Beyond the LHC: future prospects for high-energy physics

> Michelangelo L. Mangano CERN, Theory Department

New frontiers in theoretical physics, XXXVI convegno nazionale di fisica teorica, Cortona, May 23-26 2018

what's next?

what's next?

- HEP has two priorities:
 - explore the physics of electroweak symmetry breaking:
 - experimentally, via the measurement of Higgs properties, Higgs interactions and selfinteractions, couplings of gauge bosons, flavour phenomena, etc
 - theoretically, to understand the nature of the hierarchy problem and identify possible natural solutions (to be subjected to exptl test)
 - explore the origin of known departures from the SM (DM, neutrino masses, baryon asymmetry of the universe)

what's next?

- HEP has two priorities:
 - explore the physics of electroweak symmetry breaking:
 - experimentally, via the measurement of Higgs properties, Higgs interactions and selfinteractions, couplings of gauge bosons, flavour phenomena, etc
 - theoretically, to understand the nature of the hierarchy problem and identify possible natural solutions (to be subjected to exptl test)
 - explore the origin of known departures from the SM (DM, neutrino masses, baryon asymmetry of the universe)

The programme builds on the belief that these two directions are deeply intertwined

$V_{SM}(H) = -\mu^2 |H|^2 + \lambda |H|^4$

any function of IHI² would be ok wrt known symmetries

 $V_{SM}(H) =$

both sign and value totally arbitrary

>0 to ensure stability, but otherwise arbitrary

 $-\mu^2 H^2 + \lambda$

a historical example: superconductivity

a historical example: superconductivity

• The relation between the Higgs phenomenon and the SM is similar to the relation between superconductivity and the Landau-Ginzburg theory of phase transitions: a quartic potential for a bosonic order parameter, with negative quadratic term, and the ensuing symmetry breaking. If superconductivity had been discovered after Landau-Ginzburg, we would be in a similar situations as we are in today: an experimentally proven phenomenological model. But we would still lack a deep understanding of the relevant dynamics.

a historical example: superconductivity

- The relation between the Higgs phenomenon and the SM is similar to the relation between superconductivity and the Landau-Ginzburg theory of phase transitions: a quartic potential for a bosonic order parameter, with negative quadratic term, and the ensuing symmetry breaking. If superconductivity had been discovered after Landau-Ginzburg, we would be in a similar situations as we are in today: an experimentally proven phenomenological model. But we would still lack a deep understanding of the relevant dynamics.
- For superconductivity, this came later, with the identification of e⁻e⁻ Cooper pairs as the underlying order parameter, and BCS theory. In particle physics, we still don't know whether the Higgs is built out of some sort of Cooper pairs (composite Higgs) or whether it is elementary, and in both cases we have no clue as to what is the dynamics that generates the Higgs potential. With Cooper pairs it turned out to be just EM and phonon interactions. With the Higgs, none of the SM interactions can do this, and we must look beyond.

short-scale physics does not alter the charge seen at large scales

 $V_{SM}(H) = -\mu^2 |H|^2 + \lambda |H|^4$

short-scale physics does not alter the charge seen at large scales

short-scale physics does not alter the charge seen at large scales

short-scale physics does not alter the charge seen at large scales

high-energy modes can change size and sign of both μ^2 and λ , dramatically altering the stability and dynamics

bottom line

- To predict the properties of EM at large scales, we don't need to know what happens at short distance scales
- The Higgs dynamics is sensitive to all that happens at any distance scale shorter than the Higgs mass!!! A very unnatural fine tuning is required to protect the Higgs dynamics from the dynamics at high energy
- This issue goes under the name of hierarchy problem
- Solutions to the hierarchy problem require the introduction of new symmetries (typically leading to the existence of new particles), which decouple the high-energy modes and allow the Higgs and its dynamics to be defined at the "natural" scale defined by the measured parameters v and m_H

\Rightarrow naturalness

- What's the real origin of EW symmetry breaking and particle's masses?
- What protects the smallness of m_H / m_{Plank,GUT} (hierarchy problem)?

- What's the real origin of EW symmetry breaking and particle's masses?
- What protects the smallness of m_H / m_{Plank,GUT} (hierarchy problem)?
- What's the origin of Dark matter / energy ?

- What's the real origin of EW symmetry breaking and particle's masses?
- What protects the smallness of m_H / m_{Plank,GUT} (hierarchy problem)?
- What's the origin of Dark matter / energy ?
- What's the origin of matter/antimatter asymmetry in the universe?

