CDT overview 000 000 spectral methods

numerical results 0 0000000 conclusions

Spectral Methods in Causal Dynamical Triangulations

Giuseppe Clemente

giuseppe.clemente@pi.infn.it

Talk based on the paper 1804.02294, written in collaboration with Massimo D'Elia (massimo.delia@unipi.it)

Istituto Nazionale di Fisica Nucleare

Università di Pisa

New frontiers in theoretical physics XXXVI Cortona, 25 May 2018

CDT overview 000 000 spectral methods

numerical results 0 0000000 conclusions

Overview

introduction

CDT overview

formalism phase diagram and standard results

spectral methods

physical motivation Weyl's law and effective dimension

numerical results

spectral gap and spectral density Scaling and effective dimension for slices

conclusions

CDT overview 000 000 spectral methods 000 00 numerical results 0 0000000 conclusions

The QG problem

Manifest difficulties:

- Standard perturbation theory fails divergences arise at short scale
- Gravitational quantum effects unreachable on lab: $E_{Pl} = \sqrt{\frac{\hbar c}{G}}c^2 \simeq 10^{19}GeV$ (big bang or black holes)

Two lines of direction in QG approaches

- non-conservative: introduce new short-scale physics
- conservative: do not give up on the Einstein theory

Causal Dynamical Triangulations (CDT): conservative approach of non-perturbative renormalization of the Einstein gravity via Monte-Carlo simulations.

CDT overview

spectral methods

numerical results 0 0000000

conclusions

Lattice regularization

A regularization makes the renormalization procedure well posed.

- discretize spacetime introducing a minimal lattice spacing 'a'
- localize dynamical variables on lattice sites
- study how quantities diverge for a
 ightarrow 0
- Cartesian grids approximate Minkowski space
- **Regge triangulations** approximate generic manifolds

spectral methods

numerical results 0 0000000 conclusions

Regge formalism: action discretization

Also the EH action must be discretized accordingly ($g_{\mu
u}
ightarrow {\cal T}$):

where $V_{\sigma^{(k)}}$ is the *k*-volume of the simplex $\sigma^{(k)}$.

Wick-rotation $iS_{Lor}(\alpha) \rightarrow -S_{Euc}(-\alpha)$

 \implies Monte-Carlo sampling $\mathcal{P}[\mathcal{T}] \equiv \frac{1}{Z} \exp\left(-S_{Euc}[\mathcal{T}]\right)$

spectral methods

numerical results 0 0000000 conclusions

Wick rotated action in 4D

At the end of the day [Ambjörn et al., arXiv:1203.3591]:

$$S_{CDT} = -k_0 N_0 + k_4 N_4 + \Delta (N_4 + N_4^{(4,1)} - 6N_0)$$

- New parameters: (k_0, k_4, Δ) , related respectively to G, Λ and α .
- New variables: N_0 , N_4 and $N_4^{(4,1)}$, counting the total numbers of vertices, pentachorons and type-(4,1)/(1,4) pentachorons respectively (\mathcal{T} dependence omitted).

It is convenient to "fix" the total spacetime volume $N_4 = V$ by fine-tuning $k_4 \implies$ actually free parameters (k_0, Δ, V) .

Simulations at different volumes V allow finite-size scaling analysis.

CDT overview

spectral methods

numerical results 0 0000000 conclusions

Ultimate goal

Find a second order critical point in the phase diagram

 \implies renormalize the theory.

Continuum limit

The system must forget the lattice discreteness: second-order critical point with divergent correlation length $\hat{\xi} \equiv \xi/a \rightarrow \infty$

Asymptotic freedom (e.g. QCD):

$$ec{g}_c\equiv \lim_{a
ightarrow 0}ec{g}(a)=ec{0}$$

Asymptotic safety (maybe QG):

$$\vec{g}_c \equiv \lim_{a \to 0} \vec{g}(a) \neq \vec{0}$$

CDT overview

spectral methods

numerical results 0 0000000 conclusions

Phase diagram of CDT in 4D

 k_4 "tuned" to fix $V \implies$ remaining free parameters: (k_0, Δ)

possible 2nd order lines have been found [1108.3932,1704.04373] C_b and C_{dS} differ by the geometry of slices (discussed later)

spectral methods

numerical results 0 0000000

Problem: lack of observables

A proper investigation of the continuum limit should require a possibly complete set of geometric observables.

