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Goal and Motivation

Partition function of D1/D7 brane system J

e Study Zy  for general N = #(D7) and k = #(D1);
Dim. reduction to D0/D6 (Zka) and D(-1)/D5 system (Z y );

Factorization properties of Zy , w.rt. N;

Free field realization of Zy.
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Brane Construction

@ Setup (type IIB string):

T2 (CS
@ Background B-field = 4 SUSY charge preserved;
e Study the dynamics of D1 branes = N = (2,2) GLSM on T2

Mutiplts

o U(k) vector V= (A,,\, X, D,0,5);
e 3 Adj chiral

N 46;2—@ e a k chiral @ in the N of flavour SU(N).

Interactions

W = tr B, [B,, Bs]
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Moduli Space
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[B;,Bj] =0, > B BlI+QQ' =7,

=1

(r is the Fayet-lliopulos parameter).
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Moduli Space

@ We set 0 = @ = 0 taking the Higgs branch;
@ This means that the D1 are in the world volume of the D7;
@ The ADHM-like equations are

3
[B;,Bj] =0, > B BlI+QQ' =7,
=1
(r is the Fayet-lliopulos parameter).
Study the Elliptic Genus of this moduli space J
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Elliptic Genus

The quantity we want to compute is:
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Elliptic Genus

The quantity we want to compute is:

ZN,k(E’ g) — trRR(_l)F€727T(TQH+Tl P)e27ri£aFa e2mi€eR; ’

Generators

o F_ are the generators of flavour group;
@ R, , 3 are the generators of three rotations U(1)* C SO(6) of c?;

o ¢, are the fugacities of flavour group;
@ € 5 3 are the fugacities of Ry , 5.
Effect in Path Integral computation

Turn on a flat background gauge field A(F)

= [4D -7 A0
t s
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Given the quantum numbers of various multiplets

Q B, By, B; |fugacity
U(k) k Adj Adj Adj| e
SUIN) | N 0 0 0 | e
U1, [0 1 0 0 | e2ma
U, |0 0 1 0 | e?me
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Supersymmetric Localization

Path Integral = Finite Dimensional Integral )

Given the quantum numbers of various multiplets

Q B, By, B; |fugacity
U(k) k Adj Adj Adj| e
SUIN) | N 0 0 0 | e
U1, [0 1 0 0 | e2ma
U, |0 0 1 0 | e?me
Uly |0 0 0 1 | e?ries

there is a recipe [Benini-Eager-Hori-Tachikawa] to get

—

1
Zn 1 (€,€) = -5 [du; ... duyRational function of Jacobi 0, (7|fugacities)

k!

JK—contour
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Computation of Z ,

Anomalies
° Oy(Tlu+a+br) = <_1>a+be—2ﬂibue—iﬂ'b2‘r01<T|u> for a,b € Z:
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Computation of Z ,

o 0,(r|u+ a+ br) = (—1)¥tbe2mibug=int*rg (r|y) for a,b € Z;
o The integrand is defined on (T?)®" iff ¢ = ¢; + €5 + €3 € Z/N;
@ This is anomaly cancellation condition!

Jeffery—Kirwan Contour

@ The integrand has several k-uple poles;
@ Summing over all poles of a Riemann surface we get 0;

o Jeffery—Kirwan prescription tell us which pole we have to consider.

v

Pole of the integrand JK allowed < N Colored Plane Partition of kJ
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o A Plane Partition (PP) of k is an arrangement of k£ 3d boxes
generalizing Young Tableau:

€3 €3 €3
€ €2 € €2 € €2

Elliptic non-abelian DT invariants of C*



(Colored) Plane Partition

o A Plane Partition (PP) of k is an arrangement of k£ 3d boxes
generalizing Young Tableau:

B

@ The generating functlon of PP is the McMahon function:

