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incipit
Bourjaily He McLeod von Hippel Wilhelm today

The study of scattering amplitudes is on some level 
the study of classes of special functions



At the LHC, particles are produced through the head-on 
collisions of protons, and in particular through the 
collisions of quarks and gluons within the protons

The probability of a collision event is computed 
through the cross section, which is given as an 
integral of (squared) scattering amplitudes over 
the phase space of the produced particles

The scattering amplitudes are
fundamental objects of particle physics

The scattering amplitudes are given as a power series 
(loop expansion) in the strong and/or electroweak 
couplings



Scattering amplitudes

The scattering amplitudes are given as a loop-momentum expansion
in the strong and/or electroweak couplings

The more terms we know in the loop expansion,
the more precisely we can compute the cross section

As a matter of fact, we know any amplitude of interest at one loop; 
several (2 → 2) amplitudes and one (2 → 3) amplitude (but only 
planar) at two loops; a couple (2 → 1) amplitudes and one (2 → 2) 
amplitude (in N=4 SYM) at three loops, and nothing beyond that
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gg → gg (in N=4 SYM) gg → ggg (only planar)



Computing amplitudes

Integration by parts (IBP) to reduce the Feynman integral 
to a suitable basis of master integrals (MI)

It used to be the less problematic part of the workflow.
With (2 → 3) amplitudes at two loops it has become a challenge.
Now, several groups work on it

ETH ITP organises a workshop dedicated only to that
Taming the Complexity of Multiloop Integrals, ETH, 4-8 June 2018

Differential Equation method to solve the MIs
f: N-vector of MIs,  Ai: NxN matrix,  i=1,…,# external parameters

but in some cases ε-independent form

@if(xn; ") = Ai(xn; ")f(xn; ")

@if(xn; ") = "Ai(xn)f(xn; ") Henn 2013

analysing the space of functions of the Feynman integral

where most of the progress has been → topic of this talk



What outcome do we expect from the loop expansion of an amplitude?

From renormalisability and the infrared structure of the amplitude, 
we expect that the divergent parts are (poly)logarithmic functions 
of the external momenta (beyond 2 loops)

But, except for unitarity, we have little guidance for the finite parts.
Heuristically, we know that:
— at one loop, logarithmic and dilogarithmic functions of
     the external momenta occur
— beyond one loop, higher polylogarithmic functions appear
     and elliptic functions may appear (usually associated to several
     massive propagators)



Higgs production at LHC
In proton collisions, the Higgs boson is produced mostly via gluon fusion
The gluons do not couple directly to the Higgs boson
The coupling is mediated by a heavy quark loop
The largest contribution comes from the top loop
The production mode is (roughly) proportional to the top Yukawa coupling yt

QCD NLO corrections

Djouadi Graudenz Spira Zerwas 1993-1995

QCD NLO corrections are about 100% larger than leading order

QCD NNLO corrections are not known



Higgs production in HEFT

mH << 2mt

all amplitudes are reduced by one loop

… but, beware of quark mass effects

Anastasiou Duhr Dulat Furlan Gehrmann Herzog Lazopoulos Mistlberger 2016

rescaled EFT (rEFT) does a good job (< 1%) in approximating the exact (only top) NLO σ
but misses the t-b interference

RLO =
�LO
ex:t

�LO
EFT

= 1.063



QCD corrections have been computed at N3LO

Anastasiou Duhr Dulat Herzog Mistlberger 2015

The breakdown of the cross section

Anastasiou Duhr Dulat Furlan Gehrmann Herzog Lazopoulos Mistlberger 2016

Largest uncertainties come from quark mass effects at NNLO
and from NLO corrections to QCD-EW interference

Higgs production in HEFT



QCD-EW interference

_ 
_ 

_ 
_ 

_ 
_ Aglietti Bonciani Degrassi Vicini 2004

(light fermion loop)
Actis Passarino Sturm Uccirati 2008 
(heavy fermion loop)

computed in:
— mw,z → ∞ limit
— soft approximation
— mw,z → 0 limit
and found to be about 5.3-5.5% both at LO and NLO 

