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The QG problem

Manifest difficulties:

• Standard perturbation theory fails divergences arise at short
scale

• Gravitational quantum effects unreachable on lab:

EPl =
√

~c
G c2 ' 1019GeV (big bang or black holes)

Two lines of direction in QG approaches

• non-conservative: introduce new short-scale physics

• conservative: do not give up on the Einstein theory

Causal Dynamical Triangulations (CDT): conservative
approach of non-perturbative renormalization of the Einstein
gravity via Monte-Carlo simulations.
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Lattice regularization
A regularization makes the renormalization procedure well posed.

• discretize spacetime introducing a minimal
lattice spacing ‘a’

• localize dynamical variables on lattice sites

• study how quantities diverge for a→ 0

• Cartesian grids approximate Minkowski space

• Regge triangulations approximate generic
manifolds

a
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Regge formalism: action discretization

Also the EH action must be discretized accordingly (gµν → T ):

SEH [gµν ] =
1

16πG

[∫
ddx

√
|g |R︸ ︷︷ ︸

Total curvature

−2Λ

∫
ddx

√
|g |︸ ︷︷ ︸

Total volume

]

⇓ discretization ⇓

SRegge [T ] =
1

16πG

[ ∑
σ(d−2)∈T

2εσ(d−2)Vσ(d−2) − 2Λ
∑
σ(d)∈T

Vσ(d)

]
,

where Vσ(k) is the k-volume of the simplex σ(k).

Wick-rotation iSLor (α)→ −SEuc(−α)

=⇒ Monte-Carlo sampling P[T ] ≡ 1
Z exp (−SEuc [T ])
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Wick rotated action in 4D

At the end of the day [Ambjörn et al., arXiv:1203.3591]:

SCDT = −k0N0 + k4N4 + ∆(N4 + N
(4,1)
4 − 6N0)

• New parameters: (k0, k4,∆), related respectively to G , Λ and
α.

• New variables: N0, N4 and N
(4,1)
4 , counting the total numbers

of vertices, pentachorons and type-(4, 1)/(1, 4) pentachorons
respectively (T dependence omitted).

It is convenient to “fix” the total spacetime volume N4 = V by
fine-tuning k4 =⇒ actually free parameters (k0,∆,V ).

Simulations at different volumes V allow finite-size scaling analysis.
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Ultimate goal
Find a second order critical point in the phase diagram
=⇒ renormalize the theory.

Continuum limit
The system must forget the lattice
discreteness: second-order critical
point with divergent correlation
length ξ̂ ≡ ξ/a→∞

Asymptotic freedom (e.g. QCD):

~gc ≡ lim
a→0

~g(a) = ~0

Asymptotic safety (maybe QG):

~gc ≡ lim
a→0

~g(a) 6= ~0
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Phase diagram of CDT in 4D
k4 “tuned” to fix V =⇒ remaining free parameters: (k0,∆)

phase spatial volume per slice

A:

B:

CdS/Cb:

−−−−−−−→
T

possible 2nd order lines have been found [1108.3932,1704.04373]
Cb and CdS differ by the geometry of slices (discussed later)
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Problem: lack of observables
A proper investigation of the continuum limit should require a
possibly complete set of geometric observables.

Observables currently employed in CDT

• Spatial volume per slice: Vs(t)
(number of spatial tetrahedra at the slice labeled by t)

• Order parameters for transitions:
• conj(k0) = N0/N4 for the A|CdS transition

• conj(∆) = (N
(4,1)
4 − 6N0)/N4 for the B|Cb transition

• OP2 for the Cb|CdS transition
[Ambjorn et al. arXiv:1704.04373]

• Fractal dimensions: (actually give some info at different scales)

• spectral dimension
• Hausdorff dimension

No observable characterizing geometries at all lattice scales!!
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spectral methods
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Hearing the shape of a manifold

• Spectral analysis on smooth manifolds (M, gµν):

−∇2f ≡ − 1√
|g |
∂µ(
√
|g |gµν∂ν f ) = λf , with boundary conditions

Can one hear the shape of a drum?

Almost: beside spectra you need also eigenvectors.

Example:
disk drum
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Spectral graph analysis of CDT slices

Observation
Spatial slices in CDT are made by identical (d − 1)-simplexes
=⇒ a d-regular undirected graph is associated to any spatial slice.