Observables currently employed in CDT

- Spatial volume per slice: V_s(t) (number of spatial tetrahedra at the slice labeled by t)
- Order parameters for transitions:
 - $\operatorname{conj}(k_0) = N_0/N_4$ for the $A|C_{dS}$ transition
 - $\operatorname{conj}(\Delta) = (N_4^{(4,1)} 6N_0)/N_4$ for the $B|C_b$ transition
 - OP₂ for the C_b|C_{dS} transition [Ambjorn et al. arXiv:1704.04373]
- Fractal dimensions: (actually give some info at different scales)
 - spectral dimension
 - Hausdorff dimension

No observable characterizing geometries at all lattice scales!!

introduction CDT overview spectral methods numer 000 000 000 0 000 000 000 000

numerical results 0 0000000 conclusions

spectral methods

CDT overview 000 000 spectral methods

numerical results 0 0000000 conclusions

Hearing the shape of a manifold

• Spectral analysis on smooth manifolds $(\mathcal{M}, g_{\mu\nu})$:

 $-\nabla^2 f \equiv -\frac{1}{\sqrt{|g|}} \partial_\mu (\sqrt{|g|} g^{\mu\nu} \partial_\nu f) = \lambda f$, with boundary conditions

Can one hear the shape of a drum?

Almost: beside spectra you need also eigenvectors.

Spectral graph analysis of CDT slices

Observation

Spatial slices in CDT are made by identical (d-1)-simplexes

- \implies a *d*-regular undirected graph is associated to any spatial slice.
- Spatial tetrahedra become vertices of associated graph
- Adjacency relations between tetrahedra become edges
- Laplace matrix: L = D A, where D = d1 is the degree matrix and A is the adjacency matrix.
- Eigenvalue problem $L\vec{f} = \lambda \vec{f}$ solved by numerical routines

2D slice and its dual graph

introduction CDT overview spectral methods numerical results

Physical interpretation of LB eigenvalues and eigenvectors

Heat/diffusion equation on a manifold (or graph) M:

$$\partial_t u(x;t) - \Delta u(x;t) = 0.$$

General solution in a basis $\{e_n\}$ of LB eigenvectors $(\lambda_n \leq \lambda_{n+1})$:

$$u(x;t) = \sum_{n=0}^{|\sigma_M|-1} e^{-\lambda_n t} \widetilde{u}_n(0) e_n(x).$$

consequences:

- λ_n is the diffusion rate for the (eigen)mode $e_n(x)$
- smallest eigenvalues \leftrightarrow slowest diffusion directions.
- a large **spectral gap** λ_1 implies a fast overall diffusion, geometrically meaning a highly connected graph.

Weyl's law and effective dimension

For a manifold
$$M$$
 with LB spectrum σ_M define:
 $n(\lambda) \equiv \sum_{\overline{\lambda} \in \sigma_M} \theta(\overline{\lambda} - \lambda) =$ "number of eigenvalues below λ ".

Weyl's law

Well known asymptotic result from spectral geometry:

$$n(\lambda) \sim \frac{\omega_d}{(2\pi)^d} V \lambda^{d/2}$$

being ω_d the volume of a unit *d*-ball and *V* the manifold volume.

Motivated by Weyl's law we define the effective dimension:

$$d_{EFF}(\lambda) \equiv 2 rac{d \log(n/V)}{d \log \lambda}$$
 .

introduction

CDT overview 000 000 spectral methods $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bullet$

numerical results 0 0000000 conclusions

A toy model: toroidal lattice

Consider a 3-d periodic lattice with sizes $L_x \times L_y \times L_z$.