Anastasiou Boughezal Petriello 2009

Bonetti Melnikov Tancredi 2018

Anastasiou VDD Furlan Mistlberger Moriello Schweitzer Specchia, to appear
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_ 
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Bonetti Melnikov Tancredi 2017
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_ 
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_ 
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QCD NLO corrections



QCD NNLO corrections

Higgs+2jets amplitudes at one loop VDD Kilgore Oleari Schmidt Zeppenfeld 2001

Higgs+1jet amplitudes at two loops Bonciani VDD Frellesvig Henn Moriello V. Smirnov 2016
(only planar diagrams)

gg→H amplitudes at three loops

multi-scale problem with complicated analytic structure
elliptic iterated integrals appear

one-scale problem, but with more elliptic iterated integrals …



Higgs pT distribution at LHC

leading order K. Ellis Hinchliffe Soldate van der Bij 1988

Full (=t+b+c) QCD NLO corrections are not known

QCD corrections are known at NNLO in HEFT, and yield a 15% increase wrt NLO

mH << 2mtHEFT and pT << mt

Boughezal Caola Melnikov Petriello Schulze 2015
Boughezal Focke Giele Liu Petriello 2015
Chen Cruz-Martinez Gehrmann Glover Jaquier 2016

high-pT tail of the Higgs pT  distribution is sensitive to 
the structure of the loop-mediated Higgs-gluon coupling
New Physics particles circulating in the loop would modify it



Jones Kerner Luisoni 2018

Higgs pT distribution at LHC

QCD (top) NLO corrections have been computed numerically

d�

dp2T
/ 1

p2T
in HEFT NLO corrections

d�

dp2T
/ 1

(p2T )
2 in top NLO corrections

No t-b interference

QCD NLO corrections to t-b interference, using top loop in HEFT
and b-quark loop in small mb limit Lindert Melnikov Tancredi Wever 2017



In the last few years, a lot of progress has been made in understanding 
the analytic structure of multi-loop amplitudes, in particular on how 
the polylogarithmic functions appear at any loop level

In particular, a lot of progress has been made:
— in N=4 Super Yang-Mills (SYM)
— in the Regge limit of QCD
— in the Regge limit of N=4 SYM

This progress has deep implications on how we view
scattering amplitudes in the Standard Model



One of the most remarkable discoveries in elementary 
particle physics has been that of the existence of the 
complex plane …

incipit
The analytic S-matrix

Eden Landshoff Olive Polkinghorne 1966



N=4 Super Yang Mills
maximal supersymmetric theory (without gravity)
conformally invariant, β fn. = 0

spin 1 gluon
4 spin 1/2 gluinos
6 spin 0 real scalars

‘t Hooft limit:  Nc →∞  with  λ = g2Nc fixed

only planar diagrams

AdS/CFT duality Maldacena 97

large-λ limit of 4dim CFT ↔ weakly-coupled string theory

(aka weak-strong duality)



use N=4 SYM as a computational lab:

to learn techniques and tools to be used in Standard Model
calculations 

to learn about the bases of special functions which may occur
in realistic scattering processes 

amplitudes in planar N=4 SYM are much simpler
than in Standard Model processes 

N=4 Super Yang Mills



N=4 Super Yang Mills

In the last years, a huge progress has been made in understanding 
the analytic structure of the S-matrix of planar N=4 SYM 

Besides the ordinary conformal symmetry,
in the planar limit the S-matrix exhibits a dual conformal symmetry

Accordingly, the analytic structure of the scattering amplitudes is
highly constrained

Drummond Henn Smirnov Sokatchev 2006

4- and 5-point amplitudes are fixed to all loops by the symmetries
in terms of the one-loop amplitudes and the cusp anomalous dimension

Anastasiou Bern Dixon Kosower 2003, Bern Dixon Smirnov 2005
Drummond Henn Korchemsky Sokatchev 2007

