Elliptic non-abelian DT invariants of \mathbb{C}^3

New Frontiers in Theoretical Physics, Cortona 2018 23rd May 2018

Matteo Poggi

Collaborators: F. Benini, G. Bonelli and A. Tanzini

• Study $Z_{N,k}$ for general N = #(D7) and k = #(D1);

- Study $Z_{N,k}$ for general N = #(D7) and k = #(D1);
- Dim. reduction to D0/D6 ($\widetilde{Z}_{N,k}$) and D(-1)/D5 system ($\overline{Z}_{N,k}$);

- Study $Z_{N,k}$ for general N = #(D7) and k = #(D1);
- Dim. reduction to D0/D6 ($\widetilde{Z}_{N,k}$) and D(-1)/D5 system ($\overline{Z}_{N,k}$);
- Factorization properties of $Z_{N,k}$ w.r.t. N;

- Study $Z_{N,k}$ for general N = #(D7) and k = #(D1);
- Dim. reduction to D0/D6 ($\widetilde{Z}_{N,k}$) and D(-1)/D5 system ($\overline{Z}_{N,k}$);
- Factorization properties of $Z_{N,k}$ w.r.t. N;
- Free field realization of Z_N .

• Setup (type IIB string):

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
D1	_	_	•	•	•	•	•	•	•	•
D7	—	_	_	_	_	_	_	_	٠	•
T^2			J							

• Setup (type IIB string):

• Background *B*-field \Rightarrow 4 SUSY charge preserved;

• Setup (type IIB string):

• Background *B*-field \Rightarrow 4 SUSY charge preserved;

• Study the dynamics of D1 branes $\Rightarrow \mathcal{N} = (2,2)$ GLSM on T^2 :

• Setup (type IIB string):

• Background *B*-field \Rightarrow 4 SUSY charge preserved;

• Study the dynamics of D1 branes $\Rightarrow \mathcal{N} = (2,2)$ GLSM on T^2 :

Multiplets

- U(k) vector $\mathcal{V} \simeq (A_{\mu}, \lambda, \overline{\lambda}, D, \sigma, \overline{\sigma})$;
- 3 Adj chiral $B_{1,2,3} \simeq (\phi, \psi, F)$;

• Setup (type IIB string):

• Background *B*-field \Rightarrow 4 SUSY charge preserved;

• Study the dynamics of D1 branes $\Rightarrow \mathcal{N} = (2,2)$ GLSM on T^2 :

Multiplets

- U(k) vector $\mathcal{V} \simeq (A_{\mu}, \lambda, \overline{\lambda}, D, \sigma, \overline{\sigma})$;
- 3 Adj chiral $B_{1,2,3} \simeq (\phi, \psi, F)$;
- a ${\bf k}$ chiral ${\boldsymbol Q}$ in the ${\bf N}$ of flavour ${\rm SU}(N).$

• Setup (type IIB string):

• Background *B*-field \Rightarrow 4 SUSY charge preserved;

• Study the dynamics of D1 branes $\Rightarrow \mathcal{N} = (2,2)$ GLSM on T^2 :

Elliptic non-abelian DT invariants of \mathbb{C}^3

• We set $\sigma = \overline{\sigma} = 0$ taking the Higgs branch;

- We set $\sigma = \overline{\sigma} = 0$ taking the Higgs branch;
- This means that the D1 are in the world volume of the D7;

- We set $\sigma = \overline{\sigma} = 0$ taking the Higgs branch;
- This means that the D1 are in the world volume of the D7;
- The ADHM-like equations are

$$[B_i,B_j] = 0 \;, \qquad \qquad \sum_{i=1}^3 [B_i,B_i^\dagger] + Q Q^\dagger = r \;,$$

~

(r is the Fayet-Iliopulos parameter).

- We set $\sigma = \overline{\sigma} = 0$ taking the Higgs branch;
- This means that the D1 are in the world volume of the D7;
- The ADHM-like equations are

$$[B_i,B_j] = 0 \;, \qquad \qquad \sum_{i=1}^3 [B_i,B_i^\dagger] + Q Q^\dagger = r \;,$$

(r is the Fayet-Iliopulos parameter).

