fermionic kernels

Then the spectral equation reads $h^{-1}-\xi_{2}^{2} \xi_{3}^{2} h^{-1} h_{f}=\xi_{2}^{4}+\xi_{3}^{4}$ where

$$
h_{f}=-2\left[h+\Gamma\left(\frac{\Delta}{2}-1\right) \Gamma\left(1-\frac{\Delta}{2}\right)\left(\frac{3 F_{2}\left(1,2, \frac{\Delta}{2} ; \frac{\Delta}{2}+1, \left.\frac{\Delta}{2}+1 \right\rvert\, 1\right)}{\frac{\Delta}{2} \Gamma\left(\frac{\Delta}{2}+1\right) \Gamma\left(2-\frac{\Delta}{2}\right)}+\pi \cot \pi\left(4-\frac{\Delta}{2}\right)\right)\right]
$$

Spectrum of the DS theories for $\mathrm{L}=2$

Let's focus only on the scaling dimension of the twist-2 operator $\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right]$
$\Delta_{1}=2-i \sqrt{\xi_{-}^{2}}\left[2-\left(\xi_{-}^{2}-6 \xi_{23}^{2} \zeta_{3}\right)+\frac{1}{4}\left(7 \xi_{-}^{4}-12 \xi_{23}^{2} \xi_{-}^{2}\left(3 \zeta_{3}+5 \zeta_{5}\right)+108 \xi_{23}^{4} \zeta_{3}^{2}\right) \ldots\right]$
where $\xi_{-}=\xi_{2}^{2}-\xi_{3}^{2}$, and $\xi_{23}=\xi_{2} \xi_{3}$.

Spectrum of the DS theories for $\mathrm{L}=2$

Let's focus only on the scaling dimension of the twist-2 operator $\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right]$

$$
\begin{aligned}
& \left.\Delta_{1}=2-i \sqrt{\xi_{-}^{2}} \sqrt{2}-\left(\xi_{-}^{2}-6 \xi_{23}^{2} \zeta_{3}\right)+\frac{1}{4}\left(7 \xi_{-}^{4}-12 \xi_{23}^{2} \xi_{-}^{2}\left(3 \zeta_{3}+5 \zeta_{5}\right)+108 \xi_{23}^{4} \zeta_{3}^{2}\right) \ldots\right] \\
& \text { where } \xi_{-}=\xi_{2}^{2}-\xi_{3}^{2}, \text { and } \xi_{23}=\xi_{2} \xi_{3}
\end{aligned}
$$

It's the scaling dimension of the 2-scalar theory with $\xi^{2} \rightarrow \xi_{-}^{2}$

Spectrum of the DS theories for $\mathrm{L}=2$

Let's focus only on the scaling dimension of the twist-2 operator $\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right]$

It's the scaling dimension of the 2-scalar theory with $\xi^{2} \rightarrow \xi_{-}^{2}$

Terms generated only by h_{f}

Spectrum of the DS theories for $\mathrm{L}=2$

Let's focus only on the scaling dimension of the twist-2 operator $\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right]$
$\Delta_{1}=2-i \sqrt{\xi_{-}^{2}}\left(2-\left(\xi_{-}^{2}-6 \xi_{23}^{2} \zeta_{3}\right)+\frac{1}{4}\left(7 \xi_{-}^{4}-12 \xi_{23}^{2} \xi_{-}^{2}\left(3 \zeta_{3}+5 \zeta_{5}\right)+108 \xi_{23}^{4} \zeta_{3}^{2}\right) \ldots\right]$
where $\xi_{-}=\xi_{2}^{2}-\xi_{3}^{2}$, and $\xi_{23}=$ It's the scaling dimension of the $^{\text {Terms generated only by } h_{f}}$ 2-scalar theory with $\xi^{2} \rightarrow \xi_{-}^{2}$

The spectrum of the other two operators with $\mathrm{i}=2,3$ can be written in terms of Δ_{1}

$$
\Delta_{2}=\Delta_{1}\left(\xi_{2} \rightarrow \xi_{1}, \xi_{3}\right) \quad \text { and } \quad \Delta_{3}=\Delta_{1}\left(\xi_{2}, \xi_{3} \rightarrow \xi_{1}\right)
$$

Spectrum of the DS theories for $L=2$

Let's focus only on the scaling dimension of the twist-2 operator $\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)\right]$
$\Delta_{1}=2-i \sqrt{\xi_{-}^{2}}\left[2-\left(\xi_{-}^{2}-6 \xi_{23}^{2} \zeta_{3}\right)+\frac{1}{4}\left(7 \xi_{-}^{4}-12 \xi_{23}^{2} \xi_{-}^{2}\left(3 \zeta_{3}+5 \zeta_{5}\right)+108 \xi_{23}^{4} \zeta_{3}^{2}\right) \cdots\right]$
where $\xi_{-}=\xi_{2}^{2}-\xi_{3}^{2}$, and $\xi_{23}=\xi_{2} \xi_{3}$
It's the scaling dimension of the 2-scalar theory with $\xi^{2} \rightarrow \xi_{-}^{2}$