Beyond 5 points, the finite part of the amplitudes is given in terms of a 
remainder function R. The symmetries only fix the variables of R (some 
conformally invariant cross ratios) but not the analytic dependence of R 
on them



Dual conformal symmetry

Dual space
xn+1 = x1pi = xi � xi+1 ⌘ xi,i+1

one-loop scalar box

I(1) =

Z
d4k

k2(k � p1)2(k � p1 � p2)2(k + p4)2
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MHV amplitudes in planar N=4 SYM

at any order in the coupling, colour-ordered maximally helicity violating 
MHV (- - ++…+) amplitudes in planar N=4 SYM can be written as 
the tree-level amplitude times a momentum dependent loop coefficient

at 2 loops, iteration formula for the n-pt amplitude

Anastasiou Bern Dixon Kosower 03

m(2)
n (�) =

1
2

�
m(1)

n (�)
⇥2

+ f (2)(�) m(1)
n (2�) + Const(2) + R

at all loops, ansatz for a resummed exponent

Bern Dixon Smirnov 05

m(L)
n = exp

⇤ �⇧

l=1

al
�
f (l)(�) m(1)

n (l�) + Const(l) + E(l)
n (�)

⇥⌅
+ R

remainder
function

M (L)
n = M (0)

n m(L)
n

m(1)
n =

�

pq

F 2me(p, q, P, Q)

at 1 loop

n � 6

Bern Dixon Dunbar Kosower 94



ABDK/BDS ansatz

Bern Dixon Smirnov 05

cusp anomalous dimension, known to all orders of a

collinear anomalous dimension, known through O(a4) 

Korchemsky Radyuskin 86 
Beisert Eden Staudacher 06 

Bern Dixon Smirnov 05 
Cachazo Spradlin Volovich 07

‘t Hooft parameter coupling a =
�

8⇥2
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n exp
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n (�)
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ABDK/BDS ansatz is valid at all loops for 4-pt and 5-pt amplitudes 



for n = 6, the conformally invariant cross ratios are

thus x2
k,k+r = (pk + . . . + pk+r�1)2
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Amplitudes in planar N=4 SYM

The progress in understanding the analytic structure of the S-matrix in
planar N=4 SYM is also due to an improved understanding of the
mathematical structures underlying the scattering amplitudes

n-point amplitudes are expected to be written in terms of iterated 
integrals (on the space of configurations of points in 3-dim projective 
space Confn(P3) )

The simplest case of iterated integrals are the iterated integrals
over rational functions, i.e. the multiple polylogarithms (MPL)

Goncharov 2001

Golden Goncharov Spradlin Vergu Volovich 2013

It is thought that maximally helicity violating (MHV) and next-to-MHV
(NMHV) amplitudes can be expressed in terms of 
multiple polylogarithms of uniform transcendental weight

Arkani-Hamed Bourjaily Cachazo Goncharov Postnikov Trnka 2012

G(a1, . . . , an; z) =

Z z

0

dt

t� a1
G(a2, . . . , an; t) G(a; z) = log

⇣
1� z

a

⌘
(a1, . . . , an) 2 C



MHV and NMHV amplitudes feature maximal transcendentality, 
i.e. L-loop amplitudes are expressed in terms of multiple 
polylogarithms of weight 2L only

MHV amplitudes are pure, i.e. the coefficients of the multiple 
polylogarithms are (rational) numbers

Amplitudes in planar N=4 SYM

2-loop 10-pt N3MHV amplitude features elliptic iterated integrals

Caron-Huot Larsen 2012
Bourjaily McLeod Spradlin von Hippel Wilhelm 2017



6-pt (N)MHV amplitudes are known analytically up to 5(4) loops

Duhr Smirnov VDD 2009
Goncharov Spradlin Vergu Volovich 2010
Dixon Drummond Henn 2011
Dixon Drummond von Hippel Pennington 2013
Dixon Drummond Duhr Pennington 2014
Caron-Huot Dixon von Hippel McLeod 2016