- What's the real origin of EW symmetry breaking and particle's masses?
- What protects the smallness of m_H / m_{Plank,GUT} (hierarchy problem)?
- What's the origin of Dark matter / energy ?
- What's the origin of matter/antimatter asymmetry in the universe?
- What's the origin of neutrino masses?

- What's the real origin of EW symmetry breaking and particle's masses?
- What protects the smallness of m_H / m_{Plank,GUT} (hierarchy problem)?
- What's the origin of Dark matter / energy ?
- What's the origin of matter/antimatter asymmetry in the universe?
- What's the origin of neutrino masses?
- ... (flavour, inflation, cosmological constant,

The LHC experiments have been exploring a vast multitude of scenarios of physics beyond the Standard Model

- New gauge interactions (Z', W') or extra Higgs bosons
- Additional fermionic partners of quarks and leptons, leptoquarks, ...
- Composite nature of quarks and leptons
- Supersymmetry, in a variety of twists (minimal, constrained, natural, RPV, ...)
- Dark matter, long lived particles
- Extra dimensions
- New flavour phenomena
- unanticipated surprises ...

So far, no conclusive signal of physics beyond the SM

A	TLAS Exotics	Search	es* -	95%	6 CL	Upper Exclu	sion Limits	6	ATL	AS Preliminar
	Model	<i>ℓ</i> ,γ	Jets†	E ^{miss} T	∫£ dt[ft	-1]	Limit		3.2 – 37.0) fb ⁻¹	$\sqrt{s} = 8, 13$ TeV Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq\ell\gamma$ 2UED / RPP	0 e,μ 2 γ - ≥ 1 e,μ - 2 γ 1 e,μ 1 e,μ	1 - 4j - 2j $\ge 2j$ $\ge 3j$ - 1J $\ge 2b, \ge 3$	Yes - - - Yes Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	M _D M _S M _{th} M _{th} G _{KK} mass G _{KK} mass KK mass		7.75 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 4.1 TeV 1.75 TeV 1.6 TeV	$\begin{array}{l} n=2\\ n=3 \; \text{HLZ NLO}\\ n=6\\ n=6, M_D=3 \; \text{TeV, rot BH}\\ n=6, M_D=3 \; \text{TeV, rot BH}\\ k/\overline{M}_{\text{Pl}}=0.1\\ k/\overline{M}_{\text{Pl}}=1.0\\ \text{Tier (1,1), } \mathfrak{B}(A^{(1.3)} \rightarrow tt)=1 \end{array}$	ATLAS-CONF-2017-06 CERN-EP-2017-132 1703.09217 1606.02265 1512.02586 CERN-EP-2017-132 ATLAS-CONF-2017-05 ATLAS-CONF-2016-10
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{HVT} V' \to WV \to qqqq \mbox{ model} \\ \operatorname{HVT} V' \to WH/ZH \mbox{ model} \\ \operatorname{LRSM} W'_R \to tb \\ \operatorname{LRSM} W'_R \to tb \\ \operatorname{LRSM} W'_R \to tb \end{array}$	2 e, μ 2 τ - 1 e, μ el B 0 e, μ multi-channe 1 e, μ 0 e, μ	- 2b ≥ 1 b, ≥ 1J/ 2J 8 2 b, 0-1 j ≥ 1 b, 1 J	- 2jYes Yes - Yes -	36.1 3.2 3.2 36.1 36.7 36.1 20.3 20.3	Z' mass Z' mass Z' mass Z' mass W' mass V' mass W' mass W' mass W' mass		4.5 TeV 2.4 TeV 5 TeV 2.0 TeV 5.1 TeV 3.5 TeV 2.93 TeV 1.92 TeV 1.76 TeV	f'/m = 3% $g_V = 3$ $g_V = 3$	ATLAS-CONF-2017-02 ATLAS-CONF-2017-05 1603.08791 ATLAS-CONF-2016-01 1706.04786 CERN-EP-2017-147 ATLAS-CONF-2017-05 1410.4103 1408.0886
G	Cl qqqq Cl ((qq Cl uutt	– 2 e,µ 2(SS)/≥3 e,∤	2j _ u≥1b,≥1j	– – Yes	37.0 36.1 20.3	A A A		4.9 TeV	21.8 TeV η ⁻ _{LL} 40.1 TeV η ⁻ _{LL} C _{RR} = 1 1	1703.09217 ATLAS-CONF-2017-02 1504.04605
