## Elliptic non-abelian DT invariants of $\mathbb{C}^{3}$

New Frontiers in Theoretical Physics, Cortona 2018

$$
23^{\text {rd }} \text { May } 2018
$$

## Matteo Poggi

Collaborators: F. Benini, G. Bonelli and A. Tanzini


## Goal and Motivation

## Partition function of D1/D7 brane system

## Goal and Motivation

## Partition function of D1/D7 brane system

- Study $Z_{N, k}$ for general $N=\#(\mathrm{D} 7)$ and $k=\#(\mathrm{D} 1)$;


## Goal and Motivation

## Partition function of D1/D7 brane system

- Study $Z_{N, k}$ for general $N=\#(\mathrm{D} 7)$ and $k=\#(\mathrm{D} 1)$;
- Dim. reduction to D0/D6 $\left(\widetilde{Z}_{N, k}\right)$ and D(-1)/D5 system $\left(\bar{Z}_{N, k}\right)$;


## Goal and Motivation

## Partition function of D1/D7 brane system

- Study $Z_{N, k}$ for general $N=\#(\mathrm{D} 7)$ and $k=\#(\mathrm{D} 1)$;
- Dim. reduction to D0/D6 $\left(\widetilde{Z}_{N, k}\right)$ and D(-1)/D5 system $\left(\bar{Z}_{N, k}\right)$;
- Factorization properties of $Z_{N, k}$ w.r.t. $N$;


## Goal and Motivation

## Partition function of D1/D7 brane system

- Study $Z_{N, k}$ for general $N=\#(\mathrm{D} 7)$ and $k=\#(\mathrm{D} 1)$;
- Dim. reduction to D0/D6 $\left(\widetilde{Z}_{N, k}\right)$ and D(-1)/D5 system $\left(\bar{Z}_{N, k}\right)$;
- Factorization properties of $Z_{N, k}$ w.r.t. $N$;
- Free field realization of $Z_{N}$.


## Brane Construction

- Setup (type IIB string):



## Brane Construction

- Setup (type IIB string):

- Background $B$-field $\Rightarrow 4$ SUSY charge preserved;


## Brane Construction

- Setup (type IIB string):

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ | $x_{9}$ | $x_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D1 | - | - | $\bullet$ |
| D7 | $\underbrace{}_{T^{2}}$ | - | $\mathbb{C}^{3}$ | - | - | - | - | - | $\bullet$ | $\bullet$ |

- Background $B$-field $\Rightarrow 4$ SUSY charge preserved;
- Study the dynamics of D1 branes $\Rightarrow \mathcal{N}=(2,2)$ GLSM on $T^{2}$ :


## Quiver



## Multiplets

- $\mathrm{U}(k)$ vector $\mathcal{V} \simeq\left(A_{\mu}, \lambda, \bar{\lambda}, D, \sigma, \bar{\sigma}\right)$;


## Brane Construction

- Setup (type IIB string):

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ | $x_{9}$ | $x_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D1 | - | - | $\bullet$ |
| D7 | $\underbrace{}_{T^{2}}$ | - | $\mathbb{C}^{3}$ | - | - | - | - | - | $\bullet$ | $\bullet$ |

- Background $B$-field $\Rightarrow 4$ SUSY charge preserved;
- Study the dynamics of D1 branes $\Rightarrow \mathcal{N}=(2,2)$ GLSM on $T^{2}$ :


## Quiver



## Multiplets

- $\mathrm{U}(k)$ vector $\mathcal{V} \simeq\left(A_{\mu}, \lambda, \bar{\lambda}, D, \sigma, \bar{\sigma}\right)$;
- 3 Adj chiral $B_{1,2,3} \simeq(\phi, \psi, F)$;


## Brane Construction

- Setup (type IIB string):

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ | $x_{9}$ | $x_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D1 | - | - | $\bullet$ |
| D7 | $\underbrace{-}_{T^{2}}$ | - | $\underbrace{-}_{\mathbb{C}^{3}}$ | - | - | - | - | - | $\bullet$ | $\bullet$ |

- Background $B$-field $\Rightarrow 4$ SUSY charge preserved;
- Study the dynamics of D1 branes $\Rightarrow \mathcal{N}=(2,2)$ GLSM on $T^{2}$ :


## Quiver



## Multiplets

- $\mathrm{U}(k)$ vector $\mathcal{V} \simeq\left(A_{\mu}, \lambda, \bar{\lambda}, D, \sigma, \bar{\sigma}\right)$;
- 3 Adj chiral $B_{1,2,3} \simeq(\phi, \psi, F)$;
- a k chiral $Q$ in the $\mathbf{N}$ of flavour $\operatorname{SU}(N)$.


## Brane Construction

- Setup (type IIB string):

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ | $x_{6}$ | $x_{7}$ | $x_{8}$ | $x_{9}$ | $x_{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D1 | - | - | $\bullet$ |
| D7 | $\underbrace{-}_{T^{2}}$ | - | $\mathbb{C}^{3}$ | - | - | - | - | - | $\bullet$ | $\bullet$ |

- Background $B$-field $\Rightarrow 4$ SUSY charge preserved;
- Study the dynamics of D1 branes $\Rightarrow \mathcal{N}=(2,2)$ GLSM on $T^{2}$ :


## Quiver



## Multiplets

- $\mathrm{U}(k)$ vector $\mathcal{V} \simeq\left(A_{\mu}, \lambda, \bar{\lambda}, D, \sigma, \bar{\sigma}\right)$;
- $3 \mathbf{A d j}$ chiral $B_{1,2,3} \simeq(\phi, \psi, F)$;
- a $\mathbf{k}$ chiral $Q$ in the $\mathbf{N}$ of flavour $\operatorname{SU}(N)$.