Dixon Drummond Henn 2011
Dixon von Hippel 2014
Dixon von Hippel McLeod 2015

7-pt MHV amplitudes are known analytically at two loops
Golden Spradlin 2014

No analytic result is known beyond 7 points
(the algebra of the iterated integrals is infinite starting from 8 points)

Golden Goncharov Spradlin Vergu Volovich 2013

Amplitudes in planar N=4 SYM



Taxonomy
of

logarithmic functions



Polylogarithms

classical polylogarithms

with Remiddi Vermaseren 1999

harmonic polylogarithms (HPLs)

H(a, ~w; z) =

Z z

0
dt f(a; t)H(~w; t) f(�1; t) =

1

1 + t
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1

t
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n
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Euler 1768
Spence 1809

classical polylogarithms are multiple polylogarithms with specific roots

G(�0n;x) =
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n!
lnn x G(�an;x) =
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n!
lnn

�
1� x

a

⇥
G(�0n�1, a;x) = �Lin

�x
a

⇥

when the root equals +1,-1,0 multiple polylogarithms become HPLs



MPLs form a shuffle algebra

with ω the shuffle of ω1 and ω2

Multiple polylogarithms

G!1(z)G!2(z) =
X
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G!(z)

example
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MPLs can be represented as nested harmonic sums



Goncharov 2002

algebra is a vector space with a product  μ:  A ⊗ A → A        μ(a⊗b) = a⋄b
that is associative  A ⊗ A ⊗ A → A ⊗ A → A         (a⋄b)⋄c = a⋄(b⋄c)

μ puts together; Δ decomposes

coalgebra is a vector space with a coproduct  Δ:  B → B ⊗ B
that is coassociative  B → B ⊗ B → B ⊗ B ⊗ B 

�(a) =
X

i

a(1)i ⌦ a(2)i

a Hopf algebra is an algebra and a coalgebra, 
such that product and coproduct are compatible   Δ(a⋄b) = Δ(a)⋄Δ(b)

Hopf algebra and the coproduct

multiple polylogarithms form a Hopf algebra with a coproduct

take a word, sum over ways to split it into two: deconcatenation

T = w xy z

�(T ) = w xy z ⌦ 1 + w xy ⌦ z + w x⌦ y z + w ⌦ x y z + 1⌦ w xy z

w x⌦ y z ! (w ⌦ x)⌦ y z

w x⌦ y z ! w x⌦ (y ⌦ z)

iterate: sum over ways to split it into three

if sum over all possibilities,
get to the same result



Duhr 2012

example on a function of weight 4

symbols lie within the maximal iteration of a coproduct



coproduct on classical polylogarithms

Coproduct on polylogarithms

�(ln z) = 1⌦ ln z + ln z ⌦ 1

�(ln y ln z) = �(ln y) ·�(ln z)

= (1⌦ ln y + ln y ⌦ 1) · (1⌦ ln z + ln z ⌦ 1)

= 1⌦ ln y ln z + ln y ⌦ ln z + ln z ⌦ ln y + ln y ln z ⌦ 1

�
�
Li2(z)

�
= 1⌦ Li2(z) + Li2(z)⌦ 1� ln(1� z)⌦ ln z

Sym[ln y ln z] = y ⌦ z + z ⌦ y

Sym[Li2(z)] = �(1� z)⌦ z

�
�
Lin(z)

�
= 1⌦ Lin(z) + Lin(z)⌦ 1 +

n�1X

k=1

Lin�k(z)⌦
lnk z

k!

n-1

�n�1,1

�
Lin(z)

�
= Lin�1(z)⌦ ln z

iterating �1,...,1

�
Lin(z)