Study the Elliptic Genus of this moduli space

The quantity we want to compute is:

$$Z_{N,k}(\vec{\xi},\vec{\epsilon}) = \mathrm{tr}_{\mathrm{RR}}(-1)^F e^{-2\pi(\tau_2\mathsf{H}+\tau_1\mathsf{P})} e^{2\pi\mathrm{i}\xi_\alpha\mathsf{F}_\alpha} e^{2\pi\mathrm{i}\epsilon_i\mathsf{R}_i} \;,$$

The quantity we want to compute is:

$$Z_{N,k}(\vec{\xi},\vec{\epsilon}) = \mathrm{tr}_{\mathrm{RR}}(-1)^F e^{-2\pi(\tau_2\mathsf{H}+\tau_1\mathsf{P})} e^{2\pi\mathrm{i}\xi_\alpha\mathsf{F}_\alpha} e^{2\pi\mathrm{i}\epsilon_i\mathsf{R}_i} \ ,$$

Generators

• F_{α} are the generators of flavour group;

The quantity we want to compute is:

$$Z_{N,k}(\vec{\xi},\vec{\epsilon}) = \mathrm{tr}_{\mathrm{RR}}(-1)^F e^{-2\pi(\tau_2\mathsf{H}+\tau_1\mathsf{P})} e^{2\pi\mathrm{i}\xi_\alpha\mathsf{F}_\alpha} e^{2\pi\mathrm{i}\epsilon_i\mathsf{R}_i} \ ,$$

Generators

- F_{α} are the generators of flavour group;
- $\mathsf{R}_{1,2,3}$ are the generators of three rotations $\mathrm{U}(1)^3 \subset \mathrm{SO}(6)$ of \mathbb{C}^3 ;

The quantity we want to compute is:

$$Z_{N,k}(\vec{\xi},\vec{\epsilon}) = \mathrm{tr}_{\mathrm{RR}}(-1)^F e^{-2\pi(\tau_2\mathsf{H}+\tau_1\mathsf{P})} e^{2\pi\mathrm{i}\xi_\alpha\mathsf{F}_\alpha} e^{2\pi\mathrm{i}\epsilon_i\mathsf{R}_i} \ ,$$

Generators

- F_{α} are the generators of flavour group;
- $\mathsf{R}_{1,2,3}$ are the generators of three rotations $\mathrm{U}(1)^3 \subset \mathrm{SO}(6)$ of \mathbb{C}^3 ;

"Fugacities"

• ξ_{α} are the fugacities of flavour group;

The quantity we want to compute is:

$$Z_{N,k}(\vec{\xi},\vec{\epsilon}) = \mathrm{tr}_{\mathrm{RR}}(-1)^F e^{-2\pi(\tau_2\mathsf{H}+\tau_1\mathsf{P})} e^{2\pi\mathrm{i}\xi_\alpha\mathsf{F}_\alpha} e^{2\pi\mathrm{i}\epsilon_i\mathsf{R}_i} \ ,$$

Generators

- F_{α} are the generators of flavour group;
- $\mathsf{R}_{1,2,3}$ are the generators of three rotations $\mathrm{U}(1)^3 \subset \mathrm{SO}(6)$ of \mathbb{C}^3 ;

"Fugacities"

- ξ_{α} are the fugacities of flavour group;
- $\epsilon_{1,2,3}$ are the fugacities of $R_{1,2,3}$.

The quantity we want to compute is:

$$Z_{N,k}(\vec{\xi},\vec{\epsilon}) = \mathrm{tr}_{\mathrm{RR}}(-1)^F e^{-2\pi(\tau_2\mathsf{H}+\tau_1\mathsf{P})} e^{2\pi\mathrm{i}\xi_\alpha\mathsf{F}_\alpha} e^{2\pi\mathrm{i}\epsilon_i\mathsf{R}_i} \ ,$$

Generators

- F_{α} are the generators of flavour group;
- $\mathsf{R}_{1,2,3}$ are the generators of three rotations $\mathrm{U}(1)^3 \subset \mathrm{SO}(6)$ of \mathbb{C}^3 ;

"Fugacities"

- ξ_{α} are the fugacities of flavour group;
- $\epsilon_{1,2,3}$ are the fugacities of $R_{1,2,3}$.