• Spatial tetrahedra become vertices
of associated graph

• Adjacency relations between
tetrahedra become edges

• Laplace matrix: L = D − A,
where D = d1 is the degree matrix
and A is the adjacency matrix.

• Eigenvalue problem L~f = λ~f solved
by numerical routines

2D slice and its dual graph
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Physical interpretation of LB eigenvalues and eigenvectors

Heat/diffusion equation on a manifold (or graph) M:

∂tu(x ; t)−∆u(x ; t) = 0 .

General solution in a basis
{
en
}

of LB eigenvectors (λn ≤ λn+1):

u(x ; t) =

|σM |−1∑
n=0

e−λnt ũn(0)en(x) .

consequences:

• λn is the diffusion rate for the (eigen)mode en(x)

• smallest eigenvalues ↔ slowest diffusion directions.

• a large spectral gap λ1 implies a fast overall diffusion,
geometrically meaning a highly connected graph.
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Weyl’s law and effective dimension

For a manifold M with LB spectrum σM define:
n(λ) ≡

∑
λ∈σM

θ(λ− λ) = “number of eigenvalues below λ”.

Weyl’s law

Well known asymptotic result from spectral geometry:

n(λ) ∼ ωd

(2π)d
Vλd/2 ,

being ωd the volume of a unit d-ball and V the manifold volume.

Motivated by Weyl’s law we define the effective dimension:

dEFF (λ) ≡ 2
d log(n/V )

d log λ
.
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A toy model: toroidal lattice

Consider a 3-d periodic lattice with sizes Lx × Ly × Lz .

eigenvalues:

λ′~m = 4π2

(
m2

x

L2
x

+
m2

y

L2
y

+
m2

z

L2
z

)
,

with mi ∈ (−Li/2, Li/2 ] ∩ Z .
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• Three regimes observed for Lx � Ly � Lz with dEFF = 1, 2, 3.

• Position of knees related to the scale of dimensional transition.
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numerical results
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Numerical simulations of 4D CDT
Simulations performed for total spatial volumes N3s = 20k , 40k
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Spectral gap in different phases
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• no spectral gap in CdS phase.

• non-zero spectral gap for slices in B phase (high connectivity).

• some volume dependence is present (except for λ1 in B phase)
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Collapse of scaling curves
The volume dependence can be reabsorbed by mapping λn vs n/V
=⇒ curves collapse into a volume independent function.
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Scalings for different phases
By averaging over many slices (Cb discussed later):
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small λ (large scale) behaviour:

• vanishing spectral gap and finite slope for CdS and A phases
• non-zero spectral gap and vanishing slope for B phase
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Effective dimension for different phases
From the previous curves and the definition of effective
dimension: dEFF ≡ 2d log(n/V )

d log λ .
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• dEFF →∞ at large scales for B phase

• dEFF < 3 for CdS (and A) phase! =⇒ fractional dimension
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The bifurcation phase Cb

Similarities with CdS :

• configurations with time extended blob
(but narrower w.r.t. CdS ones with the same k0)

• similar spatial volume per slice Vs(t)

Main distinguishing feature (as known from previous literature):

• two classes of spatial slices, alternated in slice time, one of
which possesses vertices with very high coordination number.

=⇒ Order parameter of Cb-CdS transition defined in literature as
relative difference between maximal coordination numbers of
vertices in adjacent slices.
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Alternating spectra in Cb configurations
Comparisons between CdS and Cb low lying spectra:
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The low lying spectra capture well the alternating behaviour of
slice geometries in Cb configurations, and show it is a difference
in large scale properties of slices.
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Bifurcated scaling and class separation in Cb phase

Not a single scaling curve for Cb configurations
=⇒ a separation into two classes of slices is required:
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We called the classes B-type and dS-type (for obvious reasons).
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Spectral gap through phases
Spectral gap histogram for simulations with k0 = 2.2 and different
∆:

We are currently investigating the continuum limit around CdS -Cb.
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Conclusions

Results up to now:

• spectral gap characterizes connectivity in different phases

• Weyl’s scaling allow to define a running effective
dimensionality

• full spectral densities show non-trivial and interesting
features (not shown here)

Future work:

• generalize to full spacetime configurations (FEM methods
required)

• apply to EDT configurations (“straightforward”)

• analyze all the features of eigenvectors (possessing the
remaining information about the geometry), i.e. Anderson
localization, Morse analysis, etc...

• investigate continuum limit (currently work in progress)
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