�
= � ln(1� z)⌦ ln z ⌦ · · ·⌦ ln z| {z }

(n-1,1) component of the coproduct

Sym[Lin(z)] = �(1� z)⌦
z }| {
z ⌦ · · ·⌦ z

the symbol is the (1,…,1) component of the coproduct

Duhr 12

for the constants, define

�(⇡) = ⇡ ⌦ 1

�(⇣2n) = ⇣2n ⌦ 1 Brown 11



Coproducts and functional identities

Li1(
1

z
) = � ln(1� 1

z
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Symbols
take a function defined as an iterated integral of logarithms of rational functions Ri

T (k) =

Z b

a
d lnR1 � · · · � d lnRk =

Z b

a

✓Z t

a
d lnR1 � · · · � d lnRk�1

◆
d lnRk(t)

then the total differential can be written as

d T (k) =
X

i

T (k�1)
i d lnRi

as such, the symbol is defined on the tensor product
of the group of rational functions, modulo constants

the symbol is defined recursively as
Goncharov

Sym[T (k)] =
X

i

Sym[T (k�1)
i ]⌦Ri

· · ·⌦R1R2 ⌦ · · · = · · ·⌦R1 ⌦ · · ·+ · · ·⌦R2 ⌦ · · ·
· · ·⌦ (cR1)⌦ · · · = · · ·⌦R1 ⌦ · · ·

if T is a multiple polylogarithm G, then

dG(an�1, . . . , a1; an) =
n�1X

i=1

G(an�1, . . . , âi, . . . , a1; an)d ln

✓
ai � ai+1
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the symbol is

Sym (G(an�1, . . . , a1; an)) =
n�1X

i=1

Sym (G(an�1, . . . , âi, . . . , a1; an))⌦
✓
ai � ai+1

ai � ai�1

◆



Sym[lnx ln y] = x� y + y � x

Disc(ln x ln y) = }2πi ln x along the y cut [-∞, 0]

2πi ln y along the x cut [-∞, 0]

symbols form a shuffle algebra, i.e. a vector space with a shuffle product
(also iterated integrals and multiple polylogarithms form shuffle algebras)

Sym[DiscR1(T
(k))] = R2 ⌦ · · ·⌦Rk

then T has a branch cut at R1 = 0, and the symbol of the discontinuity is

Sym[T (k)] = R1 ⌦ · · ·⌦Rk

the symbol knows about the discontinuities of T; if

in general, if Disc(f g) = Disc(f) g + f Disc(g)

and Sym[f ] = �n
i=1Ri

then Sym[fg] =
�

�

�n
i=1R�(i)

where σ denotes the set of all shuffles of n+(m-n) elements

Sym[g] = �m
i=n+1Ri

e.g. Sym[g] = R3 �R4Sym[f ] = R1 �R2

Sym[fg] = R1 ⌦R2 ⌦R3 ⌦R4 +R1 ⌦R3 ⌦R2 ⌦R4 +R1 ⌦R3 ⌦R4 ⌦R2

+ R3 ⌦R1 ⌦R2 ⌦R4 +R3 ⌦R1 ⌦R4 ⌦R2 +R3 ⌦R4 ⌦R1 ⌦R2



�Disc = (Disc⌦ id)� �@ = (id⌦ @)�

�(Lw) =
wX

k=0

�k,w�k(Lw) =
wX

k=0

Lk ⌦ Lw�k

MPLs, coproduct and unitarity

multiple polylogarithms form a Hopf algebra with a coproduct Goncharov 2002

the coproduct steers the functional identities among MPLs,
thus it allows us to reduce a given set of MPLs of weight n to a
(minimal) basis of MPLs of weight ≤ n, which we are then to
analytically continue from Euclidean to Minkowski space,
and to evaluate numerically

then the coproduct of an amplitude is related to unitarity

in particular, for massless amplitudes

�(M) = ln(sij)⌦ . . .

the analytic structure of amplitudes is constrained by unitarity
and the optical theorem Disc(M) = iMM†

massless amplitudes may have branch points when Mandelstam invariants vanish 
sij → 0 or become infinite sij → ∞

 Duhr 2012

discontinuity(derivative) acts in the first(last) entry of the coproduct



Regge limit



In perturbative QCD, in the Regge limit s » t, 
any scattering process is dominated by gluon exchange in the t channel

Regge limit of QCD

For a 4-gluon tree amplitude, we obtain

Mgg!gg
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�
s

t
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in the Regge limit, the amplitude is invariant under s ↔ u exchange.