Effect in Path Integral computation

Turn on a flat background gauge field $A^{(\mathsf{F})}$

$$\xi_{\alpha} = \int_{t} A_{\alpha}^{(\mathrm{F})} - \tau \int_{s} A_{\alpha}^{(\mathrm{F})}$$

Supersymmetric Localization

Path Integral \Rightarrow Finite Dimensional Integral

Path Integral \Rightarrow Finite Dimensional Integral

Given the quantum numbers of various multiplets

	Q	B_1	B_2	B_3	fugacity
$\mathrm{U}(k)$	k	\mathbf{Adj}	\mathbf{Adj}	\mathbf{Adj}	$e^{2\pi i u_l}$
$\mathrm{SU}(N)$	Ν	0	0	0	$e^{2\pi i \xi_{\alpha}}$
$U(1)_{1}$	0	1	0	0	$e^{2\pi i\epsilon_1}$
$U(1)_{2}$	0	0	1	0	$e^{2\pi i\epsilon_2}$
$U(1)_{3}$	0	0	0	1	$e^{2\pi i\epsilon_3}$

Path Integral \Rightarrow Finite Dimensional Integral

Given the quantum numbers of various multiplets

	Q	B_1	B_2	B_3	fugacity
$\mathrm{U}(k)$	k	Adj	\mathbf{Adj}	\mathbf{Adj}	$e^{2\pi i u_l}$
$\mathrm{SU}(N)$	Ν	0	0	0	$e^{2\pi i \xi_{\alpha}} \\ e^{2\pi i \epsilon_1}$
$U(1)_{1}$	0	1	0	0	$e^{2\pi i\epsilon_1}$
$U(1)_{2}$	0	0	1	0	$e^{2\pi i\epsilon_2}$
$U(1)_3$	0	0	0	1	$e^{2\pi i\epsilon_3}$

there is a recipe [Benini-Eager-Hori-Tachikawa] to get

 $Z_{N,k}(\vec{\xi},\vec{\epsilon}) = \frac{1}{k!} \int_{\rm JK-contour} {\rm d} u_k {\rm Rational\ function\ of\ Jacobi\ } \theta_1(\tau | {\rm fugacities})$

Anomalies

•
$$\theta_1(\tau|u+a+b\tau) = (-1)^{a+b}e^{-2\pi \mathrm{i} b u}e^{-\mathrm{i} \pi b^2 \tau}\theta_1(\tau|u)$$
 for $a,b\in\mathbb{Z}$;

Anomalies

- $\bullet \ \theta_1(\tau|u+a+b\tau)=(-1)^{a+b}e^{-2\pi \mathrm{i} b u}e^{-\mathrm{i} \pi b^2 \tau}\theta_1(\tau|u) \ \text{for} \ a,b\in\mathbb{Z};$
- The integrand is defined on $(T^2)^{\otimes k}$ iff $\epsilon \equiv \epsilon_1 + \epsilon_2 + \epsilon_3 \in \mathbb{Z}/N$;

Anomalies

- $\bullet \ \theta_1(\tau|u+a+b\tau)=(-1)^{a+b}e^{-2\pi\mathrm{i}bu}e^{-\mathrm{i}\pi b^2\tau}\theta_1(\tau|u) \ \text{for} \ a,b\in\mathbb{Z};$
- The integrand is defined on $(T^2)^{\otimes k}$ iff $\epsilon \equiv \epsilon_1 + \epsilon_2 + \epsilon_3 \in \mathbb{Z}/N$;
- This is anomaly cancellation condition!

Anomalies

- $\bullet \ \theta_1(\tau|u+a+b\tau)=(-1)^{a+b}e^{-2\pi\mathrm{i}bu}e^{-\mathrm{i}\pi b^2\tau}\theta_1(\tau|u) \ \text{for} \ a,b\in\mathbb{Z};$
- The integrand is defined on $(T^2)^{\otimes k}$ iff $\epsilon \equiv \epsilon_1 + \epsilon_2 + \epsilon_3 \in \mathbb{Z}/N$;
- This is anomaly cancellation condition!

Jeffery-Kirwan Contour

• The integrand has several k-uple poles;

Anomalies

- $\bullet \ \theta_1(\tau|u+a+b\tau)=(-1)^{a+b}e^{-2\pi\mathrm{i}bu}e^{-\mathrm{i}\pi b^2\tau}\theta_1(\tau|u) \ \text{for} \ a,b\in\mathbb{Z};$
- The integrand is defined on $(T^2)^{\otimes k}$ iff $\epsilon \equiv \epsilon_1 + \epsilon_2 + \epsilon_3 \in \mathbb{Z}/N$;
- This is anomaly cancellation condition!