MQ	Axial-vector mediator (Dirac DM) Vector mediator (Dirac DM) VV _{XX} EFT (Dirac DM)	VI) 0 e, μ 0 e, μ, 1 γ 0 e, μ	$\begin{array}{c} 1 - 4 j \\ \leq 1 j \\ 1 J, \leq 1 j \end{array}$	Yes Yes Yes	36.1 36.1 3.2	m _{med} m _{med} M _*	1 1.2 T 700 GeV	5 TeV IV	$\begin{array}{l} g_q{=}0.25,g_{\chi}{=}1.0,m(\chi)<400~{\rm GeV}\\ g_q{=}0.25,g_{\chi}{=}1.0,m(\chi)<480~{\rm GeV}\\ m(\chi)<150~{\rm GeV} \end{array}$	ATLAS-CONF-2017-06 1704.03848 1608.02372
Ę	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	– – Yes	3.2 3.2 20.3	LQ mass LQ mass LQ mass	1.1 Te 1.05 TeV 640 GeV		$egin{array}{lll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 0 \end{array}$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ TT \rightarrow Zt + X \\ VLQ \ TT \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Wt + X \\ VLQ \ BB \rightarrow Wt + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	0 or 1 e,µ 1 e,µ 1 e,µ 2/≥3 e,µ 1 e,µ 1 e,µ	$\begin{array}{l} \geq 2 \ b, \geq 3 \\ \geq 1 \ b, \geq 3 \\ \geq 1 \ b, \geq 2 \ J, \geq 3 \\ \geq 2 \ b, \geq 3 \\ \geq 2/\geq 1 \ b \\ \geq 1 \ b, \geq 1 \ J/ \\ \geq 4 \ j \end{array}$	j Yes j Yes 2j Yes j Yes - 2j Yes Yes	13.2 36.1 36.1 20.3 20.3 36.1 20.3	T mass T mass T mass B mass B mass B mass Q mass	1.2 T 1.16 T 1.35 700 GeV 790 GeV 1.25 690 GeV	eV	$\begin{array}{l} \mathcal{B}(T \rightarrow Ht) = 1 \\ \mathcal{B}(T \rightarrow Zt) = 1 \\ \mathcal{B}(T \rightarrow Wb) = 1 \\ \mathcal{B}(B \rightarrow Hb) = 1 \\ \mathcal{B}(B \rightarrow Zb) = 1 \\ \mathcal{B}(B \rightarrow Wt) = 1 \end{array}$	ATLAS-CONF-2016-10- 1705.10751 CERN-EP-2017-094 1505.04306 1409.5500 CERN-EP-2017-094 1509.04261
fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	2j 1j 1b,1j 1b,2-0j -	- - Yes -	37.0 36.7 13.3 20.3 20.3 20.3	q" mass q" mass b" mass b" mass (" mass v" mass	1	6.0 TeV 5.3 TeV 2.3 TeV 5 TeV 3.0 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 CERN-EP-2017-148 ATLAS-CONF-2016-06 1510.02664 1411.2921 1411.2921
Other	LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	2 e, μ 2,3,4 e, μ (SS 3 e, μ, τ 1 e, μ - -	2j 5) – 1b –	- - Yes -	20.3 36.1 20.3 20.3 20.3 7.0	N ^e mass H ^{**} mass H ^{**} mass spin-1 invisible particle mass multi-charged particle mass monopole mass	870 GeV 400 GeV 657 GeV 785 GeV 1.34	2.0 TeV	$\begin{split} m(W_{\rm ff}) &= 2.4 \text{ TeV, no mixing} \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{\rm ss} \to \ell \tau) = 1 \\ a_{\rm non-ns} &= 0.2 \\ \text{DY production}, q &= 5e \\ \text{DY production}, g &= 1g_D, \text{ spin } 1/2 \end{split}$	1506.06020 ATLAS-CONF-2017-05 1411.2921 1410.5404 1504.04188 1509.08059
*On	ly a selection of the availab	<mark>√s = 8 TeV</mark> ble mass limi	<mark>√s = 1</mark> 3 its on new	TeV	s or phei	10 ⁻¹			⁰ Mass scale [TeV]	

†Small-radius (large-radius) jets are denoted by the letter j (J).

Long-term LHC plan

The O(40)fb⁻¹ analyzed so far are just 1% of the final statistics

Long-term LHC plan

The O(40)fb⁻¹ analyzed so far are just 1% of the final statistics ==>> the LHC physics programme has barely started! <<== <u>Key question for the future developments of HEP:</u> Why don't we see the new physics we expected to be present around the TeV scale ? <u>Key question for the future developments of HEP:</u> Why don't we see the new physics we expected to be present around the TeV scale ?

