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Goal and Motivation

Partition function of D1/D7 brane system

Study 𝑍𝑁,𝑘 for general 𝑁 = #(D7) and 𝑘 = #(D1);
Dim. reduction to D0/D6 (𝑍𝑁,𝑘) and D(-1)/D5 system (𝑍𝑁,𝑘);
Factorization properties of 𝑍𝑁,𝑘 w.r.t. 𝑁 ;
Free field realization of 𝑍𝑁 .
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Brane Construction

Setup (type IIB string):
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10

D1 − − • • • • • • • •
D7 − − − − − − − − • •⏟

𝑇 2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

C3

Background 𝐵-field ⇒ 4 SUSY charge preserved;
Study the dynamics of D1 branes ⇒ N = (2, 2) GLSM on 𝑇 2:

Quiver

𝑁 𝑘
𝑄

𝐵1

𝐵2

𝐵2

Multiplets
U(𝑘) vector V ≃ (𝐴𝜇, 𝜆, 𝜆, 𝐷, 𝜎, 𝜎);
3 Adj chiral 𝐵1,2,3 ≃ (𝜙, 𝜓, 𝐹);
a k chiral 𝑄 in the N of flavour SU(𝑁).

Interactions
𝑊 = tr 𝐵1[𝐵2, 𝐵3]
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Moduli Space

We set 𝜎 = 𝜎 = 0 taking the Higgs branch;

This means that the D1 are in the world volume of the D7;
The ADHM-like equations are

[𝐵𝑖, 𝐵𝑗] = 0 ,
3

∑
𝑖=1

[𝐵𝑖, 𝐵†
𝑖 ] + 𝑄𝑄† = 𝑟 ,

(𝑟 is the Fayet-Iliopulos parameter).

Study the Elliptic Genus of this moduli space
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Elliptic Genus
The quantity we want to compute is:

𝑍𝑁,𝑘( ⃗𝜉, ⃗𝜖) = trRR(−1)𝐹 𝑒−2𝜋(𝜏2H+𝜏1P)𝑒2𝜋i𝜉𝛼F𝛼𝑒2𝜋i𝜖𝑖R𝑖 ,

Generators
F𝛼 are the generators of flavour group;
R1,2,3 are the generators of three rotations U(1)3 ⊂ SO(6) of C3;

“Fugacities”
𝜉𝛼 are the fugacities of flavour group;
𝜖1,2,3 are the fugacities of R1,2,3.

Effect in Path Integral computation
Turn on a flat background gauge field 𝐴(F)

𝜉𝛼 = ∫
𝑡
𝐴(F)

𝛼 − 𝜏 ∫
𝑠

𝐴(F)
𝛼
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Supersymmetric Localization

Path Integral ⇒ Finite Dimensional Integral

Given the quantum numbers of various multiplets

𝑄 𝐵1 𝐵2 𝐵3 fugacity
U(𝑘) k Adj Adj Adj 𝑒2𝜋i𝑢𝑙

SU(𝑁) N 0 0 0 𝑒2𝜋i𝜉𝛼

U(1)1 0 1 0 0 𝑒2𝜋i𝜖1

U(1)2 0 0 1 0 𝑒2𝜋i𝜖2

U(1)3 0 0 0 1 𝑒2𝜋i𝜖3

there is a recipe [Benini-Eager-Hori-Tachikawa] to get

𝑍𝑁,𝑘( ⃗𝜉, ⃗𝜖) = 1
𝑘! ∫

JK−contour
d𝑢1 … d𝑢𝑘Rational function of Jacobi 𝜃1(𝜏|fugacities)
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Computation of 𝑍𝑁,𝑘

Anomalies
𝜃1(𝜏|𝑢 + 𝑎 + 𝑏𝜏) = (−1)𝑎+𝑏𝑒−2𝜋i𝑏𝑢𝑒−i𝜋𝑏2𝜏𝜃1(𝜏|𝑢) for 𝑎, 𝑏 ∈ Z;

The integrand is defined on (𝑇 2)⊗𝑘 iff 𝜖 ≡ 𝜖1 + 𝜖2 + 𝜖3 ∈ Z/𝑁 ;
This is anomaly cancellation condition!