## Interactions

$$
W=\operatorname{tr} B_{1}\left[B_{2}, B_{3}\right]
$$

## Moduli Space

- We set $\sigma=\bar{\sigma}=0$ taking the Higgs branch;


## Moduli Space

- We set $\sigma=\bar{\sigma}=0$ taking the Higgs branch;
- This means that the D1 are in the world volume of the D7;


## Moduli Space

- We set $\sigma=\bar{\sigma}=0$ taking the Higgs branch;
- This means that the D1 are in the world volume of the D7;
- The ADHM-like equations are

$$
\left[B_{i}, B_{j}\right]=0, \quad \sum_{i=1}^{3}\left[B_{i}, B_{i}^{\dagger}\right]+Q Q^{\dagger}=r
$$

( $r$ is the Fayet-Iliopulos parameter).

## Moduli Space

- We set $\sigma=\bar{\sigma}=0$ taking the Higgs branch;
- This means that the D1 are in the world volume of the D7;
- The ADHM-like equations are

$$
\left[B_{i}, B_{j}\right]=0, \quad \sum_{i=1}^{3}\left[B_{i}, B_{i}^{\dagger}\right]+Q Q^{\dagger}=r
$$

( $r$ is the Fayet-Iliopulos parameter).

## Study the Elliptic Genus of this moduli space

## Elliptic Genus

The quantity we want to compute is:

$$
Z_{N, k}(\vec{\xi}, \vec{\epsilon})=\operatorname{tr}_{\mathrm{RR}}(-1)^{F} e^{-2 \pi\left(\tau_{2} \mathrm{H}+\tau_{1} \mathrm{P}\right)} e^{2 \pi \mathrm{i} \xi_{\alpha} \mathrm{F}_{\alpha}} e^{2 \pi \mathrm{i} \epsilon_{i} \mathrm{R}_{i}}
$$

## Elliptic Genus

The quantity we want to compute is:

$$
Z_{N, k}(\vec{\xi}, \vec{\epsilon})=\operatorname{tr}_{\mathrm{RR}}(-1)^{F} e^{-2 \pi\left(\tau_{2} \mathrm{H}+\tau_{1} \mathrm{P}\right)} e^{2 \pi \mathrm{i} \xi_{\alpha} \mathrm{F}_{\alpha}} e^{2 \pi \mathrm{i} \epsilon_{i} \mathrm{R}_{i}}
$$

## Generators

- $\mathrm{F}_{\alpha}$ are the generators of flavour group;


## Elliptic Genus

The quantity we want to compute is:

$$
Z_{N, k}(\vec{\xi}, \vec{\epsilon})=\operatorname{tr}_{\mathrm{RR}}(-1)^{F} e^{-2 \pi\left(\tau_{2} \mathrm{H}+\tau_{1} \mathrm{P}\right)} e^{2 \pi \mathrm{i} \xi_{\alpha} \mathrm{F}_{\alpha}} e^{2 \pi \mathrm{i}_{i} \mathrm{R}_{i}}
$$

## Generators

- $\mathrm{F}_{\alpha}$ are the generators of flavour group;
- $\mathrm{R}_{1,2,3}$ are the generators of three rotations $\mathrm{U}(1)^{3} \subset \mathrm{SO}(6)$ of $\mathbb{C}^{3}$;


## Elliptic Genus

The quantity we want to compute is:

$$
Z_{N, k}(\vec{\xi}, \vec{\epsilon})=\operatorname{tr}_{\mathrm{RR}}(-1)^{F} e^{-2 \pi\left(\tau_{2} \mathrm{H}+\tau_{1} \mathrm{P}\right)} e^{2 \pi \mathrm{i} \xi_{\alpha} \mathrm{F}_{\alpha}} e^{2 \pi \mathrm{i}_{i} \mathrm{R}_{i}}
$$

## Generators

- $\mathrm{F}_{\alpha}$ are the generators of flavour group;
- $\mathrm{R}_{1,2,3}$ are the generators of three rotations $\mathrm{U}(1)^{3} \subset \mathrm{SO}(6)$ of $\mathbb{C}^{3}$;
"Fugacities"
- $\xi_{\alpha}$ are the fugacities of flavour group;


## Elliptic Genus

The quantity we want to compute is:

$$
Z_{N, k}(\vec{\xi}, \vec{\epsilon})=\operatorname{tr}_{\mathrm{RR}}(-1)^{F} e^{-2 \pi\left(\tau_{2} \mathrm{H}+\tau_{1} \mathrm{P}\right)} e^{2 \pi \mathrm{i} \xi_{\alpha} \mathrm{F}_{\alpha}} e^{2 \pi \mathrm{i}_{i} \mathrm{R}_{i}}
$$

## Generators

- $\mathrm{F}_{\alpha}$ are the generators of flavour group;
- $\mathrm{R}_{1,2,3}$ are the generators of three rotations $\mathrm{U}(1)^{3} \subset \mathrm{SO}(6)$ of $\mathbb{C}^{3}$;
"Fugacities"
- $\xi_{\alpha}$ are the fugacities of flavour group;
- $\epsilon_{1,2,3}$ are the fugacities of $\mathrm{R}_{1,2,3}$.