- Is the mass scale beyond the LHC reach ?
- Is the mass scale within LHC's reach, but final states are elusive to the direct search ?

<u>Key question for the future developments of HEP:</u> Why don't we see the new physics we expected to be present around the TeV scale ?

- Is the mass scale beyond the LHC reach ?
- Is the mass scale within LHC's reach, but final states are elusive to the direct search ?

These two scenarios are a priori equally likely, but they impact in different ways the future of HEP, and thus the assessment of the physics potential of possible future facilities

Readiness to address both scenarios is the best hedge for the field:

- precision
- sensitivity (to elusive signatures)
- extended energy/mass reach

<u>Remark</u>

the discussion of the **future** in HEP must start from the understanding that there is no experiment/facility, proposed or conceivable, in the lab or in space, accelerator or nonaccelerator driven, which can *guarantee discoveries* beyond the SM, and *answers* to the big questions of the field

(1) the guaranteed deliverables:

 knowledge that will be acquired independently of possible discoveries (the value of "measurements")

(1) the guaranteed deliverables:

 knowledge that will be acquired independently of possible discoveries (the value of "measurements")

(2) the **exploration potential**:

- target broad and well justified BSM scenarios but guarantee sensitivity to more exotic options
- exploit both direct (large Q^2) and indirect (precision) probes

(1) the guaranteed deliverables:

 knowledge that will be acquired independently of possible discoveries (the value of "measurements")

(2) the **exploration potential**:

- target broad and well justified BSM scenarios but guarantee sensitivity to more exotic options
- exploit both direct (large Q^2) and indirect (precision) probes
- (3) the potential to provide conclusive yes/no answers to relevant, broad questions.
Colliders beyond the LHC

What are we talking about when we're talking future colliders: at CERN...

pp @ 14 TeV, 3ab⁻¹

What are we talking about when we're talking future colliders: at CERN...

pp @ 14 TeV, 3ab-1

e+e⁻ @ 380 GeV, 1.5 & ~3 TeV

CDR 2012+ update '16

CDR: Conceptual Design Report

16

What are we talking about when we're talking future colliders: at CERN...

e+e- @ 380 GeV, 1.5 & ~3 TeV

CDR 2012+ update '16

CDR: Conceptual Design Report

FCC hh ee he

100km tunnel

- pp @ 100 TeV
- e⁺e⁻ @ 91, 160, 240, 365 GeV
- e60Gev p50Tev @ 3.5 TeV

CDR (end '18)

LHC tunnel: HE-LHC

• pp @ 27 TeV, 15ab⁻¹

Future Circular Collider

... and in the rest of the world:

e+e⁻ @ 250, 350, 500 GeV

TDR: Technical Design Report

CDR (Summer '18) decision by 2020?

100km tunnel

- e⁺e⁻ @ 91, 240 GeV (but possibly 160 & 350)
- Future possible pp @ ~70 TeV and e60GeV p35TeV

- <u>Guaranteed deliverables</u>:
 - study of Higgs and top quark properties, and exploration of EWSB phenomena, with unmatchable precision and sensitivity

- <u>Guaranteed deliverables</u>:
 - study of Higgs and top quark properties, and exploration of EWSB phenomena, with unmatchable precision and sensitivity
- Exploration potential:
 - mass reach enhanced by factor ~ E / 14 TeV (will be 5–7 at 100 TeV, depending on integrated luminosity)
 - statistics enhanced by several orders of magnitude for BSM phenomena brought to light by the LHC
 - benefit from both direct (large Q^2) and indirect (precision) probes

- <u>Guaranteed deliverables</u>:
 - study of Higgs and top quark properties, and exploration of EWSB phenomena, with unmatchable precision and sensitivity
- Exploration potential:
 - mass reach enhanced by factor ~ E / 14 TeV (will be 5–7 at 100 TeV, depending on integrated luminosity)
 - statistics enhanced by several orders of magnitude for BSM phenomena brought to light by the LHC
 - benefit from both direct (large Q^2) and indirect (precision) probes
- <u>Provide firm Yes/No answers</u> to questions like:
 - is the SM dynamics all there is at the TeV scale?
 - is there a TeV-scale solution to the hierarchy problem?
 - is DM a thermal WIMP?
 - did baryogenesis take place during the EW phase transition?