®(v) = PE, ﬁ —1+v+3v + 603 + 1324 + ..
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(Colored) Plane Partition

o A Plane Partition (PP) of k is an arrangement of k£ 3d boxes
generalizing Young Tableau:

s

@ The generating functlon of PP is the McMahon function:

v

@ An N Colored Plane Partition (CPP) of k is a collection of N PP of
k; such that ° &, =k ;
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(Colored) Plane Partition

o A Plane Partition (PP) of k is an arrangement of k£ 3d boxes
generalizing Young Tableau:

s

@ The generating functlon of PP is the McMahon function:

v

@ An N Colored Plane Partition (CPP) of k is a collection of N PP of
k; such that ° &, =k ;
@ The generating function of CPP is ®(v)V
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Result for Z

We have for € = & with n € Z that
ZN (€,€) Z Residues at pole correspondlng to N CPP of k

d(n,N .
_ (— )nk(I)(gCg(g( ))) if ng - Ik
0 otherwise

(<I>§,L> is the ¢g*" term of the expansion of ®(v)%.)
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Comments
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Result for Z

We have for € = & with n € Z that
ZN (€,€) Z Residues at pole correspondlng to N CPP of k
kg gcd(n,N)) .
— ( )n @ gCgccrll(n N) if ng n,N) ’k
0 otherwise

(<I>§,L> is the ¢g*" term of the expansion of ®(v)%.)

Comments

@ The result is a number!

@ many cancellations take places;

@ The expression can be resummed against a “instanton” parameter

= y \qEed(nN)
v) =Y Zytt = |@ ((~1)rNomEtnm ) |
k=0

@ Interpretation on terms of F theory.
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Dimensional reduction to D0/D6

Study the refined Witten index Z\,’k of V=4 GQM on S! J

@ This time we have no anomaly = all values of ¢ are allowed!

@ Same computation with replacement 6; — sin;
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Dimensional reduction to D0/D6

Study the refined Witten index Z\,’k of V=4 GQM on S! J

@ This time we have no anomaly = all values of ¢ are allowed!
@ Same computation with replacement 6; — sin;

@ The result can be written in a compact form resumming it as before
~ a— oo ~ N . .
Zy(€&v) =2, ZNJC({,e)vk, it is

~ 1— 1
Zn(€v) =PE, ;| — ( 1p1p2)( 1 p1p3)£ P2ps) X
(I =p)(1 = py)(1 —p3)
_~n1 —PN v
Xp 2 N N
I—=p (1—wvp2)1—wp2)
(p; = e*™u and p = 2™°).
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Comments about ZN

7 (2o = pE .| — L= P1Pa)(L = p1ps)(L — pyps)
s >‘PE”’P[ G-p)(—p)(—ps)
_ﬁl—PN v
P <1—vp’¥><1—vp’¥>]

@ Highly non trivial: no dependence on E;
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Comments about ZN

(L =p1po)(L — pyp3)(1 — pop3)
oP (1 =p1)(L—py)(1 —py)

Highly non trivial: no dependence on E;

The case N =1 was known [Nekrasov];

Non trivial dependence on N;

Lift to M-theory: Taub-NT 5 x C? fibered on St
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Comments about ZN

(L =p1po)(L — pyp3)(1 — pop3)
oP (1 =p1)(L—py)(1 —py)

Highly non trivial: no dependence on E;

The case N =1 was known [Nekrasov];

Non trivial dependence on N;

Lift to M-theory: Taub-NT 5 x C? fibered on St

Computation of 11d-SUGRA index in the {2-background gives exactly
the argument of PE.
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Further reduction: D(-1)/D5

Study the equivariant volume Z, ; SUSY Matrix Model J

@ Sanity check: result already known (computed in a different way!);
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Further reduction: D(-1)/D5

Study the equivariant volume Z, ; SUSY Matrix Model J

@ Sanity check: result already known (computed in a different way!);
@ Same computation with replacement sin — Id;

@ The resummed result is

= = = _ N leatea)legteg)leates)

Zy(E&v) =) 2N (& €) = [2(v)] A ;

Elliptic non-abelian DT invariants of C*



Further reduction: D(-1)/D5

Study the equivariant volume Z, ; SUSY Matrix Model J

@ Sanity check: result already known (computed in a different way!);
@ Same computation with replacement sin — Id;

