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Introduction and Motivations Soft Theorems as Ward Identities

Weinberg’s Soft Theorem

Let us consider a scattering process involving a soft particle with spin s
and momentum qµ. For s = 1,2,3, . . . and any D, to leading order in
the soft momentum qµ

=

 ∑
n∈in/out

g(s)
n

[εn(q) · pn]s

q · pn


Enforcing gauge invariance leads to:

the conservation of electric charge for s = 1,
the equivalence principle for s = 2,

g(s)
n = 0 for s ≥ 3 by momentum conservation.
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Introduction and Motivations Soft Theorems as Ward Identities

Soft Theorems as Ward Identities

It was pointed out [Strominger et al. 2013] that:
Weinberg’s soft photon theorem follows from invariance of QED
under large gauge transformations;
Weinberg’s soft graviton theorem is a consequence of BMS
symmetry for asymptotically flat spacetimes.

What about higher spins?

Can Weinberg’s theorem be recast as the Ward identities of
an underlying symmetry also for s ≥ 3? Can we identify it?
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Introduction and Motivations BMS Group and Soft Gravitons

Recent Interest in Asymptotic Symmetries

Why asymptotic symmetries?
New insights into soft theorems in particle physics
[A. Strominger et al., 2013].
Potentially observable effects: gravitational memory
[A. Strominger and A. Zhiboedov, 2014] and electromagnetic memory
[L. Bieri and D. Garfinkle, 2013].
Insight (?) into the black hole information paradox
[S. Hawking, M. Perry and A. Strominger, 2016]
(but see also [M. Porrati et al., 2017]).
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Introduction and Motivations BMS Group and Soft Gravitons

Asymptotic Flatness

Let us consider an asymptotically flat spacetime in D = 4.
Near I + let xµ = r , u, z, z̄ be retarded Bondi coordinates (denoted
with Greek indices):

a radial coordinate r
retarded time u and
angular coordinates z, z̄

z = eiφ cot
θ

2
, z̄ = e−iφ cot

θ

2
.

γzz̄ = metric on the Euclidean sphere
Dz = covariant derivative

on the sphere.
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Introduction and Motivations BMS Group and Soft Gravitons

Asymptotic Flatness
The Bondi gauge

Such a spacetime can be described by a fluctuation hµν with respect to
the Minkowski metric ηµν ,

gµν = ηµν + hµν ,

subject to the conditions (Bondi gauge): hrµ = 0 = hzz̄ ,

huu =
2mB

r
, huz = −Uz , hzz = rCzz (& z ↔ z̄) ,

where mB, Uz and Czz are functions of u, z and z̄ only.

These falloffs follow from the general analysis of the nonlinear
theory,
but they can be consistently imposed also in the linearized theory.
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Introduction and Motivations BMS Group and Soft Gravitons

BMS Symmetry and Soft Graviton Theorem

The linearized diffeomorphisms which (locally) preserve the Bondi
gauge are:

supertranslations [Bondi, van der Burg, Metzner, Sachs] specified by
an arbitrary angular function T (z, z̄),
superrotations [Barnich, Troessaert ] given by the conformal Killing
vectors on the sphere

DzYz(z, z̄) = 0 , Dz̄Yz̄(z, z̄) = 0 .

The associated vector fields generate the BMS algebra.

Using the Ward identities of supertranslation symmetry, we were
able to retrieve Weinberg’s soft graviton theorem without assuming, but
rather deriving

g(2)
n = 1 (equivalence principle).
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Asymptotic Symmetries of Higher Spins HS Supertranslations and Superrotations

The “Bondi-like gauge”

A natural way to generalize the Bondi-gauge falloffs to spin three in
D = 4 Minkowski space is (“Bondi-like gauge”): ϕrµν = 0 = ϕαzz̄ ,

ϕuuu =
B
r
, ϕuuz = Uz , ϕuzz = rCzz , ϕzzz = r2Bzzz (& z ↔ z̄) ,

where B, Uz , Czz and Bzzz are functions of u, z, z̄ only.
This is a set of gauge/falloff conditions consistent with the free
equations of motion.
The extension to spin s is ϕrµ2...µs = 0 = ϕzz̄µ3...µs and, letting d
denote the number of “z” indices,

ϕuu...uzz...z = O
(
rd−1).
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Asymptotic Symmetries of Higher Spins HS Supertranslations and Superrotations

Spin-s Supertranslations

We now look for large gauge transformations δϕµ1...µs = ∇(µ1
ε...µs)

that preserve the Bondi-like gauge.
For any s, they are found to comprise an infinite-dimensional
family of symmetries;
Higher-spin supertranslations εpd ,c (where p=number of u’s and
c=number of zz̄ pairs) are specified by a single arbitrary angular
function T (z, z̄) as

εpd ,0 = −
rdDd

z Tp∏d
k=1(s − p − k)

,

εpd ,c+1 = −1
2
γzz̄r2

(
εpd ,c − 2εp+1

d ,c

)
,

Tp+1 =
s − p

s[s − (p + 1)]
Tp +

1
[s − (p + 1)]2

DzDzTp .
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Asymptotic Symmetries of Higher Spins HS Supertranslations and Superrotations

Spin-three Supertranslations and Superrotations

For spin three, the complete set of large gauge symmetries preserving
the Bondi-like gauge is parametrized by:

an arbitrary angular function

T (z, z̄) ,

conformal Killing 2-tensors on the celestial sphere

DzKzz(z, z̄) = 0 , Dz̄Kz̄z̄(z, z̄) = 0 ,

and the solutions to

D2
zρz(z, z̄) = 0 , D2

z̄ρz̄(z, z̄) = 0 .