Examples: precision Higgs physics

FCC-ee

	FCC-ee 240 GeV	FCC- ee 350 GeV
Total Integrated Luminosity (ab-1)	5	1.5
# Higgs bosons from e⁺e⁻→HZ	1,000,000	200,000
# Higgs bosons form fusion process	25,000	40,000

 $p(H) = p(e^-e^+) - p(Z)$

=> [p(e⁻e⁺) – p(Z)]² peaks at m²(H)

reconstruct Higgs events independently of the Higgs decay mode!

 $N(ZH) \propto \sigma(ZH) \propto g_{HZZ}^2$

N(ZH[→ZZ]) ∝ σ (ZH) x BR(H→ZZ) ∝ G_{HZZ}^2 × G_{HZZ}^2 / Γ(H)

=> absolute measurement of width and couplings

Higgs couplings @ FCC-ee

measurement precision:

Э нхү	ee [240+350 (2IP)]	
ZZ	0.21%	
WW	0.43%	
bb	0.64%	
CC	1.04%	
gg	1.18%	
TT	0.81%	
μμ	8.8%	
ΥΥ	2.12%	
Ζγ		
tt	~13%	
HH	~30%	
uu,dd	H->ργ, under study	
SS	H->φγ, under study	
BRinv	< 0.45%	
F tot	1.5%	

SM Higgs at 100 TeV

	N_{100}	N_{100}/N_8	N_{100}/N_{14}
$gg \to H$	16×10^9	4×10^4	110
VBF	1.6×10^{9}	$5 imes 10^4$	120
WH	$3.2 imes 10^8$	$2 imes 10^4$	65
ZH	$2.2 imes 10^8$	$3 imes 10^4$	85
$t ar{t} H$	$7.6 imes 10^8$	$3 imes 10^5$	420

- $N_{100} = \sigma_{100 \,\text{TeV}} \times 20 \,\text{ab}^{-1}$
- $N_8 = \sigma_{8 \text{ TeV}} \times 20 \text{ fb}^{-1}$

$$N_{14} = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1}$$

• can afford reducing statistics, with tighter kinematical cuts that reduce backgrounds and systematics

Huge production rates imply:

 can explore new dynamical regimes, where new tests of the SM and EWSB can be done

$gg \rightarrow H \rightarrow \gamma \gamma$ at large p_T

- At LHC, S/B in the $H \rightarrow \gamma \gamma$ channel is O(few %)
- At FCC, for p_T(H)>300 GeV, S/B~I
- Potentially accurate probe of the H pt spectrum up to large pt

δ _{stat}	р _{т,min} (GeV)
0.2%	100
0.5%	400
1%	600
10%	1600

One should not underestimate the value of FCC-hh standalone precise "ratios-of-BRs" measurements:

- independent of α_s , m_b , m_c , Γ_{inv} systematics
- sensitive to BSM effects that typically influence BRs in different ways. Eg

```
\frac{BR(H \rightarrow \gamma \gamma)}{BR(H \rightarrow ZZ^*)}
loop-level tree-level
```

 $BR(H \rightarrow \mu\mu)/BR(H \rightarrow ZZ^*)$

2nd gen'n Yukawa

gauge coupling

```
BR(H \rightarrow \gamma \gamma)/BR(H \rightarrow Z \gamma)
```

different EW charges in the loops of the two procs

Higgs couplings @ FCC

ਉ нхү	ee [240+350 (2IP)]	pp [100 TeV] 30ab ⁻¹	ep [60GeV/50TeV], 1ab ⁻¹
ZZ	0.21%	<1%	0.43%
WW	0.43%		0.26%
bb	0.64%		0.74%
СС	1.04%		1.35%
gg	1.18%		1.17%
тт	0.81%		1.10%
μμ	8.8%	<1%	
ΥY	2.12%	<0.5%	2.35%
Ζγ		<1%	
tt	~13%	1%	
HH	~30%	3.5%	under study
uu,dd	H->ργ, under study		
SS	H->φγ, under study		
BRinv	< 0.45%	few 10 ⁻⁴	
Γ _{tot}	1.5%		

Higgs couplings @ FCC

ਉ нхү	ee [240+350 (2IP)]	pp [100 TeV] 30ab ⁻¹	ep [60GeV/50TeV], 1ab ⁻¹
ZZ	0.21%	<1%	0.43%
WW	0.43%		0.26%
bb	0.64%		0.74%
СС	1.04%		1.35%
gg	1.18%		1.17%
тт	0.81%		1.10%
μμ	8.8%	<1%	
ΥY	2.12%	<0.5%	2.35%
Ζγ		<1%	
tt	~13%	1%	
HH	~30%	3.5%	under study
uu,dd	H->ργ, under study	first pro	be of the Higgs potential
SS	H->φγ, under study	beyond	the 2-point function
BRinv	< 0.45%	few 10 ⁻⁴	
Γ _{tot}	1.5%		