The spectrum of the other two operators with $\mathrm{i}=2,3$ can be written in terms of Δ_{1}

$$
\Delta_{2}=\Delta_{1}\left(\xi_{2} \rightarrow \xi_{1}, \xi_{3}\right) \quad \text { and } \quad \Delta_{3}=\Delta_{1}\left(\xi_{2}, \xi_{3} \rightarrow \xi_{1}\right)
$$

Spectrum of the DS sub-theories? $\quad(i, j, k=1,2,3)$

- $\xi_{i} \rightarrow 0$
$\longrightarrow \Delta_{i}, \Delta_{j \neq i}=\Delta^{2 \text {-scalar }}$
- $\xi_{i}, \xi_{j \neq i} \rightarrow 0$
$\longrightarrow \Delta_{k \neq i, j}=2, \Delta_{i}=\Delta_{j}=\Delta^{2 \text {-scalar }}$
- $\xi_{1}=\xi_{2}=\xi_{3}=\xi \longrightarrow \Delta_{i}=2 \quad$ in agreement with $\quad \begin{gathered}\text { [J.Foken, C.Sieg, } \\ \text { M.Wilhelm '14] }\end{gathered}$

Spectrum of the DS theories for $L=2$

The general DS theory has a second non-protected operator, then we want to study also

$$
G^{\prime}=\left\langle\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{2}^{\dagger}\left(x_{2}\right)\right] \operatorname{Tr}\left[\phi_{1}^{\dagger}\left(x_{3}\right) \phi_{2}\left(x_{4}\right)\right]\right\rangle
$$

Spectrum of the DS theories for $L=2$

The general DS theory has a second non-protected operator, then we want to study also

$$
G^{\prime}=\left\langle\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{2}^{\dagger}\left(x_{2}\right)\right] \operatorname{Tr}\left[\phi_{1}^{\dagger}\left(x_{3}\right) \phi_{2}\left(x_{4}\right)\right]\right\rangle
$$

Spectrum of the DS theories for $L=2$

The general DS theory has a second non-protected operator, then we want to study also

Spectrum of the DS theories for $\mathrm{L}=2$

The general DS theory has a second non-protected operator, then we want to study also

$$
G^{\prime}=\int \frac{d^{4} x_{1^{\prime}} d^{4} x_{2^{\prime}}}{x_{31^{\prime}}^{2} x_{42^{\prime}}^{2}}\left\langle x_{1}, x_{2}\right| \frac{1}{1-\alpha_{12}^{2} \mathcal{V}-\xi_{1}^{2} \xi_{2}^{2} \mathcal{H}-\xi_{1} \xi_{2} \xi_{3}^{2} \hat{\mathcal{H}}\left(\sum_{n=0}^{\infty} \xi_{1}^{n} \xi_{2}^{n} \mathcal{H}_{b}^{n}\right) \tilde{\mathcal{H}}}\left|x_{1}^{\prime}, x_{2}^{\prime}\right\rangle
$$

Spectrum of the DS theories for $\mathrm{L}=2$

The general DS theory has a second non-protected operator, then we want to study also

Spectrum of the DS theories for $L=2$

The general DS theory has a second non-protected operator, then we want to study also

The combination of all the fermionic Hamiltonian commutes with the bosonic spin-chain

Spectrum of the DS theories for $L=2$

The spectral equation reads $h^{-1}+\frac{\xi_{1} \xi_{2} \xi_{3}^{2}}{h_{b}^{-1}-\xi_{1} \xi_{2}}=\xi_{1}^{2} \xi_{2}^{2}$
Let's focus only on the scaling dimension of the twist-2 operator $\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{2}^{\dagger}\left(x_{2}\right)\right]$

$$
\Delta_{12}=2-2 i \sqrt{\xi_{12}\left(\xi_{12}+\xi_{3}^{2}\right)}-\frac{i \xi_{12}^{2} \xi_{3}^{2}}{\sqrt{\xi_{12}\left(\xi_{12}+\xi_{3}^{2}\right)}}+\frac{i}{4}\left(\frac{\xi_{12}}{\xi_{12}+\xi_{3}^{2}}\right)^{3 / 2}\left(4 \xi_{12}^{3}+12 \xi_{12}^{2} \xi_{3}^{2}+17 \xi_{12} \xi_{3}^{4}+8 \xi_{3}^{6}\right)+\ldots
$$