## Elliptic Genus

The quantity we want to compute is:

$$
Z_{N, k}(\vec{\xi}, \vec{\epsilon})=\operatorname{tr}_{\mathrm{RR}}(-1)^{F} e^{-2 \pi\left(\tau_{2} \mathrm{H}+\tau_{1} \mathrm{P}\right)} e^{2 \pi \mathrm{i} \xi_{\alpha} \mathrm{F}_{\alpha}} e^{2 \pi \mathrm{i}_{i} \mathrm{R}_{i}}
$$

## Generators

- $\mathrm{F}_{\alpha}$ are the generators of flavour group;
- $\mathrm{R}_{1,2,3}$ are the generators of three rotations $\mathrm{U}(1)^{3} \subset \mathrm{SO}(6)$ of $\mathbb{C}^{3}$;


## "Fugacities"

- $\xi_{\alpha}$ are the fugacities of flavour group;
- $\epsilon_{1,2,3}$ are the fugacities of $\mathrm{R}_{1,2,3}$.


## Effect in Path Integral computation

Turn on a flat background gauge field $A^{(\mathrm{F})}$

$$
\xi_{\alpha}=\int_{t} A_{\alpha}^{(\mathrm{F})}-\tau \int_{s} A_{\alpha}^{(\mathrm{F})}
$$

## Supersymmetric Localization

## Path Integral $\Rightarrow$ Finite Dimensional Integral

## Supersymmetric Localization

## Path Integral $\Rightarrow$ Finite Dimensional Integral

Given the quantum numbers of various multiplets

|  | $Q$ | $B_{1}$ | $B_{2}$ | $B_{3}$ | fugacity |
| :--- | :---: | :---: | :---: | :---: | :--- |
| $\mathrm{U}(k)$ | $\mathbf{k}$ | Adj | Adj $\mathbf{j}$ | $\mathbf{A d j}$ | $e^{2 \pi \mathrm{i} u_{l}}$ |
| $\mathrm{SU}(N)$ | $\mathbf{N}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $e^{2 \pi \mathrm{i} \xi_{\alpha}}$ |
| $\mathrm{U}(1)_{1}$ | 0 | 1 | 0 | 0 | $e^{2 \pi \mathrm{i} \epsilon_{1}}$ |
| $\mathrm{U}(1)_{2}$ | 0 | 0 | 1 | 0 | $e^{2 \pi \mathrm{i} \epsilon_{2}}$ |
| $\mathrm{U}(1)_{3}$ | 0 | 0 | 0 | 1 | $e^{2 \pi \mathrm{i} \epsilon_{3}}$ |

## Supersymmetric Localization

## Path Integral $\Rightarrow$ Finite Dimensional Integral

Given the quantum numbers of various multiplets

|  | $Q$ | $B_{1}$ | $B_{2}$ | $B_{3}$ | fugacity |
| :--- | :---: | :---: | :---: | :---: | :--- |
| $\mathrm{U}(k)$ | $\mathbf{k}$ | $\mathbf{A d j}$ | $\mathbf{A d} \mathbf{j}$ | $\mathbf{A d} \mathbf{j}$ | $e^{2 \pi \mathrm{i} u_{l}}$ |
| $\mathrm{SU}(N)$ | $\mathbf{N}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $e^{2 \pi \mathrm{i} \xi_{\alpha}}$ |
| $\mathrm{U}(1)_{1}$ | 0 | 1 | 0 | 0 | $e^{2 \pi \mathrm{i} \epsilon_{1}}$ |
| $\mathrm{U}(1)_{2}$ | 0 | 0 | 1 | 0 | $e^{2 \pi \mathrm{i} \epsilon_{2}}$ |
| $\mathrm{U}(1)_{3}$ | 0 | 0 | 0 | 1 | $e^{2 \pi \mathrm{i} \epsilon_{3}}$ |

there is a recipe [Benini-Eager-Hori-Tachikawa] to get
$Z_{N, k}(\vec{\xi}, \vec{\epsilon})=\frac{1}{k!} \int_{\mathrm{JK}-\text { contour }} \mathrm{d} u_{1} \ldots \mathrm{~d} u_{k}$ Rational function of Jacobi $\theta_{1}(\tau \mid$ fugacities $)$

## Computation of $Z_{N, k}$

## Anomalies

- $\theta_{1}(\tau \mid u+a+b \tau)=(-1)^{a+b} e^{-2 \pi \mathrm{i} b u} e^{-\mathrm{i} \pi b^{2} \tau} \theta_{1}(\tau \mid u)$ for $a, b \in \mathbb{Z}$;


## Computation of $Z_{N, k}$

## Anomalies

- $\theta_{1}(\tau \mid u+a+b \tau)=(-1)^{a+b} e^{-2 \pi \mathrm{i} b u} e^{-\mathrm{i} \pi b^{2} \tau} \theta_{1}(\tau \mid u)$ for $a, b \in \mathbb{Z}$;
- The integrand is defined on $\left(T^{2}\right)^{\otimes k}$ iff $\epsilon \equiv \epsilon_{1}+\epsilon_{2}+\epsilon_{3} \in \mathbb{Z} / N$;


## Computation of $Z_{N, k}$

## Anomalies

- $\theta_{1}(\tau \mid u+a+b \tau)=(-1)^{a+b} e^{-2 \pi \mathrm{i} b u} e^{-\mathrm{i} \pi b^{2} \tau} \theta_{1}(\tau \mid u)$ for $a, b \in \mathbb{Z}$;
- The integrand is defined on $\left(T^{2}\right)^{\otimes k}$ iff $\epsilon \equiv \epsilon_{1}+\epsilon_{2}+\epsilon_{3} \in \mathbb{Z} / N$;
- This is anomaly cancellation condition!


