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• Is it possible to compute the spectrum of the most general DS theory in both ways?

Fermionic fishnet!!
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Expanding      on this basis of states, it will depend only on        the eigenvalue of     . 

Taking the residue at                   , we can compute the OPE coefficients! 

HG h
h�1 = ⇠4
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where black dots are integrated. Solving it with the “star-triangle” relations we have
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Spectrum of the DS theories for L=2
Let’s focus only on the scaling dimension of the twist-2 operator 
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Spectrum of the DS sub-theories?

•                                      

•                        

•                                ⇠1 = ⇠2 = ⇠3 = ⇠

⇠i ! 0

(i, j, k = 1, 2, 3)

�i , �j 6=i = �2-scalar

⇠i, ⇠j 6=i ! 0

�i = 2 in agreement with [J.Fokken, C.Sieg, 
M.Wilhelm ’14]

�k 6=i,j = 2 , �i = �j = �2-scalar
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3Ĥ (

P1
n=0 ⇠

n
1 ⇠

n
2Hn

b ) H̃
|x0

1, x
0
2i

The combination of all the fermionic Hamiltonian commutes with the bosonic spin-chain

ĤHn
b H̃| {z }

Hf

= h̃ĤHn
b = hn

b h̃Ĥ = ĥhn
b h̃| {z }

hf
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Final Remarks
We have computed the scaling dimension of operator for L=2 for the family of DS theories

• Check of the spectrum with the QSC    

• Check with direct computations of the diagrams  

• Computation of the      - function and critical points at higher order

The next steps are

�

[Work in progress…]

Biggest future goal: solve QSC (numerics) for the general deformed theory 
[Work in progress…]
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