Spectrum of the DS theories for $\mathrm{L}=2$

The spectral equation reads $h^{-1}+\frac{\xi_{1} \xi_{2} \xi_{3}^{2}}{h_{b}^{-1}-\xi_{1} \xi_{2}}=\xi_{1}^{2} \xi_{2}^{2}$
Let's focus only on the scaling dimension of the twist-2 operator $\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{2}^{\dagger}\left(x_{2}\right)\right]$

$$
\Delta_{12}=2-2 i \sqrt{\xi_{12}\left(\xi_{12}+\xi_{3}^{2}\right)}-\frac{i \xi_{12}^{2} \xi_{3}^{2}}{\sqrt{\xi_{12}\left(\xi_{12}+\xi_{3}^{2}\right)}}+\frac{i}{4}\left(\frac{\xi_{12}}{\xi_{12}+\xi_{3}^{2}}\right)^{3 / 2}\left(4 \xi_{12}^{3}+12 \xi_{12}^{2} \xi_{3}^{2}+17 \xi_{12} \xi_{3}^{4}+8 \xi_{3}^{6}\right)+\ldots
$$

The spectrum of the other two operators can be written in terms of Δ_{12}

$$
\Delta_{23}=\Delta_{12}\left(\xi_{12} \rightarrow \xi_{23}, \xi_{3} \rightarrow \xi_{1}\right) \text { and } \Delta_{31}=\Delta_{12}\left(\xi_{12} \rightarrow \xi_{31}, \xi_{3} \rightarrow \xi_{2}\right)
$$

Spectrum of the DS theories for $\mathrm{L}=2$

The spectral equation reads $h^{-1}+\frac{\xi_{1} \xi_{2} \xi_{3}^{2}}{h_{b}^{-1}-\xi_{1} \xi_{2}}=\xi_{1}^{2} \xi_{2}^{2}$
Let's focus only on the scaling dimension of the twist-2 operator $\operatorname{Tr}\left[\phi_{1}\left(x_{1}\right) \phi_{2}^{\dagger}\left(x_{2}\right)\right]$

$$
\Delta_{12}=2-2 i \sqrt{\xi_{12}\left(\xi_{12}+\xi_{3}^{2}\right)}-\frac{i \xi_{1}^{2} \xi_{3}^{2}}{\sqrt{\xi_{12}\left(\xi_{12}+\xi_{3}^{2}\right)}}+\frac{i}{4}\left(\frac{\xi_{12}}{\xi_{12}+\xi_{3}^{2}}\right)^{3 / 2}\left(4 \xi_{12}^{3}+12 \xi_{12}^{2} \xi_{3}^{2}+17 \xi_{12} \xi_{3}^{4}+8 \xi_{3}^{6}\right)+\ldots
$$

The spectrum of the other two operators can be written in terms of Δ_{12}

$$
\Delta_{23}=\Delta_{12}\left(\xi_{12} \rightarrow \xi_{23}, \xi_{3} \rightarrow \xi_{1}\right) \text { and } \Delta_{31}=\Delta_{12}\left(\xi_{12} \rightarrow \xi_{31}, \xi_{3} \rightarrow \xi_{2}\right)
$$

Spectrum of the DS sub-theories? $(i, j, k, l=1,2,3)$

- $\xi_{i} \rightarrow 0$

$$
\longrightarrow \Delta_{j k}= \begin{cases}\Delta^{2-\mathrm{scalar}}\left(\xi^{2} \rightarrow \xi_{j k}\right) & j \neq k \neq i \\ 2 & j=i \text { or } k=i\end{cases}
$$

- $\xi_{i}, \xi_{j \neq i} \rightarrow 0 \quad \longrightarrow \Delta_{k l}=2$
- $\xi_{1}=\xi_{2}=\xi_{3}=\xi \longrightarrow \Delta_{i j}=2-2 i \sqrt{2} \xi^{2}-\frac{i \xi^{4}}{\sqrt{2}}+\frac{41 i \xi^{6}}{8 \sqrt{2}}+\ldots$

Final Remarks

We have computed the scaling dimension of operator for $L=2$ for the family of DS theories

The next steps are [Work in progress...]

- Check of the spectrum with the QSC
- Check with direct computations of the diagrams
- Computation of the β - function and critical points at higher order

Biggest future goal: solve QSC (numerics) for the general deformed theory

Final Remarks

We have computed the scaling dimension of operator for $L=2$ for the family of DS theories

The next steps are [Work in progress...]

- Check of the spectrum with the QSC
- Check with direct computations of the diagrams
- Computation of the β - function and critical points at higher order

Biggest future goal: solve QSC (numerics) for the general deformed theory

THANK YOU