Jeffery–Kirwan Contour
The integrand has several 𝑘-uple poles;
Summing over all poles of a Riemann surface we get 0;
Jeffery–Kirwan prescription tell us which pole we have to consider.

Pole of the integrand JK allowed ⇔ 𝑁 Colored Plane Partition of 𝑘
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(Colored) Plane Partition

A Plane Partition (PP) of 𝑘 is an arrangement of 𝑘 3d boxes
generalizing Young Tableau:

𝑘 = 4

𝜖1 𝜖2

𝜖3

𝑘 = 5

𝜖1
𝜖2

𝜖3

𝑘 = 5

𝜖1 𝜖2

𝜖3

The generating function of PP is the McMahon function:
Φ(𝑣) ≡ PE𝑣 [ 𝑣

(1 − 𝑣)2 ] = 1 + 𝑣 + 3𝑣2 + 6𝑣3 + 13𝑥4 + …

An 𝑁 Colored Plane Partition (CPP) of 𝑘 is a collection of 𝑁 PP of
𝑘𝑖 such that ∑𝑁

𝑖=1 𝑘𝑖 = 𝑘 ;
The generating function of CPP is Φ(𝑣)𝑁 .
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Result for 𝑍𝑁,𝑘

We have for 𝜖 = 𝑛
𝑁 with 𝑛 ∈ Z that

𝑍𝑁,𝑘( ⃗𝜉, ⃗𝜖) = ∑ Residues at pole corresponding to 𝑁 CPP of 𝑘

= {
(−1)𝑛𝑘Φ(gcd(𝑛,𝑁))

𝑘
𝑁 gcd(𝑛,𝑁) if 𝑁

gcd(𝑛,𝑁) |𝑘
0 otherwise

(Φ(𝐿)
𝑔 is the 𝑔th term of the expansion of Φ(𝑣)𝐿.)

Comments
The result is a number!
many cancellations take places;
The expression can be resummed against a “instanton” parameter

𝑍𝑁(𝑣) =
∞

∑
𝑘=0

𝑍𝑁,𝑘𝑣𝑘 = [Φ ((−1)𝑛𝑁𝑣 𝑁
gcd(𝑛,𝑁) )]

gcd(𝑛,𝑁)

Interpretation on terms of F theory.
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Dimensional reduction to D0/D6

Study the refined Witten index 𝑍𝑁,𝑘 of N = 4 GQM on 𝑆1

This time we have no anomaly ⇒ all values of 𝜖 are allowed!
Same computation with replacement 𝜃1 ↦ sin;
The result can be written in a compact form resumming it as before
𝑍𝑁( ⃗𝜉, ⃗𝜖; 𝑣) = ∑∞

𝑘=0 𝑍𝑁,𝑘( ⃗𝜉, ⃗𝜖)𝑣𝑘, it is

𝑍𝑁( ⃗𝜖; 𝑣) = PE𝑣,�⃗�[ − (1 − 𝑝1𝑝2)(1 − 𝑝1𝑝3)(1 − 𝑝2𝑝3)
(1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝3) ×

× 𝑝− 𝑁
2

1 − 𝑝𝑁

1 − 𝑝
𝑣

(1 − 𝑣𝑝− 𝑁
2 )(1 − 𝑣𝑝 𝑁

2 )
]

(𝑝𝑖 ≡ 𝑒2𝜋i𝜖𝑢 and 𝑝 ≡ 𝑒2𝜋i𝜖).
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Comments about 𝑍𝑁

𝑍𝑁( ⃗𝜖; 𝑣) = PE𝑣,�⃗�[ − (1 − 𝑝1𝑝2)(1 − 𝑝1𝑝3)(1 − 𝑝2𝑝3)
(1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝3) ×

× 𝑝− 𝑁
2

1 − 𝑝𝑁

1 − 𝑝
𝑣

(1 − 𝑣𝑝− 𝑁
2 )(1 − 𝑣𝑝 𝑁

2 )
]

Highly non trivial: no dependence on ⃗𝜉;

The case 𝑁 = 1 was known [Nekrasov];
Non trivial dependence on 𝑁 ;
Lift to M-theory: Taub-NT𝑁 × C3 fibered on 𝑆1;
Computation of 11d-SUGRA index in the Ω-background gives exactly
the argument of PE.