Jeffery-Kirwan Contour

- The integrand has several k-uple poles;
- Summing over all poles of a Riemann surface we get 0;

Anomalies

- $\bullet \ \theta_1(\tau|u+a+b\tau)=(-1)^{a+b}e^{-2\pi\mathrm{i}bu}e^{-\mathrm{i}\pi b^2\tau}\theta_1(\tau|u) \ \text{for} \ a,b\in\mathbb{Z};$
- The integrand is defined on $(T^2)^{\otimes k}$ iff $\epsilon \equiv \epsilon_1 + \epsilon_2 + \epsilon_3 \in \mathbb{Z}/N$;
- This is anomaly cancellation condition!

Jeffery-Kirwan Contour

- The integrand has several k-uple poles;
- Summing over all poles of a Riemann surface we get 0;
- Jeffery-Kirwan prescription tell us which pole we have to consider.

Anomalies

- $\bullet \ \theta_1(\tau|u+a+b\tau)=(-1)^{a+b}e^{-2\pi \mathrm{i} b u}e^{-\mathrm{i} \pi b^2 \tau}\theta_1(\tau|u) \ \text{for} \ a,b\in\mathbb{Z};$
- The integrand is defined on $(T^2)^{\otimes k}$ iff $\epsilon \equiv \epsilon_1 + \epsilon_2 + \epsilon_3 \in \mathbb{Z}/N$;
- This is anomaly cancellation condition!

Jeffery-Kirwan Contour

- The integrand has several k-uple poles;
- Summing over all poles of a Riemann surface we get 0;
- Jeffery-Kirwan prescription tell us which pole we have to consider.

Pole of the integrand JK allowed $\Leftrightarrow N$ Colored Plane Partition of k

(Colored) Plane Partition

• A *Plane Partition* (PP) of k is an arrangement of k 3d boxes generalizing Young Tableau:

• The generating function of PP is the McMahon function:

$$\Phi(v) \equiv \mathrm{PE}_v \left\lfloor \frac{v}{(1-v)^2} \right\rfloor = 1 + v + 3v^2 + 6v^3 + 13x^4 + \dots$$

(Colored) Plane Partition

• A *Plane Partition* (PP) of k is an arrangement of k 3d boxes generalizing Young Tableau:

• The generating function of PP is the McMahon function: $\Phi(v) \equiv {\rm PE}_v \left[\frac{v}{(1-v)^2} \right] = 1+v+3v^2+6v^3+13x^4+\dots$

• An N Colored Plane Partition (CPP) of k is a collection of N PP of k_i such that $\sum_{i=1}^N k_i = k$;

(Colored) Plane Partition

• A *Plane Partition* (PP) of k is an arrangement of k 3d boxes generalizing Young Tableau:

• The generating function of PP is the McMahon function: $\Phi(v) \equiv {\rm PE}_v \left[\frac{v}{(1-v)^2} \right] = 1 + v + 3v^2 + 6v^3 + 13x^4 + \dots$

- An N Colored Plane Partition (CPP) of k is a collection of N PP of k_i such that $\sum_{i=1}^N k_i = k$;
- The generating function of CPP is $\Phi(v)^N$.

We have for $\epsilon = \frac{n}{N}$ with $n \in \mathbb{Z}$ that $Z_{N,k}(\vec{\xi}, \vec{\epsilon}) = \sum \text{Residues at pole corresponding to } N \text{ CPP of } k$ $= \begin{cases} (-1)^{nk} \Phi_{\frac{k}{N} \gcd(n,N)}^{(\gcd(n,N))} & \text{if } \frac{N}{\gcd(n,N)} | k \\ 0 & \text{otherwise} \end{cases}$

 $(\Phi_g^{(L)}$ is the g^{th} term of the expansion of $\Phi(v)^L$.)

We have for $\epsilon = \frac{n}{N}$ with $n \in \mathbb{Z}$ that $Z_{N,k}(\vec{\xi}, \vec{\epsilon}) = \sum \text{Residues at pole corresponding to } N \text{ CPP of } k$ $= \begin{cases} (-1)^{nk} \Phi_{\frac{k}{N} \gcd(n,N)}^{(\gcd(n,N))} & \text{if } \frac{N}{\gcd(n,N)} | k \\ 0 & \text{otherwise} \end{cases}$

 $(\Phi_g^{(L)}$ is the g^{th} term of the expansion of $\Phi(v)^L.$)

Comments

• The result is a number!