To NLL accuracy,  the amplitude is given by Fadin Lipatov 1993
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Balitski Fadin Kuraev Lipatov

BFKL is a resummation of multiple gluon radiation
out of the gluon exchanged in the t channel

the resummation yields an integral (BFKL) equation for the evolution 
of the gluon propagator in 2-dim transverse momentum space

the Leading Logarithmic (BFKL 1976-77) and 
Next-to-Leading Logarithmic (Fadin-Lipatov 1998) 
contributions in log(s/|t|) of the radiative corrections to 
the gluon propagator in the t channel are resummed to 
all orders in αs

the BFKL equation is obtained in the limit of strong rapidity ordering
of the emitted gluons, with no ordering in transverse momentum - 
multi-Regge kinematics (MRK)

the solution is a Green’s function of the momenta flowing in and out 
of the gluon ladder exchanged in the t channel



Multi-Regge kinematics in N=4 SYM

In the Euclidean region (where all Mandelstam invariants are negative),
amplitudes in MRK factorise completely in terms of building blocks
which are expressed in terms of Regge poles and can be determined
to all orders through the 4-pt and 5-pt amplitudes. 
Thus the remainder functions R vanish at all points Brower Nastase Schnitzer Tan 2008

Bartels Lipatov Sabio-Vera 2008
Duhr Glover VDD 2008

After analytic continuation to some regions of the Minkowski space,
the amplitude develops cuts. The discontinuity of the amplitude is
described by a dispersion relation for octet exchange,
which is similar to the singlet BFKL equation in QCD

Bartels Lipatov Sabio-Vera 2008

Accordingly, 6-pt amplitudes have been thoroughly examined,
both at weak and at strong coupling

In particular, 6-pt amplitudes at weak coupling can be expressed 
in terms of single-valued harmonic polylogarithms

Dixon Duhr Pennington 2012

Basso Caron-Huot Sever 2014



Regge factorisation of the n-pt amplitude

mn(1, 2, . . . , n) = s [g C(p2, p3)]
1

tn�3

�
�sn�3

⇥

⇥�(tn�3)

[g V (qn�3, qn�4, �n�4)]

· · ·⇤ 1
t2

�
�s2

⇥

⇥�(t2)

[g V (q2, q1, �1)]
1
t1

�
�s1

⇥

⇥�(t1)

[g C(p1, pn)]

n-pt amplitude in the multi-Regge limit

s⇥ s1, s2, . . . , sn�3 ⇥ �t1,�t2 . . . ,�tn�3

the l-loop n-pt amplitude can be assembled
using the l-loop trajectories, vertices and
coefficient functions, determined through the
l-loop 4-pt and 5-pt amplitudes

y3 ⇥ y4 ⇥ · · ·⇥ yn; |p3�| ⇤ |p4�|... ⇤ |pn�|

in Euclidean space, 
no violation of the BDS ansatz can
be found in the multi-Regge limit

Duhr Glover  VDD 2008



…

1

2
3

4

5

N

N-1

N-2

i1

i2

iN-5

iN-4

-

-

+

+

h1

h2

hN-5

hN-4

�h1

�hN�4

ChN�5

Ch2

Discontinuity of the amplitude in MRK

1

2
3

4

6

5

-

-

+

+

h1

h2

�h1

6-pt amplitude

�h2

n-pt amplitude

continue to a Minkowski region

s34, s56 < 0 s, s45 > 0

one cross ratio picks up a phase

compute Disc(M)|s45

u1 =
s12s45
s345s456

! |u1| e�2⇡i



in MRK, there is no ordering in transverse momentum,
i.e. only the n-2 transverse momenta are non-trivial

dual conformal invariance in transverse momentum space
implies dependence on n-5 cross ratios of the transverse 
momenta 

zi =
(x1 � xi+3) (xi+2 � xi+1)