## Computation of $Z_{N, k}$

## Anomalies

- $\theta_{1}(\tau \mid u+a+b \tau)=(-1)^{a+b} e^{-2 \pi \mathrm{i} b u} e^{-\mathrm{i} \pi b^{2} \tau} \theta_{1}(\tau \mid u)$ for $a, b \in \mathbb{Z}$;
- The integrand is defined on $\left(T^{2}\right)^{\otimes k}$ iff $\epsilon \equiv \epsilon_{1}+\epsilon_{2}+\epsilon_{3} \in \mathbb{Z} / N$;
- This is anomaly cancellation condition!


## Jeffery-Kirwan Contour

- The integrand has several $k$-uple poles;


## Computation of $Z_{N, k}$

## Anomalies

- $\theta_{1}(\tau \mid u+a+b \tau)=(-1)^{a+b} e^{-2 \pi \mathrm{i} b u} e^{-\mathrm{i} \pi b^{2} \tau} \theta_{1}(\tau \mid u)$ for $a, b \in \mathbb{Z}$;
- The integrand is defined on $\left(T^{2}\right)^{\otimes k}$ iff $\epsilon \equiv \epsilon_{1}+\epsilon_{2}+\epsilon_{3} \in \mathbb{Z} / N$;
- This is anomaly cancellation condition!


## Jeffery-Kirwan Contour

- The integrand has several $k$-uple poles;
- Summing over all poles of a Riemann surface we get 0 ;


## Computation of $Z_{N, k}$

## Anomalies

- $\theta_{1}(\tau \mid u+a+b \tau)=(-1)^{a+b} e^{-2 \pi \mathrm{i} b u} e^{-\mathrm{i} \pi b^{2} \tau} \theta_{1}(\tau \mid u)$ for $a, b \in \mathbb{Z}$;
- The integrand is defined on $\left(T^{2}\right)^{\otimes k}$ iff $\epsilon \equiv \epsilon_{1}+\epsilon_{2}+\epsilon_{3} \in \mathbb{Z} / N$;
- This is anomaly cancellation condition!


## Jeffery-Kirwan Contour

- The integrand has several $k$-uple poles;
- Summing over all poles of a Riemann surface we get 0 ;
- Jeffery-Kirwan prescription tell us which pole we have to consider.


## Computation of $Z_{N, k}$

## Anomalies

- $\theta_{1}(\tau \mid u+a+b \tau)=(-1)^{a+b} e^{-2 \pi \mathrm{i} b u} e^{-\mathrm{i} \pi b^{2} \tau} \theta_{1}(\tau \mid u)$ for $a, b \in \mathbb{Z}$;
- The integrand is defined on $\left(T^{2}\right)^{\otimes k}$ iff $\epsilon \equiv \epsilon_{1}+\epsilon_{2}+\epsilon_{3} \in \mathbb{Z} / N$;
- This is anomaly cancellation condition!


## Jeffery-Kirwan Contour

- The integrand has several $k$-uple poles;
- Summing over all poles of a Riemann surface we get 0 ;
- Jeffery-Kirwan prescription tell us which pole we have to consider.

Pole of the integrand JK allowed $\Leftrightarrow N$ Colored Plane Partition of $k$

## (Colored) Plane Partition

- A Plane Partition (PP) of $k$ is an arrangement of $k$ 3d boxes generalizing Young Tableau:


## (Colored) Plane Partition

- A Plane Partition (PP) of $k$ is an arrangement of $k$ 3d boxes generalizing Young Tableau:
$k=4$



## (Colored) Plane Partition

- A Plane Partition (PP) of $k$ is an arrangement of $k$ 3d boxes generalizing Young Tableau:



## (Colored) Plane Partition

- A Plane Partition (PP) of $k$ is an arrangement of $k$ 3d boxes generalizing Young Tableau:


$$
k=5
$$



$$
k=5
$$



## (Colored) Plane Partition

- A Plane Partition (PP) of $k$ is an arrangement of $k$ 3d boxes generalizing Young Tableau:


$$
k=5
$$



$$
k=5
$$



- The generating function of PP is the McMahon function:

$$
\Phi(v) \equiv \mathrm{PE}_{v}\left[\frac{v}{(1-v)^{2}}\right]=1+v+3 v^{2}+6 v^{3}+13 x^{4}+\ldots
$$

## (Colored) Plane Partition

- A Plane Partition (PP) of $k$ is an arrangement of $k$ 3d boxes generalizing Young Tableau:


$$
k=5
$$



$$
k=5
$$



- The generating function of PP is the McMahon function:

$$
\Phi(v) \equiv \mathrm{PE}_{v}\left[\frac{v}{(1-v)^{2}}\right]=1+v+3 v^{2}+6 v^{3}+13 x^{4}+\ldots
$$

- An $N$ Colored Plane Partition (CPP) of $k$ is a collection of $N$ PP of $k_{i}$ such that $\sum_{i=1}^{N} k_{i}=k$;


## (Colored) Plane Partition

- A Plane Partition (PP) of $k$ is an arrangement of $k$ 3d boxes generalizing Young Tableau:


$$
k=5
$$



$$
k=5
$$



- The generating function of PP is the McMahon function:

$$
\Phi(v) \equiv \mathrm{PE}_{v}\left[\frac{v}{(1-v)^{2}}\right]=1+v+3 v^{2}+6 v^{3}+13 x^{4}+\ldots
$$

- An $N$ Colored Plane Partition (CPP) of $k$ is a collection of $N$ PP of $k_{i}$ such that $\sum_{i=1}^{N} k_{i}=k$;
- The generating function of CPP is $\Phi(v)^{N}$.