@ The resummed result is
= N 2 _ N leatea)legteg)leates)

Zy(E&v) =) 2N (& €) = [2(v)] A ;
k=0

e This is an example of trivial factorization [Nekrasov].
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Free field realization of 7

The propagator of free a free boson on torus is

where
2

0,(T|u — w)
2’ (7)

Glu,a;w,@) = e P00
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Free field realization of 7,

The propagator of free a free boson on torus is

(¢(u, u)p(w, w)) ., = log Gu, u;w, w) ,

where

@ It contains Jacobi 6, function;
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Free field realization of 7,

The propagator of free a free boson on torus is

(¢(u, u)p(w, w)) ., = log Gu, u;w, w) ,

where
2

0,(T|u — w)
2’ (7)

@ It contains Jacobi 6, function;

o Differently from the planar case, it is not a sum of a holomorphic and
anti-holomorphic part because of the J2.
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Multi-local Vertex Operator

Consider the following vertex operator

7
Vg(U) — H cehi®i(ugs) o p—Nidi(uy) ,
=1
Uy U,y |with
1
— €3 — €
L ! Uyg =UL 5, Uy =Ux 35,
+32--"" " o ” _u:l:el—i-ez ” _U:I:m
U_q & 6 U5 = T2 Yy T 2
4
— cotes .
: u U, q U7 = u+ 3
1
U_6 T U_3
: and
,5,)———-—- U_o )\:(1717171aiaivi)‘
//
7/
U_n U_g
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Source (“Hamiltonian”) operator

Let us consider the following operator:
1
H = py P 9, (u)w(w)dw ,

where the contour I' is around u = 0 and encloses all u_,;, and

w(w) = — ilogGl <T"w +&, — %)
a=1
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Due to some simplification it happens that
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Due to some simplification it happens that

o (:Vi(u):Ve(w):) = |(: Ve(u Vg(w):>hol.|

Elliptic non-abelian DT invariants of C*



Due to some simplification it happens that

o (:Vi(u):Ve(w):) = |(: Ve(u Vg(w):>hol.|

o (e :V.(u):) is a holomorphic function of w.
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Due to some simplification it happens that
o (Ve(u) s Ve(w)s) = |(:Ve(w) : Ve(w) ) |
o (e :V.(u):) is a holomorphic function of w.

Combining these results it is possible to recover

Zy(v) = <6He”f’%l< Vg(“)d“>h .
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Due to some simplification it happens that
o (Ve(u) s Ve(w)s) = |(:Ve(w) : Ve(w) ) |
o (e :V.(u):) is a holomorphic function of w.

Combining these results it is possible to recover

Zy(v) = <6He”f’%l< Vg(“)d“>h .

It can be a starting point for a generalization of Hirota Bilinear Equations.
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Conclusion and Perspective

What we did

o We computed Zy ;. as well as iN’k and 7N’k using JK technique;
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Conclusion and Perspective

What we did

o We computed Zy ;. as well as ?N’k and 7N7k using JK technique;

@ We explored the factorization properties of the above quantitis
@ We extendend Nekrasov's PE ansatz;

o We gave a free field realization of Zy.

v

What is still to do

@ Following the same program for threefold with more complex
topology (i.e. the conifold);

\

Elliptic non-abelian DT invariants of C*



Conclusion and Perspective

What we did

o We computed Zy ;. as well as ?N’k and 7N7k using JK technique;

@ We explored the factorization properties of the above quantitis
@ We extendend Nekrasov's PE ansatz;

o We gave a free field realization of Zy.

v
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Conclusion and Perspective

What we did

o We computed Zy ;. as well as §N7k and 7N7k using JK technique;
@ We explored the factorization properties of the above quantitis
@ We extendend Nekrasov's PE ansatz;

o We gave a free field realization of Zy.

v

What is still to do

@ Following the same program for threefold with more complex
topology (i.e. the conifold);

@ Explore the DO/D8 case [Nekrasov: “Magnificent four"];

@ Understand the possible link between the free field realization point of
view and integrable hierarchies.

v
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Thank you for your attention!