- Three regimes observed for $L_x \ll L_y \ll L_z$ with $d_{EFF} = 1, 2, 3$.
- Position of knees related to the scale of dimensional transition.

introduction CDT overview spectral methods numerical results

conclusions

numerical results

CDT overview 000 000 spectral methods

numerical results 0 0000000

Numerical simulations of 4D CDT

Simulations performed for total spatial volumes $N_{3s} = 20k, 40k$

numerical results 0000000

Spectral gap in different phases

 C_{dS} phase (first 100 eigenvalues)

B phase (first 100 eigenvalues)

- no spectral gap in C_{dS} phase.
- non-zero spectral gap for slices in *B* phase (high connectivity).
- some volume dependence is present (except for λ_1 in B phase)

CDT overview 000 000 spectral methods

numerical results •••••••

Collapse of scaling curves

The volume dependence can be reabsorbed by mapping λ_n vs $n/V \implies$ curves collapse into a volume independent function.

Weyl scalings for few slice in C_{dS} phase and different volumes

CDT overview 000 000 spectral methods

conclusions

Scalings for different phases

By averaging over many slices (C_b discussed later):

small λ (large scale) behaviour:

- vanishing spectral gap and finite slope for C_{dS} and A phases
- non-zero spectral gap and vanishing slope for B phase

CDT overview 000 000 spectral methods

numerical results 0 000000

Effective dimension for different phases From the previous curves and the definition of effective dimension: $d_{EFF} \equiv 2 \frac{d \log(n/V)}{d \log \lambda}$.

• $d_{EFF} \rightarrow \infty$ at large scales for B phase

• $d_{EFF} < 3$ for C_{dS} (and A) phase! \implies fractional dimension

CDT overview

spectral methods

numerical results 0 0000000 conclusions

The bifurcation phase C_b

Similarities with C_{dS} :

- configurations with time extended blob (but narrower w.r.t. C_{dS} ones with the same k₀)
- similar spatial volume per slice $V_s(t)$

Main distinguishing feature (as known from previous literature):

 two classes of spatial slices, alternated in slice time, one of which possesses vertices with very high coordination number.

 \implies Order parameter of C_b - C_{dS} transition defined in literature as relative difference between maximal coordination numbers of vertices in adjacent slices.

CDT overview 000 000 spectral methods

numerical results 0 0000000

Alternating spectra in C_b configurations

Comparisons between C_{dS} and C_b low lying spectra:

selected eigenvalues averaged over many configurations

The low lying spectra capture well the alternating behaviour of slice geometries in C_b configurations, and show it is a difference in large scale properties of slices.

spectral methods

numerical results $\stackrel{\circ}{_{\circ\circ\circ\circ\circ\circ}}$

Bifurcated scaling and class separation in C_b phase

Not a single scaling curve for C_b configurations \implies a separation into two classes of slices is required:

We called the classes B-type and dS-type (for obvious reasons).

spectral methods

numerical results ○ ○○○○○○● conclusions

Spectral gap through phases

Spectral gap histogram for simulations with $k_0 = 2.2$ and different Δ :

We are currently investigating the continuum limit around C_{dS} - C_b .

n	CDT overview	spectral methods	numerical results
	000	000	0
	000	00	0000000

conclusions

Conclusions

Results up to now:

- spectral gap characterizes connectivity in different phases
- Weyl's scaling allow to define a running effective dimensionality
- full spectral densities show non-trivial and interesting features (not shown here)

Future work:

- generalize to full spacetime configurations (FEM methods required)
- apply to EDT configurations ("straightforward")
- analyze all the features of eigenvectors (possessing the remaining information about the geometry), i.e. Anderson localization, Morse analysis, etc...
- investigate continuum limit (currently work in progress)