Higgs couplings @ FCC

ਉ нхү	ee [240+350 (2IP)]	pp [100 TeV] 30ab ⁻¹	ep [60GeV/50TeV], 1ab ⁻¹
ZZ	0.21%	<1%	0.43%
WW	0.43%		0.26%
bb	0.64%		0.74%
СС	1.04%		1.35%
gg	1.18%		1.17%
TT	0.81%		1.10%
μμ	8.8%	<1%	
γγ	2.12%	<0.5%	2.35%
Ζγ		<1%	
tt	~13%	1%	
HH	~30%	3.5%	under study
uu,dd	H->pγ, under study	first pro	be of the Higgs potential
SS	H->φγ, under study	beyond	the 2-point function
BRinv	< 0.45%	few 10-4	
Γ _{tot}	1.5%	sensiti	ve to possible
		Higgs-	to-DM decays

P.Harris & K.Hahn

Impact on DM bounds

Examples: direct discovery reach

New gauge bosons discovery reach

Example: W' with SM-like couplings

 ab^{-1}

At L=O(ab⁻¹), Lum x 10 $\Rightarrow \sim M + 7 \text{ TeV}$

31

SUSY reach at 100 TeV

Examples: conclusive yes/no answers

Dark Matter

- DM could be explained by BSM models that would leave no signature at any future collider (e.g. axions).
- More in general, no experiment can guarantee an answer to the question "what is DM?"
- Scenarios in which DM is a WIMP are however compelling and theoretically justified
- We would like to understand whether a future collider can answer more specific questions, such as:
 - do WIMPS contribute to DM?
 - can WIMPS, detectable in direct and indirect (DM annihilation) experiments, be discovered at future colliders? Is there sensitivity to the explicit detection of DM-SM mediators?
 - what are the opportunities w.r.t. new DM scenarios (e.g. interacting DM, asymmetric DM,)?

DM reach at 100 TeV

 $M_{\text{WIMP}} \le 1.8 \text{ TeV} \left(\frac{g^2}{0.3}\right)$ possibility to find the second the second second

possibility to find (or rule out) thermal WIMP DM candidates

The nature of the EW phase transition

Strong Ist order phase transition is required to induce and sustain the out of equilibrium generation of a baryon asymmetry during EW symmetry breaking

Strong Ist order phase transition $\Rightarrow \langle \Phi_C \rangle > T_C$

Strong Ist order phase transition is required to induce and sustain the out of equilibrium generation of a baryon asymmetry during EW symmetry breaking

Strong Ist order phase transition $\Rightarrow \langle \Phi_C \rangle > T_C$

In the SM this requires $m_H \approx 80$ GeV, else transition is a smooth crossover.

Since $m_H = 125$ GeV, new physics, coupling to the Higgs and effective at scales O(TeV), must modify the Higgs potential to make this possible

Strong Ist order phase transition is required to induce and sustain the out of equilibrium generation of a baryon asymmetry during EW symmetry breaking

Strong Ist order phase transition $\Rightarrow \langle \Phi_C \rangle > T_C$

In the SM this requires $m_H \approx 80$ GeV, else transition is a smooth crossover.

Since $m_H = 125$ GeV, new physics, coupling to the Higgs and effective at scales O(TeV), must modify the Higgs potential to make this possible

- Probe higher-order terms of the Higgs potential (selfcouplings)
- Probe the existence of other particles coupled to the Higgs

What will FCC tell us about the existence of extra Higgs bosons enabling a 1st order EWPT?

Kotwal, No, Ramsey-Musolf, Winslow, arXiv:1605.06123

Flavour anomalies at LHC & Bfact's

0.3

0.4

 $R(D^*)$

b→sℓℓ

$$R_{K^{(*)}} = \frac{BR(B \to K^{(*)}\mu\mu)}{BR(B \to K^{(*)}ee)}$$

0.2

LHCb average

 $0.306 \pm 0.016 \pm 0.022$

Fajfer et al. (SM) PRD 85 (2012) 094025

 0.252 ± 0.003

0.1

m _{II} [mass range]	\mathbf{SM}	Exp.
$R_K^{[1-6]}$	1.00 ± 0.01	$0.745^{+0.090}_{-0.074}\pm0.036$
$R_{K^*}^{[1.1-6]}$	1.00 ± 0.01	$0.685^{+0.113}_{-0.069}\pm0.047$
$R_{K^*}^{[0.045,1.1]}$	$0.91 \pm \textbf{0.03}$	$0.660^{+0.110}_{-0.070}\pm0.024$