We have for $\epsilon = \frac{n}{N}$ with $n \in \mathbb{Z}$ that $Z_{N,k}(\vec{\xi}, \vec{\epsilon}) = \sum \text{Residues at pole corresponding to } N \text{ CPP of } k$ $= \begin{cases} (-1)^{nk} \Phi_{\frac{k}{N} \gcd(n,N)}^{(\gcd(n,N))} & \text{if } \frac{N}{\gcd(n,N)} | k \\ 0 & \text{otherwise} \end{cases}$

 $(\Phi_g^{(L)}$ is the g^{th} term of the expansion of $\Phi(v)^L.)$

Comments

- The result is a number!
- many cancellations take places;

We have for $\epsilon = \frac{n}{N}$ with $n \in \mathbb{Z}$ that $Z_{N,k}(\vec{\xi}, \vec{\epsilon}) = \sum \text{Residues at pole corresponding to } N \text{ CPP of } k$ $= \begin{cases} (-1)^{nk} \Phi_{\frac{k}{N} \gcd(n,N)}^{(\gcd(n,N))} & \text{if } \frac{N}{\gcd(n,N)} | k \\ 0 & \text{otherwise} \end{cases}$

 $(\Phi_g^{(L)}$ is the g^{th} term of the expansion of $\Phi(v)^L.)$

Comments

- The result is a number!
- many cancellations take places;
- The expression can be resummed against a "instanton" parameter

$$Z_N(v) = \sum_{k=0}^\infty Z_{N,k} v^k = \left[\Phi\left((-1)^{nN} v^{\frac{N}{\gcd(n,N)}} \right) \right]^{\gcd(n,N)}$$

We have for $\epsilon = \frac{n}{N}$ with $n \in \mathbb{Z}$ that $Z_{N,k}(\vec{\xi}, \vec{\epsilon}) = \sum \text{Residues at pole corresponding to } N \text{ CPP of } k$ $= \begin{cases} (-1)^{nk} \Phi_{\frac{k}{N} \gcd(n,N)}^{(\gcd(n,N))} & \text{if } \frac{N}{\gcd(n,N)} | k \\ 0 & \text{otherwise} \end{cases}$

 $(\Phi_g^{(L)}$ is the g^{th} term of the expansion of $\Phi(v)^L.)$

Comments

- The result is a number!
- many cancellations take places;
- The expression can be resummed against a "instanton" parameter

$$Z_N(v) = \sum_{k=0}^{\infty} Z_{N,k} v^k = \left[\Phi\left((-1)^{nN} v^{\frac{N}{\gcd(n,N)}} \right) \right]^{\gcd(n,N)}$$

• Interpretation on terms of F theory.

Study the refined Witten index $\widetilde{Z}_{N,k}$ of $\mathcal{N}\!=\!4$ GQM on S^1

Study the refined Witten index $\widetilde{Z}_{N,k}$ of $\mathcal{N}\!=\!4$ GQM on S^1

• This time we have *no* anomaly \Rightarrow all values of ϵ are allowed!

Study the refined Witten index $\widetilde{Z}_{N,k}$ of $\mathcal{N} = 4$ GQM on S^1

- This time we have *no* anomaly \Rightarrow all values of ϵ are allowed!
- Same computation with replacement $\theta_1 \mapsto \sin$;

Study the refined Witten index $\widetilde{Z}_{N,k}$ of $\mathcal{N} = 4$ GQM on S^1

- This time we have *no* anomaly \Rightarrow all values of ϵ are allowed!
- Same computation with replacement $\theta_1 \mapsto \sin$;
- The result can be written in a compact form resumming it as before $\widetilde{Z}_N(\vec{\xi},\vec{\epsilon};v) = \sum_{k=0}^\infty \widetilde{Z}_{N,k}(\vec{\xi},\vec{\epsilon})v^k$, it is