## Result for $Z_{N, k}$

We have for $\epsilon=\frac{n}{N}$ with $n \in \mathbb{Z}$ that

$$
\begin{aligned}
Z_{N, k}(\vec{\xi}, \vec{\epsilon}) & =\sum \text { Residues at pole corresponding to } N \text { CPP of } k \\
& = \begin{cases}(-1)^{n k} \Phi_{\frac{k}{N} \operatorname{gcd}(n, n, N)}^{(\operatorname{gcd}(n, N)} & \text { if } \left.\frac{N}{\operatorname{gcd}(n, N)} \right\rvert\, k \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

( $\Phi_{g}^{(L)}$ is the $g^{\text {th }}$ term of the expansion of $\Phi(v)^{L}$.)

## Result for $Z_{N, k}$

We have for $\epsilon=\frac{n}{N}$ with $n \in \mathbb{Z}$ that

$$
\begin{aligned}
Z_{N, k}(\vec{\xi}, \vec{\epsilon}) & =\sum \text { Residues at pole corresponding to } N \text { CPP of } k \\
& = \begin{cases}(-1)^{n k} \Phi_{\frac{k}{N} \operatorname{gcd}(n, n, N)}^{(\operatorname{gcd}(n, N)} & \text { if } \left.\frac{N}{\operatorname{gcd}(n, N)} \right\rvert\, k \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

( $\Phi_{g}^{(L)}$ is the $g^{\text {th }}$ term of the expansion of $\Phi(v)^{L}$.)

## Comments

- The result is a number!


## Result for $Z_{N, k}$

We have for $\epsilon=\frac{n}{N}$ with $n \in \mathbb{Z}$ that

$$
\begin{aligned}
Z_{N, k}(\vec{\xi}, \vec{\epsilon}) & =\sum \text { Residues at pole corresponding to } N \text { CPP of } k \\
& = \begin{cases}(-1)^{n k} \Phi_{\left.\frac{k}{N} \operatorname{gcd}(n, N)\right)}^{(n, N)} & \text { if } \left.\frac{N}{\operatorname{gcd}(n, N)} \right\rvert\, k \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

( $\Phi_{g}^{(L)}$ is the $g^{\text {th }}$ term of the expansion of $\Phi(v)^{L}$.)

## Comments

- The result is a number!
- many cancellations take places;


## Result for $Z_{N, k}$

We have for $\epsilon=\frac{n}{N}$ with $n \in \mathbb{Z}$ that

$$
\begin{aligned}
Z_{N, k}(\vec{\xi}, \vec{\epsilon}) & =\sum \text { Residues at pole corresponding to } N \text { CPP of } k \\
& = \begin{cases}(-1)^{n k} \Phi_{\left.\frac{k}{N} \operatorname{gcd}(n, N)\right)}^{(n, N)} & \text { if } \left.\frac{N}{\operatorname{gcd}(n, N)} \right\rvert\, k \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

( $\Phi_{g}^{(L)}$ is the $g^{\text {th }}$ term of the expansion of $\Phi(v)^{L}$.)

## Comments

- The result is a number!
- many cancellations take places;
- The expression can be resummed against a "instanton" parameter

$$
Z_{N}(v)=\sum_{k=0}^{\infty} Z_{N, k} v^{k}=\left[\Phi\left((-1)^{n N} v^{\frac{N}{\operatorname{gcd}(n, N)}}\right)\right]^{\operatorname{gcd}(n, N)}
$$

## Result for $Z_{N, k}$

We have for $\epsilon=\frac{n}{N}$ with $n \in \mathbb{Z}$ that

$$
\begin{aligned}
Z_{N, k}(\vec{\xi}, \vec{\epsilon}) & =\sum \text { Residues at pole corresponding to } N \text { CPP of } k \\
& = \begin{cases}(-1)^{n k} \Phi_{\left.\frac{k}{N} \operatorname{gcd}(n, N)\right)}^{(n, N)} & \text { if } \left.\frac{N}{\operatorname{gcd}(n, N)} \right\rvert\, k \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

( $\Phi_{g}^{(L)}$ is the $g^{\text {th }}$ term of the expansion of $\Phi(v)^{L}$.)

## Comments

- The result is a number!
- many cancellations take places;
- The expression can be resummed against a "instanton" parameter

$$
Z_{N}(v)=\sum_{k=0}^{\infty} Z_{N, k} v^{k}=\left[\Phi\left((-1)^{n N} v^{\frac{N}{\operatorname{gcd}(n, N)}}\right)\right]^{\operatorname{gcd}(n, N)}
$$

- Interpretation on terms of F theory.


## Dimensional reduction to D0/D6

Study the refined Witten index $\widetilde{Z}_{N, k}$ of $\mathcal{N}=4$ GQM on $S^{1}$

## Dimensional reduction to D0/D6

Study the refined Witten index $\widetilde{Z}_{N, k}$ of $\mathcal{N}=4$ GQM on $S^{1}$

- This time we have no anomaly $\Rightarrow$ all values of $\epsilon$ are allowed!