LHCb, PRL 113 (2014) 151601, arXiv:1705.05802

Example of EFT interpretation of R_K

Upper limits on Z' and Leptoquark masses are model-dependent, and constrained also by other low-energy flavour phenomenology, but the mass range is upper limited \Rightarrow if anomalies confirmed, we may want a no-lose theorem to identify the next facility! See eg Allanach, Gripaios & You, <u>1710.06363</u>
LHC scientific production (ATLAS, CMS, LHCb)

Papers published/submitted to refereed journals

ATLAS	670
CMS	650
LHCb	396

Programme diversity (ATLAS example, similar stats for the others)

65% of the papers on measurements (ie on "the real world")

35% on searches

Remarks

- These 1700 papers reflect the underlying existence, at the LHC, of 100's of scientifically "independent" experiments, which historically would have required different detectors and facilities, built and operated by different communities
- On each of these topics the LHC expts are advancing the knowledge previously acquired by dedicated facilities
 - HERA→PDFs, B-factories→flavour, RHIC→Hls, LEP/SLC→EWPT, etc
- Even in the perspective of new dedicated facilities, LHC maintains a key role of complementarity (see eg $B_{(s)} \rightarrow \mu \mu$ etc)

This diversity, extended by the presence of the ee and ep, will represent a further a key virtue of the FCC physics programme

100 TeV ?

200 TeV ?

200 TeV ?

27 TeV in the LHC tunnel, replacing current magnets with those developed for FCC ?

=> High-Energy LHC (HE-LHC)

- Reach at high mass:
 - $M \rightarrow 2 \times M_{LHC}$
 - implications on models, naturalness,?

- Reach at high mass:
 - $M \rightarrow 2 \times M_{LHC}$
 - implications on models, naturalness,?
- Guaranteed deliverables:
 - Higgs selfcoupling:
 - first estimates: $\delta\lambda \sim \pm 30\%$ (<u>https://arxiv.org/abs/1802.04319</u>)
 - Further improvement, wrt LHC, of Higgs properties, top and EW observables, ...

- Reach at high mass:
 - $M \rightarrow 2 \times M_{LHC}$
 - implications on models, naturalness,?
- Guaranteed deliverables:
 - Higgs selfcoupling:
 - first estimates: $\delta\lambda \sim \pm 30\%$ (<u>https://arxiv.org/abs/1802.04319</u>)
 - Further improvement, wrt LHC, of Higgs properties, top and EW observables, ...
- Enhanced exploration of possible future LHC discoveries

- Reach at high mass:
 - $M \rightarrow 2 \times M_{LHC}$
 - implications on models, naturalness,?
- Guaranteed deliverables:
 - Higgs selfcoupling:
 - first estimates: $\delta\lambda \sim \pm 30\%$ (<u>https://arxiv.org/abs/1802.04319</u>)
 - Further improvement, wrt LHC, of Higgs properties, top and EW observables, ...
- Enhanced exploration of possible future LHC discoveries
- No-lose theorems:
 - microscopic origin of current flavour anomalies?

Characterization of Z' models within reach of LHC observation

Colours: different Z' models, leading to observation at HL-LHC in Z'->dilepton decay for m(Z')=6 TeV

45

Evolution, with beam energy, of scenarios with the discovery of a new particle at the LHC

• If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:

- If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:
 - Do we wait to go to pp@100TeV, or fast-track 28 TeV in the LHC tunnel?

- If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:
 - Do we wait to go to pp@100TeV, or fast-track 28 TeV in the LHC tunnel?
 - Do we need 100 TeV, or 50 is enough $(\sigma_{100}/\sigma_{14} \sim 4 \cdot 10^4, \sigma_{50}/\sigma_{14} \sim 4 \cdot 10^3)$?