$$\begin{split} \widetilde{Z}_N(\vec{\epsilon};v) = \mathrm{PE}_{v,\vec{p}} \Bigg[&- \frac{(1-p_1p_2)(1-p_1p_3)(1-p_2p_3)}{(1-p_1)(1-p_2)(1-p_3)} \times \\ & \times p^{-\frac{N}{2}} \frac{1-p^N}{1-p} \frac{v}{(1-vp^{-\frac{N}{2}})(1-vp^{\frac{N}{2}})} \Bigg] \end{split}$$

$$(p_i \equiv e^{2\pi \mathrm{i}\epsilon_u} \text{ and } p \equiv e^{2\pi \mathrm{i}\epsilon}).$$

$$\begin{split} \widetilde{Z}_N(\vec{\epsilon};v) = \mathrm{PE}_{v,\vec{p}} \Bigg[& -\frac{(1-p_1p_2)(1-p_1p_3)(1-p_2p_3)}{(1-p_1)(1-p_2)(1-p_3)} \times \\ & \times p^{-\frac{N}{2}} \frac{1-p^N}{1-p} \frac{v}{(1-vp^{-\frac{N}{2}})(1-vp^{\frac{N}{2}})} \Bigg] \end{split}$$

• Highly non trivial: no dependence on $\vec{\xi}$;

$$\begin{split} \widetilde{Z}_N(\vec{\epsilon};v) = \mathrm{PE}_{v,\vec{p}} \Bigg[& -\frac{(1-p_1p_2)(1-p_1p_3)(1-p_2p_3)}{(1-p_1)(1-p_2)(1-p_3)} \times \\ & \times p^{-\frac{N}{2}} \frac{1-p^N}{1-p} \frac{v}{(1-vp^{-\frac{N}{2}})(1-vp^{\frac{N}{2}})} \Bigg] \end{split}$$

• Highly non trivial: no dependence on $\vec{\xi}$;

• The case N = 1 was known [Nekrasov];

$$\begin{split} \widetilde{Z}_N(\vec{\epsilon};v) = \mathrm{PE}_{v,\vec{p}} \Bigg[&-\frac{(1-p_1p_2)(1-p_1p_3)(1-p_2p_3)}{(1-p_1)(1-p_2)(1-p_3)} \times \\ &\times p^{-\frac{N}{2}} \frac{1-p^N}{1-p} \frac{v}{(1-vp^{-\frac{N}{2}})(1-vp^{\frac{N}{2}})} \Bigg] \end{split}$$

- Highly non trivial: no dependence on $\vec{\xi}$;
- The case N = 1 was known [Nekrasov];
- Non trivial dependence on N;

$$\begin{split} \widetilde{Z}_N(\vec{\epsilon};v) &= \mathrm{PE}_{v,\vec{p}} \Bigg[-\frac{(1-p_1p_2)(1-p_1p_3)(1-p_2p_3)}{(1-p_1)(1-p_2)(1-p_3)} \times \\ & \qquad \times p^{-\frac{N}{2}} \frac{1-p^N}{1-p} \frac{v}{(1-vp^{-\frac{N}{2}})(1-vp^{\frac{N}{2}})} \Bigg] \end{split}$$

- Highly non trivial: no dependence on $\vec{\xi}$;
- The case N = 1 was known [Nekrasov];
- Non trivial dependence on N;
- Lift to M-theory: Taub-NT_N × \mathbb{C}^3 fibered on S^1 ;

$$\begin{split} \widetilde{Z}_N(\vec{\epsilon};v) = \mathrm{PE}_{v,\vec{p}} \Bigg[-\frac{(1-p_1p_2)(1-p_1p_3)(1-p_2p_3)}{(1-p_1)(1-p_2)(1-p_3)} \times \\ & \times p^{-\frac{N}{2}} \frac{1-p^N}{1-p} \frac{v}{(1-vp^{-\frac{N}{2}})(1-vp^{\frac{N}{2}})} \Bigg] \end{split}$$

- Highly non trivial: no dependence on $\vec{\xi}$;
- The case N = 1 was known [Nekrasov];
- Non trivial dependence on N;
- Lift to M-theory: Taub-NT_N $\times \mathbb{C}^3$ fibered on S^1 ;
- Computation of 11d-SUGRA index in the $\Omega\text{-}\mathsf{background}$ gives exactly the argument of PE.