## Dimensional reduction to D0/D6

Study the refined Witten index $\widetilde{Z}_{N, k}$ of $\mathcal{N}=4$ GQM on $S^{1}$

- This time we have no anomaly $\Rightarrow$ all values of $\epsilon$ are allowed!
- Same computation with replacement $\theta_{1} \mapsto \sin$;


## Dimensional reduction to D0/D6

Study the refined Witten index $\widetilde{Z}_{N, k}$ of $\mathcal{N}=4$ GQM on $S^{1}$

- This time we have no anomaly $\Rightarrow$ all values of $\epsilon$ are allowed!
- Same computation with replacement $\theta_{1} \mapsto \sin$;
- The result can be written in a compact form resumming it as before $\widetilde{Z}_{N}(\vec{\xi}, \vec{\epsilon} ; v)=\sum_{k=0}^{\infty} \widetilde{Z}_{N, k}(\vec{\xi}, \vec{\epsilon}) v^{k}$, it is

$$
\begin{aligned}
& \widetilde{Z}_{N}(\vec{\epsilon} ; v)=\mathrm{PE}_{v, \vec{p}}\left[-\frac{\left(1-p_{1} p_{2}\right)\left(1-p_{1} p_{3}\right)\left(1-p_{2} p_{3}\right)}{\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right)} \times\right. \\
&\left.\times p^{-\frac{N}{2}} \frac{1-p^{N}}{1-p} \frac{v}{\left(1-v p^{-\frac{N}{2}}\right)\left(1-v p^{\frac{N}{2}}\right)}\right]
\end{aligned}
$$

$$
\left(p_{i} \equiv e^{2 \pi \mathrm{i} \epsilon_{u}} \text { and } p \equiv e^{2 \pi \mathrm{i} \epsilon}\right)
$$

## Comments about $\widetilde{Z}_{N}$

$$
\begin{aligned}
& \widetilde{Z}_{N}(\vec{\epsilon} ; v)=\mathrm{PE}_{v, \vec{p}}\left[-\frac{\left(1-p_{1} p_{2}\right)\left(1-p_{1} p_{3}\right)\left(1-p_{2} p_{3}\right)}{\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right)} \times\right. \\
&\left.\times p^{-\frac{N}{2}} \frac{1-p^{N}}{1-p} \frac{v}{\left(1-v p^{-\frac{N}{2}}\right)\left(1-v p^{\frac{N}{2}}\right)}\right]
\end{aligned}
$$

- Highly non trivial: no dependence on $\vec{\xi}$;


## Comments about $\widetilde{Z}_{N}$

$$
\begin{aligned}
& \widetilde{Z}_{N}(\vec{\epsilon} ; v)=\mathrm{PE}_{v, \vec{p}}\left[-\frac{\left(1-p_{1} p_{2}\right)\left(1-p_{1} p_{3}\right)\left(1-p_{2} p_{3}\right)}{\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right)} \times\right. \\
&\left.\times p^{-\frac{N}{2}} \frac{1-p^{N}}{1-p} \frac{v}{\left(1-v p^{-\frac{N}{2}}\right)\left(1-v p^{\frac{N}{2}}\right)}\right]
\end{aligned}
$$

- Highly non trivial: no dependence on $\vec{\xi}$;
- The case $N=1$ was known [Nekrasov];


## Comments about $\widetilde{Z}_{N}$

$$
\begin{aligned}
& \widetilde{Z}_{N}(\vec{\epsilon} ; v)=\mathrm{PE}_{v, \vec{p}}\left[-\frac{\left(1-p_{1} p_{2}\right)\left(1-p_{1} p_{3}\right)\left(1-p_{2} p_{3}\right)}{\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right)} \times\right. \\
&\left.\times p^{-\frac{N}{2}} \frac{1-p^{N}}{1-p} \frac{v}{\left(1-v p^{-\frac{N}{2}}\right)\left(1-v p^{\frac{N}{2}}\right)}\right]
\end{aligned}
$$

- Highly non trivial: no dependence on $\vec{\xi}$;
- The case $N=1$ was known [Nekrasov];
- Non trivial dependence on $N$;


## Comments about $\widetilde{Z}_{N}$

$$
\begin{aligned}
& \widetilde{Z}_{N}(\vec{\epsilon} ; v)=\mathrm{PE}_{v, \vec{p}}\left[-\frac{\left(1-p_{1} p_{2}\right)\left(1-p_{1} p_{3}\right)\left(1-p_{2} p_{3}\right)}{\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right)} \times\right. \\
&\left.\times p^{-\frac{N}{2}} \frac{1-p^{N}}{1-p} \frac{v}{\left(1-v p^{-\frac{N}{2}}\right)\left(1-v p^{\frac{N}{2}}\right)}\right]
\end{aligned}
$$

- Highly non trivial: no dependence on $\vec{\xi}$;
- The case $N=1$ was known [Nekrasov];
- Non trivial dependence on $N$;
- Lift to M-theory: Taub-NT ${ }_{N} \times \mathbb{C}^{3}$ fibered on $S^{1}$;


## Comments about $\widetilde{Z}_{N}$

$$
\begin{aligned}
& \widetilde{Z}_{N}(\vec{\epsilon} ; v)=\mathrm{PE}_{v, \vec{p}}\left[-\frac{\left(1-p_{1} p_{2}\right)\left(1-p_{1} p_{3}\right)\left(1-p_{2} p_{3}\right)}{\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right)} \times\right. \\
&\left.\times p^{-\frac{N}{2}} \frac{1-p^{N}}{1-p} \frac{v}{\left(1-v p^{-\frac{N}{2}}\right)\left(1-v p^{\frac{N}{2}}\right)}\right]
\end{aligned}
$$

- Highly non trivial: no dependence on $\vec{\xi}$;
- The case $N=1$ was known [Nekrasov];
- Non trivial dependence on $N$;
- Lift to M-theory: Taub-NT ${ }_{N} \times \mathbb{C}^{3}$ fibered on $S^{1}$;
- Computation of 11d-SUGRA index in the $\Omega$-background gives exactly the argument of PE.