- If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:
 - Do we wait to go to pp@100TeV, or fast-track 28 TeV in the LHC tunnel?
 - Do we need 100 TeV, or 50 is enough $(\sigma_{100}/\sigma_{14} \sim 4 \cdot 10^4, \sigma_{50}/\sigma_{14} \sim 4 \cdot 10^3)$?
 - and the answers may depend on whether we expect partners of X at masses $\ge 2m_X$ ($\Rightarrow 28$ TeV would be

- If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:
 - Do we wait to go to pp@100TeV, or fast-track 28 TeV in the LHC tunnel?
 - Do we need 100 TeV, or 50 is enough $(\sigma_{100}/\sigma_{14} \sim 4 \cdot 10^4, \sigma_{50}/\sigma_{14} \sim 4 \cdot 10^3)$?
 - and the answers may depend on whether we expect partners of X at masses $\geq 2m_X \iff 28 \text{ TeV}$ would be

insufficient)

• If $m_X \sim 0.5$ TeV in the qqbar channel, rate grows x10 @100 TeV:

- If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:
 - Do we wait to go to pp@100TeV, or fast-track 28 TeV in the LHC tunnel?
 - Do we need 100 TeV, or 50 is enough $(\sigma_{100}/\sigma_{14} \sim 4 \cdot 10^4, \sigma_{50}/\sigma_{14} \sim 4 \cdot 10^3)$?
 - and the answers may depend on whether we expect partners of X at masses $\ge 2m_X$ ($\Rightarrow 28$ TeV would be

- If $m_X \sim 0.5$ TeV in the qqbar channel, rate grows x10 @100 TeV:
 - Do we go to 100 TeV, or push by $\times 10 \int L$ at LHC?

- If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:
 - Do we wait to go to pp@100TeV, or fast-track 28 TeV in the LHC tunnel?
 - Do we need 100 TeV, or 50 is enough $(\sigma_{100}/\sigma_{14} \sim 4 \cdot 10^4, \sigma_{50}/\sigma_{14} \sim 4 \cdot 10^3)$?
 - and the answers may depend on whether we expect partners of X at masses $\ge 2m_X$ ($\Rightarrow 28 \text{ TeV}$ would be

- If $m_X \sim 0.5$ TeV in the qqbar channel, rate grows x10 @100 TeV:
 - Do we go to 100 TeV, or push by $\times 10 \int L$ at LHC?
 - Do we build CLIC?

- If $m_X \sim 6 \text{ TeV}$ in the gg channel, rate grows x 200 @28 TeV:
 - Do we wait to go to pp@100TeV, or fast-track 28 TeV in the LHC tunnel?
 - Do we need 100 TeV, or 50 is enough $(\sigma_{100}/\sigma_{14} \sim 4 \cdot 10^4, \sigma_{50}/\sigma_{14} \sim 4 \cdot 10^3)$?
 - and the answers may depend on whether we expect partners of X at masses $\ge 2m_X$ ($\Rightarrow 28$ TeV would be

- If $m_X \sim 0.5$ TeV in the qqbar channel, rate grows x10 @100 TeV:
 - Do we go to 100 TeV, or push by $\times 10 \int L$ at LHC?
 - Do we build CLIC?
- etc.etc.

• The study of the SM will not be complete until we clarify the nature of the Higgs mechanism and exhaust the exploration of phenomena at the TeV scale: many aspects are still obscure, many questions are still open.

- The study of the SM will not be complete until we clarify the nature of the Higgs mechanism and exhaust the exploration of phenomena at the TeV scale: many aspects are still obscure, many questions are still open.
- As a possible complement to the mature ILC and CLIC projects, plans are underway to define the possible continuation of this programme after the LHC, with the same goals of thoroughness, precision and breadth that inspired the LEP/LHC era

- The study of the SM will not be complete until we clarify the nature of the Higgs mechanism and exhaust the exploration of phenomena at the TeV scale: many aspects are still obscure, many questions are still open.
- As a possible complement to the mature ILC and CLIC projects, plans are underway to define the possible continuation of this programme after the LHC, with the same goals of thoroughness, precision and breadth that inspired the LEP/LHC era
- The physics case of a 100 TeV collider is very clear as a longterm goal for the field, simply because no other proposed or foreseeable project can have direct sensitivity to such large mass scales.

- The study of the SM will not be complete until we clarify the nature of the Higgs mechanism and exhaust the exploration of phenomena at the TeV scale: many aspects are still obscure, many questions are still open.
- As a possible complement to the mature ILC and CLIC projects, plans are underway to define the possible continuation of this programme after the LHC, with the same goals of thoroughness, precision and breadth that inspired the LEP/LHC era
- The physics case of a 100 TeV collider is very clear as a longterm goal for the field, simply because no other proposed or foreseeable project can have direct sensitivity to such large mass scales.
- Nevertheless, the precise route followed to get there must take account of the fuller picture, to emerge from the LHC as well as other current and future experiments in areas ranging from flavour physics to dark matter searches.