• Sanity check: result already known (computed in a different way!);

- Sanity check: result already known (computed in a different way!);
- Same computation with replacement $\sin \mapsto \mathrm{Id}$;

- Sanity check: result already known (computed in a different way!);
- Same computation with replacement $\sin \mapsto \mathrm{Id}$;
- The resummed result is

$$\overline{Z}_N(\vec{\epsilon};v) = \sum_{k=0}^{\infty} \overline{Z}_{N,k}(\vec{\xi},\vec{\epsilon}) = [\Phi(v)]^{-N\frac{(\epsilon_1+\epsilon_2)(\epsilon_1+\epsilon_3)(\epsilon_2+\epsilon_3)}{\epsilon_1\epsilon_2\epsilon_3}} \; ;$$

- Sanity check: result already known (computed in a different way!);
- Same computation with replacement $\sin \mapsto \mathrm{Id}$;
- The resummed result is

$$\overline{Z}_N(\vec{\epsilon};v) = \sum_{k=0}^{\infty} \overline{Z}_{N,k}(\vec{\xi},\vec{\epsilon}) = \left[\Phi(v)\right]^{-N\frac{(\epsilon_1+\epsilon_2)(\epsilon_1+\epsilon_3)(\epsilon_2+\epsilon_3)}{\epsilon_1\epsilon_2\epsilon_3}};$$

• This is an example of *trivial factorization* [Nekrasov].

The propagator of free a free boson on torus is

$$\left<\phi(u,\bar{u})\phi(w,\bar{w})\right>_{T^2} = \log G(u,\bar{u};w,\bar{w}) \;,$$

where

$$G(u,\bar{u};w,\bar{w}) = e^{-\frac{2\pi}{\tau_2} [\Im(u-w)]^2} \left| \frac{\theta_1(\tau | u-w)}{2\pi \eta^3(\tau)} \right|^2$$

٠

The propagator of free a free boson on torus is

$$\left<\phi(u,\bar{u})\phi(w,\bar{w})\right>_{T^2} = \log G(u,\bar{u};w,\bar{w}) \;,$$

where

$$G(u,\bar{u};w,\bar{w}) = e^{-\frac{2\pi}{\tau_2} [\Im(u-w)]^2} \left| \frac{\theta_1(\tau | u-w)}{2\pi \eta^3(\tau)} \right|^2$$

Comments

• It contains Jacobi θ_1 function;

The propagator of free a free boson on torus is

$$\left<\phi(u,\bar{u})\phi(w,\bar{w})\right>_{T^2} = \log G(u,\bar{u};w,\bar{w}) \;,$$

where

$$G(u,\bar{u};w,\bar{w}) = e^{-\frac{2\pi}{\tau_2} [\Im(u-w)]^2} \left| \frac{\theta_1(\tau | u-w)}{2\pi \eta^3(\tau)} \right|^2$$

Comments

- It contains Jacobi θ_1 function;
- Differently from the planar case, it is *not* a sum of a holomorphic and anti-holomorphic part because of the \Im^2 .

Multi-local Vertex Operator

Consider the following vertex operator

$$\mathcal{V}_{\vec{\epsilon}}(u) = \prod_{i=1}^7 : e^{\lambda_i \phi_i(u_{+i})} :: e^{-\lambda_i \phi_i(u_{-i})} : \, ,$$

Let us consider the following operator:

$$H = \frac{1}{2\pi \mathrm{i}} \oint_{\Gamma} \partial \phi_4(u) \omega(w) \mathrm{d} w \; ,$$

where the contour Γ is around u=0 and encloses all $u_{\pm i}\text{,}$ and

$$\omega(w) = -\sum_{\alpha=1}^{N} \log \theta_1 \left(\tau \Big| w + \xi_\alpha - \frac{\epsilon}{2} \right)$$

$$\bullet \ \left\langle : \mathcal{V}_{\vec{\epsilon}}(u) :: \mathcal{V}_{\vec{\epsilon}}(w) : \right\rangle = \left| \left\langle : \mathcal{V}_{\vec{\epsilon}}(u) :: \mathcal{V}_{\vec{\epsilon}}(w) : \right\rangle_{\mathrm{hol}} \right|^2 \ ,$$

$$\bullet \ \left\langle : \mathcal{V}_{\vec{\epsilon}}(u) :: \mathcal{V}_{\vec{\epsilon}}(w) : \right\rangle = \left| \left\langle : \mathcal{V}_{\vec{\epsilon}}(u) :: \mathcal{V}_{\vec{\epsilon}}(w) : \right\rangle_{\mathrm{hol.}} \right|^2 \ ,$$