## Further reduction: D(-1)/D5

Study the equivariant volume $\bar{Z}_{N, k}$ SUSY Matrix Model

- Sanity check: result already known (computed in a different way!);


## Further reduction: D(-1)/D5

## Study the equivariant volume $\bar{Z}_{N, k}$ SUSY Matrix Model

- Sanity check: result already known (computed in a different way!);
- Same computation with replacement $\sin \mapsto I d$;


## Further reduction: D(-1)/D5

## Study the equivariant volume $\bar{Z}_{N, k}$ SUSY Matrix Model

- Sanity check: result already known (computed in a different way!);
- Same computation with replacement $\sin \mapsto I d$;
- The resummed result is

$$
\bar{Z}_{N}(\vec{\epsilon} ; v)=\sum_{k=0}^{\infty} \bar{Z}_{N, k}(\vec{\xi}, \vec{\epsilon})=[\Phi(v)]^{-N \frac{\left(\epsilon_{1}+\epsilon_{2}\right)\left(\epsilon_{1}+\epsilon_{3}\right)\left(\epsilon_{2}+\epsilon_{3}\right)}{\epsilon_{1} \epsilon_{2} \epsilon_{3}}}
$$

## Further reduction: D(-1)/D5

## Study the equivariant volume $\bar{Z}_{N, k}$ SUSY Matrix Model

- Sanity check: result already known (computed in a different way!);
- Same computation with replacement $\sin \mapsto I d$;
- The resummed result is

$$
\bar{Z}_{N}(\vec{\epsilon} ; v)=\sum_{k=0}^{\infty} \bar{Z}_{N, k}(\vec{\xi}, \vec{\epsilon})=[\Phi(v)]^{-N \frac{\left(\epsilon_{1}+\epsilon_{2}\right)\left(\epsilon_{1}+\epsilon_{3}\right)\left(\epsilon_{2}+\epsilon_{3}\right)}{\epsilon_{1} \epsilon_{2} \epsilon_{3}}}
$$

- This is an example of trivial factorization [Nekrasov].


## Free field realization of $Z_{N}$

The propagator of free a free boson on torus is

$$
\langle\phi(u, \bar{u}) \phi(w, \bar{w})\rangle_{T^{2}}=\log G(u, \bar{u} ; w, \bar{w}),
$$

where

$$
G(u, \bar{u} ; w, \bar{w})=e^{-\frac{2 \pi}{\tau_{2}}[\mathfrak{\Im}(u-w)]^{2}}\left|\frac{\theta_{1}(\tau \mid u-w)}{2 \pi \eta^{3}(\tau)}\right|^{2} .
$$

## Free field realization of $Z_{N}$

The propagator of free a free boson on torus is

$$
\langle\phi(u, \bar{u}) \phi(w, \bar{w})\rangle_{T^{2}}=\log G(u, \bar{u} ; w, \bar{w})
$$

where

$$
G(u, \bar{u} ; w, \bar{w})=e^{-\frac{2 \pi}{\tau_{2}}[\mathfrak{J}(u-w)]^{2}}\left|\frac{\theta_{1}(\tau \mid u-w)}{2 \pi \eta^{3}(\tau)}\right|^{2} .
$$

## Comments

- It contains Jacobi $\theta_{1}$ function;


## Free field realization of $Z_{N}$

The propagator of free a free boson on torus is

$$
\langle\phi(u, \bar{u}) \phi(w, \bar{w})\rangle_{T^{2}}=\log G(u, \bar{u} ; w, \bar{w})
$$

where

$$
G(u, \bar{u} ; w, \bar{w})=e^{-\frac{2 \pi}{\tau_{2}}[\Im(u-w)]^{2}}\left|\frac{\theta_{1}(\tau \mid u-w)}{2 \pi \eta^{3}(\tau)}\right|^{2}
$$

## Comments

- It contains Jacobi $\theta_{1}$ function;
- Differently from the planar case, it is not a sum of a holomorphic and anti-holomorphic part because of the $\mathfrak{I}^{2}$.


## Multi-local Vertex Operator

Consider the following vertex operator

$$
\mathcal{V}_{\vec{\epsilon}}(u)=\prod_{i=1}^{7}: e^{\lambda_{i} \phi_{i}\left(u_{+i}\right)}:: e^{-\lambda_{i} \phi_{i}\left(u_{-i}\right)}:
$$



## Source ("Hamiltonian") operator

Let us consider the following operator:

$$
H=\frac{1}{2 \pi \mathrm{i}} \oint_{\Gamma} \partial \phi_{4}(u) \omega(w) \mathrm{d} w
$$

where the contour $\Gamma$ is around $u=0$ and encloses all $u_{ \pm i}$, and

$$
\omega(w)=-\sum_{\alpha=1}^{N} \log \theta_{1}\left(\tau \left\lvert\, w+\xi_{\alpha}-\frac{\epsilon}{2}\right.\right)
$$