Elliptic non-abelian DT invariants of C3 11



Comments about 𝑍𝑁

𝑍𝑁( ⃗𝜖; 𝑣) = PE𝑣,�⃗�[ − (1 − 𝑝1𝑝2)(1 − 𝑝1𝑝3)(1 − 𝑝2𝑝3)
(1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝3) ×

× 𝑝− 𝑁
2

1 − 𝑝𝑁

1 − 𝑝
𝑣

(1 − 𝑣𝑝− 𝑁
2 )(1 − 𝑣𝑝 𝑁

2 )
]

Highly non trivial: no dependence on ⃗𝜉;
The case 𝑁 = 1 was known [Nekrasov];

Non trivial dependence on 𝑁 ;
Lift to M-theory: Taub-NT𝑁 × C3 fibered on 𝑆1;
Computation of 11d-SUGRA index in the Ω-background gives exactly
the argument of PE.

Elliptic non-abelian DT invariants of C3 11



Comments about 𝑍𝑁

𝑍𝑁( ⃗𝜖; 𝑣) = PE𝑣,�⃗�[ − (1 − 𝑝1𝑝2)(1 − 𝑝1𝑝3)(1 − 𝑝2𝑝3)
(1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝3) ×

× 𝑝− 𝑁
2

1 − 𝑝𝑁

1 − 𝑝
𝑣

(1 − 𝑣𝑝− 𝑁
2 )(1 − 𝑣𝑝 𝑁

2 )
]

Highly non trivial: no dependence on ⃗𝜉;
The case 𝑁 = 1 was known [Nekrasov];
Non trivial dependence on 𝑁 ;

Lift to M-theory: Taub-NT𝑁 × C3 fibered on 𝑆1;
Computation of 11d-SUGRA index in the Ω-background gives exactly
the argument of PE.

Elliptic non-abelian DT invariants of C3 11



Comments about 𝑍𝑁

𝑍𝑁( ⃗𝜖; 𝑣) = PE𝑣,�⃗�[ − (1 − 𝑝1𝑝2)(1 − 𝑝1𝑝3)(1 − 𝑝2𝑝3)
(1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝3) ×

× 𝑝− 𝑁
2

1 − 𝑝𝑁

1 − 𝑝
𝑣

(1 − 𝑣𝑝− 𝑁
2 )(1 − 𝑣𝑝 𝑁

2 )
]

Highly non trivial: no dependence on ⃗𝜉;
The case 𝑁 = 1 was known [Nekrasov];
Non trivial dependence on 𝑁 ;
Lift to M-theory: Taub-NT𝑁 × C3 fibered on 𝑆1;

Computation of 11d-SUGRA index in the Ω-background gives exactly
the argument of PE.

Elliptic non-abelian DT invariants of C3 11



Comments about 𝑍𝑁

𝑍𝑁( ⃗𝜖; 𝑣) = PE𝑣,�⃗�[ − (1 − 𝑝1𝑝2)(1 − 𝑝1𝑝3)(1 − 𝑝2𝑝3)
(1 − 𝑝1)(1 − 𝑝2)(1 − 𝑝3) ×

× 𝑝− 𝑁
2

1 − 𝑝𝑁

1 − 𝑝
𝑣

(1 − 𝑣𝑝− 𝑁
2 )(1 − 𝑣𝑝 𝑁

2 )
]

Highly non trivial: no dependence on ⃗𝜉;
The case 𝑁 = 1 was known [Nekrasov];
Non trivial dependence on 𝑁 ;
Lift to M-theory: Taub-NT𝑁 × C3 fibered on 𝑆1;
Computation of 11d-SUGRA index in the Ω-background gives exactly
the argument of PE.