In both cases, these equations have an infinite-dimensional space of
solutions.
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Asymptotic Symmetries of Higher Spins HS Supertranslations and Weinberg’s Soft Theorem

Supertranslation Charge

We can compute the supertranslation surface charge for any
integer spin s:

Q+ = s
∫

I +
−

dzdz̄ γzz̄B(−∞, z, z̄)T (z, z̄)

where ϕuu...u = B/r .
We assume that supertranslation symmetry is generated by the
corresponding charge

[Q+,Φ] =
s
2

g(s)T (z, z̄)(i∂u)s−1Φ .

Considering S-matrix elements, we obtain the Ward identity

〈out|Q+S − SQ−|in〉 =
s
2

∑
n

g(s)
n T (z, z̄)Es−1

n 〈out|S|in〉 .
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Asymptotic Symmetries of Higher Spins HS Supertranslations and Weinberg’s Soft Theorem

Weinberg’s Factorization from
Higher-Spin Supertranslations

Applying Ds−1
z to the so-obtained Ward identity allows us to retrieve

Weiberg’s theorem written in terms of the coordinates z, z̄ on the
celestial sphere.
To summarize:

〈out|Q+S − SQ−|in〉 =
s
2

∑
n

g(s)
n T (z, z̄)Es−1

n 〈out|S|in〉,

⇓

=

 ∑
n∈in/out

g(s)
n

[εn(q) · pn]s

q · pn
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Asymptotic Symmetries of Higher Spins HS Supertranslations and Weinberg’s Soft Theorem

Infrared Issues and Higher Spins

Potential insight into the complicated infrared behavior of higher-spin
fields:

the corresponding physical quanta should decouple at low
energy (Weinberg’s theorem);
interactions of massless higher-spin fields appear to be in
conflict with (perturbative) locality on flat space (at least).

Two kinds of infrared regulators (apparently) allow to avoid such
issues:

a cosmological constant Λ 6= 0 (Vasiliev theory),
the string tension 1/α′ (string theory).

(Higher-spin symmetry breaking?).

Carlo Heissenberg (SNS) HS Asymptotic Symmetries & Soft Theorems 17 / 20



Asymptotic Symmetries of Higher Spins HS Supertranslations and Weinberg’s Soft Theorem

Infrared Issues and Higher Spins

Potential insight into the complicated infrared behavior of higher-spin
fields:

the corresponding physical quanta should decouple at low
energy (Weinberg’s theorem);
interactions of massless higher-spin fields appear to be in
conflict with (perturbative) locality on flat space (at least).

Two kinds of infrared regulators (apparently) allow to avoid such
issues:

a cosmological constant Λ 6= 0 (Vasiliev theory),
the string tension 1/α′ (string theory).

(Higher-spin symmetry breaking?).

Carlo Heissenberg (SNS) HS Asymptotic Symmetries & Soft Theorems 17 / 20



Higher Dimensions and Charges

Yang-Mills in Any D: Radiation VS Coulombic terms

The analysis presented so far admits a straightforward
generalization to any spacetime dimension (both even and odd).
Let us focus on the self-interacting spin-one case: pure Yang-Mills.
This case also allows us to keep track of the relevant nonlinear
effects (unlike for higher spins).

In radial gauge Ar = 0, this analysis highlights two paticularly relevant
terms in the asymptotic 1/r expansion:

Radiation terms Aur (2−D)/2 , giving rise to finite nonzero energy
and color flux across null infinity,

Coulombic term Ãur3−D contributing to the color charge integral
at a given retarded time.
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Higher Dimensions and Charges

Yang-Mills in Any D: Charges and Energy Flux

The power radiated by the Yang-Mills field across a
(D − 2)–sphere Su at a given retarded time u and very large radial
distance r reads

P(u) = −
∫

Su

γ ij tr(∂uAi∂uAj)dΩD−2 ,

where z i and γij are coordinates and the metric on the celestial
sphere.
Color charge (T A = Ath generator of su(n))

Q(u)A = (D − 3)

∫
Su

tr(ÃuT A)dΩD−2 .

Color flux
d
du
Q(u)A =

∫
Su

γ ij [Ai , ∂uAj ]
AdΩD−2 .
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Summary and Outlook

Summary and Outlook

Higher-spin theories in D = 4 flat space exhibit
infinite-dimensional asymptotic symmetries
Higher-spin supertranslation symmetry can be held responsible
for Weinberg’s soft factorization theorem.
The asymptotic analysis can be extended to any D and allows for
consistent expressions of charge and energy flux.

Outlook
Is there a non-Abelian algebra underlying higher-spin asymptotic
symmetries?

Higher D: origin of Weinberg’s theorem? Memory?

Can a similar analysis be performed for (asymptotically) (A)dS
spaces or string theory? What about the limit Λ→ 0 resp.
α′ →∞?
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