## Recovering $Z_{N}$

## Due to some simplification it happens that

## Recovering $Z_{N}$

Due to some simplification it happens that

- $\left\langle: \mathcal{V}_{\vec{\epsilon}}(u):: \mathcal{V}_{\vec{\epsilon}}(w):\right\rangle=\left|\left\langle: \mathcal{V}_{\vec{\epsilon}}(u):: \mathcal{V}_{\vec{\epsilon}}(w):\right\rangle_{\text {hol }}\right|^{2}$,


## Recovering $Z_{N}$

Due to some simplification it happens that

- $\left\langle: \mathcal{V}_{\vec{\epsilon}}(u):: \mathcal{V}_{\vec{\epsilon}}(w):\right\rangle=\left|\left\langle: \mathcal{V}_{\vec{\epsilon}}(u):: \mathcal{V}_{\vec{\epsilon}}(w):\right\rangle_{\text {hol }}\right|^{2}$,
- $\left\langle e^{H}: \mathcal{V}_{\vec{\epsilon}}(u):\right\rangle$ is a holomorphic function of $u$.


## Recovering $Z_{N}$

Due to some simplification it happens that

- $\left\langle: \mathcal{V}_{\vec{\epsilon}}(u):: \mathcal{V}_{\vec{\epsilon}}(w):\right\rangle=\left|\left\langle: \mathcal{V}_{\vec{\epsilon}}(u):: \mathcal{V}_{\vec{\epsilon}}(w):\right\rangle_{\text {hol }}\right|^{2}$,
- $\left\langle e^{H}: \mathcal{V}_{\vec{\epsilon}}(u):\right\rangle$ is a holomorphic function of $u$.

Combining these results it is possible to recover

$$
Z_{N}(v)=\left\langle e^{H} e^{v \oint_{\mathrm{JK}} \mathcal{V}_{\bar{\epsilon}}(u) \mathrm{d} u}\right\rangle_{\text {hol. }} .
$$

## Recovering $Z_{N}$

Due to some simplification it happens that

- $\left\langle: \mathcal{V}_{\vec{\epsilon}}(u):: \mathcal{V}_{\vec{\epsilon}}(w):\right\rangle=\left|\left\langle: \mathcal{V}_{\vec{\epsilon}}(u):: \mathcal{V}_{\vec{\epsilon}}(w):\right\rangle_{\text {hol }}\right|^{2}$,
- $\left\langle e^{H}: \mathcal{V}_{\vec{\epsilon}}(u):\right\rangle$ is a holomorphic function of $u$.

Combining these results it is possible to recover

$$
Z_{N}(v)=\left\langle e^{H} e^{v \oint_{\mathrm{JK}} \mathcal{V}_{\bar{\epsilon}}(u) \mathrm{d} u}\right\rangle_{\text {hol. }}
$$

It can be a starting point for a generalization of Hirota Bilinear Equations.

## Conclusion and Perspective

## What we did

- We computed $Z_{N, k}$ as well as $\widetilde{Z}_{N, k}$ and $\bar{Z}_{N, k}$ using JK technique;


## Conclusion and Perspective

## What we did

- We computed $Z_{N, k}$ as well as $\widetilde{Z}_{N, k}$ and $\bar{Z}_{N, k}$ using JK technique;
- We explored the factorization properties of the above quantitis


## Conclusion and Perspective

## What we did

- We computed $Z_{N, k}$ as well as $\widetilde{Z}_{N, k}$ and $\bar{Z}_{N, k}$ using JK technique;
- We explored the factorization properties of the above quantitis
- We extendend Nekrasov's PE ansatz;


## Conclusion and Perspective

## What we did

- We computed $Z_{N, k}$ as well as $\widetilde{Z}_{N, k}$ and $\bar{Z}_{N, k}$ using JK technique;
- We explored the factorization properties of the above quantitis
- We extendend Nekrasov's PE ansatz;
- We gave a free field realization of $Z_{N}$.


## Conclusion and Perspective

## What we did

- We computed $Z_{N, k}$ as well as $\widetilde{Z}_{N, k}$ and $\bar{Z}_{N, k}$ using JK technique;
- We explored the factorization properties of the above quantitis
- We extendend Nekrasov's PE ansatz;
- We gave a free field realization of $Z_{N}$.


## What is still to do

- Following the same program for threefold with more complex topology (i.e. the conifold);


## Conclusion and Perspective

## What we did

- We computed $Z_{N, k}$ as well as $\widetilde{Z}_{N, k}$ and $\bar{Z}_{N, k}$ using JK technique;
- We explored the factorization properties of the above quantitis
- We extendend Nekrasov's PE ansatz;
- We gave a free field realization of $Z_{N}$.


## What is still to do

- Following the same program for threefold with more complex topology (i.e. the conifold);
- Explore the D0/D8 case [Nekrasov: "Magnificent four"];


## Conclusion and Perspective

## What we did

- We computed $Z_{N, k}$ as well as $\widetilde{Z}_{N, k}$ and $\bar{Z}_{N, k}$ using JK technique;
- We explored the factorization properties of the above quantitis
- We extendend Nekrasov's PE ansatz;
- We gave a free field realization of $Z_{N}$.


## What is still to do

- Following the same program for threefold with more complex topology (i.e. the conifold);
- Explore the D0/D8 case [Nekrasov: "Magnificent four"];
- Understand the possible link between the free field realization point of view and integrable hierarchies.


## Thank you for your attention!