Elliptic non-abelian DT invariants of C3 11



Further reduction: D(-1)/D5

Study the equivariant volume 𝑍𝑁,𝑘 SUSY Matrix Model

Sanity check: result already known (computed in a different way!);

Same computation with replacement sin ↦ Id;
The resummed result is

𝑍𝑁( ⃗𝜖; 𝑣) =
∞

∑
𝑘=0

𝑍𝑁,𝑘( ⃗𝜉, ⃗𝜖) = [Φ(𝑣)]−𝑁 (𝜖1+𝜖2)(𝜖1+𝜖3)(𝜖2+𝜖3)
𝜖1𝜖2𝜖3 ;

This is an example of trivial factorization [Nekrasov].
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Free field realization of 𝑍𝑁

The propagator of free a free boson on torus is

⟨𝜙(𝑢, �̄�)𝜙(𝑤, �̄�)⟩𝑇 2 = log 𝐺(𝑢, �̄�; 𝑤, �̄�) ,

where

𝐺(𝑢, �̄�; 𝑤, �̄�) = 𝑒− 2𝜋
𝜏2

[ℑ(𝑢−𝑤)]2 ∣𝜃1(𝜏|𝑢 − 𝑤)
2𝜋𝜂3(𝜏) ∣

2
.

Comments
It contains Jacobi 𝜃1 function;
Differently from the planar case, it is not a sum of a holomorphic and
anti-holomorphic part because of the ℑ2.
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Multi-local Vertex Operator
Consider the following vertex operator

V ⃗𝜖(𝑢) =
7

∏
𝑖=1

∶𝑒𝜆𝑖𝜙𝑖(𝑢+𝑖) ∶∶𝑒−𝜆𝑖𝜙𝑖(𝑢−𝑖) ∶ ,

𝑢 𝑢+1

𝑢+2 𝑢+5

𝑢+3 𝑢+6

𝑢+7 𝑢+4

𝑢−1

𝑢−2𝑢−5

𝑢−3𝑢−6

𝑢−7𝑢−4

with

𝑢±1 = 𝑢 ± 𝜖1
2 , 𝑢±2 = 𝑢 ± 𝜖2

2 ,
𝑢±3 = 𝑢 ± 𝜖3

2 , 𝑢±4 = 𝑢 ± 𝜖
2 ,

𝑢±5 = 𝑢 ± 𝜖1+𝜖2
2 , 𝑢±6 = 𝑢 ± 𝜖1+𝜖3

2 ,
𝑢±7 = 𝑢 ± 𝜖2+𝜖3

2 ;

and
�⃗� = (1, 1, 1, 1, i, i, i).
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Source (“Hamiltonian”) operator

Let us consider the following operator:

𝐻 = 1
2𝜋i ∮

Γ
𝜕𝜙4(𝑢)𝜔(𝑤)d𝑤 ,

where the contour Γ is around 𝑢 = 0 and encloses all 𝑢±𝑖, and

𝜔(𝑤) = −
𝑁

∑
𝛼=1

log 𝜃1 (𝜏∣𝑤 + 𝜉𝛼 − 𝜖
2)
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Recovering 𝑍𝑁

Due to some simplification it happens that

⟨∶V ⃗𝜖(𝑢) ∶∶V ⃗𝜖(𝑤)∶⟩ = ∣⟨∶V ⃗𝜖(𝑢) ∶∶V ⃗𝜖(𝑤)∶⟩hol.∣
2 ,

⟨𝑒𝐻 ∶V ⃗𝜖(𝑢) ∶⟩ is a holomorphic function of 𝑢.
Combining these results it is possible to recover

𝑍𝑁(𝑣) = ⟨𝑒𝐻𝑒𝑣 ∮JK V ⃗𝜖(𝑢)d𝑢⟩
hol.

.

It can be a starting point for a generalization of Hirota Bilinear Equations.
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Conclusion and Perspective

What we did
We computed 𝑍𝑁,𝑘 as well as 𝑍𝑁,𝑘 and 𝑍𝑁,𝑘 using JK technique;

We explored the factorization properties of the above quantitis
We extendend Nekrasov’s PE ansatz;
We gave a free field realization of 𝑍𝑁 .

What is still to do
Following the same program for threefold with more complex
topology (i.e. the conifold);
Explore the D0/D8 case [Nekrasov: “Magnificent four”];
Understand the possible link between the free field realization point of
view and integrable hierarchies.
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Thank you for your attention!