• $\left\langle e^{H}:\mathcal{V}_{\vec{\epsilon}}(u):\right\rangle$ is a holomorphic function of u.

$$\bullet \ \left\langle : \mathcal{V}_{\vec{\epsilon}}(u) :: \mathcal{V}_{\vec{\epsilon}}(w) : \right\rangle = \left| \left\langle : \mathcal{V}_{\vec{\epsilon}}(u) :: \mathcal{V}_{\vec{\epsilon}}(w) : \right\rangle_{\mathrm{hol.}} \right|^2 \ ,$$

• $\langle e^H : \mathcal{V}_{\vec{\epsilon}}(u) : \rangle$ is a holomorphic function of u. Combining these results it is possible to recover

$$Z_N(v) = \left\langle e^H e^{v \oint_{\mathrm{JK}} \mathcal{V}_{\vec{\epsilon}}(u) \mathrm{d} u} \right\rangle_{\mathrm{hol.}}$$

$$\bullet \ \left\langle : \mathcal{V}_{\vec{\epsilon}}(u) :: \mathcal{V}_{\vec{\epsilon}}(w) : \right\rangle = \left| \left\langle : \mathcal{V}_{\vec{\epsilon}}(u) :: \mathcal{V}_{\vec{\epsilon}}(w) : \right\rangle_{\mathrm{hol.}} \right|^2 \ ,$$

• $\left\langle e^{H}:\mathcal{V}_{\vec{\epsilon}}(u):\right\rangle$ is a holomorphic function of u.

Combining these results it is possible to recover

$$Z_N(v) = \left\langle e^H e^{v \oint_{\mathrm{JK}} \mathcal{V}_{\vec{\epsilon}}(u) \mathrm{d}u} \right\rangle_{\mathrm{hol.}}$$

It can be a starting point for a generalization of Hirota Bilinear Equations.

Conclusion and Perspective

What we did

 \bullet We computed $Z_{N,k}$ as well as $\widetilde{Z}_{N,k}$ and $\overline{Z}_{N,k}$ using JK technique;

Conclusion and Perspective

What we did

- \bullet We computed $Z_{N,k}$ as well as $\widetilde{Z}_{N,k}$ and $\overline{Z}_{N,k}$ using JK technique;
- We explored the factorization properties of the above quantitis

- \bullet We computed $Z_{N,k}$ as well as $\widetilde{Z}_{N,k}$ and $\overline{Z}_{N,k}$ using JK technique;
- We explored the factorization properties of the above quantitis
- We extendend Nekrasov's PE ansatz;

- \bullet We computed $Z_{N,k}$ as well as $\widetilde{Z}_{N,k}$ and $\overline{Z}_{N,k}$ using JK technique;
- We explored the factorization properties of the above quantitis
- We extendend Nekrasov's PE ansatz;
- We gave a free field realization of Z_N .

- \bullet We computed $Z_{N,k}$ as well as $\widetilde{Z}_{N,k}$ and $\overline{Z}_{N,k}$ using JK technique;
- We explored the factorization properties of the above quantitis
- We extendend Nekrasov's PE ansatz;
- We gave a free field realization of Z_N .

What is still to do

• Following the same program for threefold with more complex topology (i.e. the conifold);

- \bullet We computed $Z_{N,k}$ as well as $\widetilde{Z}_{N,k}$ and $\overline{Z}_{N,k}$ using JK technique;
- We explored the factorization properties of the above quantitis
- We extendend Nekrasov's PE ansatz;
- We gave a free field realization of Z_N .

What is still to do

- Following the same program for threefold with more complex topology (i.e. the conifold);
- Explore the D0/D8 case [Nekrasov: "Magnificent four"];

- \bullet We computed $Z_{N,k}$ as well as $\widetilde{Z}_{N,k}$ and $\overline{Z}_{N,k}$ using JK technique;
- We explored the factorization properties of the above quantitis
- We extendend Nekrasov's PE ansatz;
- We gave a free field realization of Z_N .

What is still to do

- Following the same program for threefold with more complex topology (i.e. the conifold);
- Explore the D0/D8 case [Nekrasov: "Magnificent four"];
- Understand the possible link between the free field realization point of view and integrable hierarchies.

Thank you for your attention!