(x1 � xi+1) (xi+2 � xi+3)
= � qi+1 ki

qi�1 ki+1

i = 1, . . . , n� 5

ℳ0,p = space of configurations of p points on the Riemann sphere

Moduli space of Riemann spheres

ℳ0,n-2 is the space of the MRK, with dim(ℳ0,n-2) = n-5

Because we can fix 3 points at 0, 1, ∞, its dimension is dim(ℳ0,p)= p-3

Its coordinates can be chosen to be the zi’s,
i.e. the cross ratios of the transverse momenta

VDD Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek 2016

on ℳ0,n-2,  the singularities are associated to degenerate configurations
when two points merge xi → xi+1

i.e. when momentum pi becomes soft  pi → 0



unitarity implies that for massless amplitudes
�(M) = ln(sij)⌦ . . .

in particular, for amplitudes in MRK
�(M) = ln |xi � xj |2 ⌦ . . .

except for the soft limit pi → 0, in MRK the transverse momenta never vanish

|xi � xj |2 6= 0 single-valued functions

therefore, n-point amplitudes in MRK of planar N=4 SYM can be written
in terms of single-valued iterated integrals on ℳ0,n-2

VDD Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek 2016

for n=6, iterated integrals on ℳ0,4 are harmonic polylogarithms
thus, 6-point amplitudes in MRK of can be written in terms of
single-valued harmonic polylogarithms (SVHPL) Dixon Duhr Pennington 2012

Iterated integrals on ℳ0,n-2

iterated integrals on ℳ0,p can be written as multiple polylogarithms 
Brown 2006

amplitudes in MRK can be written in terms of multiple polylogarithms



MRK in N=4 SYM

VDD Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek 2016

for MHV amplitudes in MRK at LLA at:
• at 2 loop, the n-pt remainder function Rn(2) can be written as a sum 

of 2-loop 6-pt remainder functions R6(2)

• …
• …
• at 5 loops,  the n-pt remainder function Rn(5) can be written as a 

sum of 5-loop 6-, 7-, 8- and 9-pt amplitudes

In MRK, 6-pt MHV and NMHV amplitudes are known at any number of loops
Lipatov Prygarin 2010-2011
Dixon Duhr Pennington 2012
Lipatov Prygarin Schnitzer 2012

knowing the space of functions of the n-point amplitudes in MRK, 
(i.e. that is made of single-valued iterated integrals on ℳ0,n-2)
allowed us to compute all MHV amplitudes at ℓ loops in LLA
in terms of amplitudes with up to (ℓ+4) points, in practice up to 5 loops,
and all non-MHV amplitudes in LLA up 8 points and 4 loops

Prygarin Spradlin Vergu Volovich 2011
Bartels Kormilitzin Lipatov Prygarin 2011
Bargheer Papathanasiou Schomerus 2015

VDD Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek 2016

… extended to 7-pt (N)MHV amplitudes at 5(4) loops in NLLA
VDD Drummond Druc Duhr Dulat Marzucca Papathanasiou Verbeek 2018



Single-valued polylogarithms

Single-valued functions are real analytic functions on the complex plane

Because the discontinuities of the classical polylogarithms are known

�Lin(z) = 2⇡i
log

n�1 z

(n� 1)!

one can build combinations of classical polylogarithms
such that all branch cuts cancel on the punctured plane C/{0,1}
(Riemann sphere with punctures)

An example is the Bloch-Wigner dilogarithm

SV P 2(z) = Im[Li2(z)]� log |z| arg(1� z)

in general

SV Pn(z) = Rn

"
n�1X

k=0

2

kBk

k!
log

k |z|Lin�k(z)

#

Bk Bernouilli numbers Rn =
Re oddn

Im evenn{



Single-valued harmonic polylogarithms

define a function ℒ that is real-analytic and single-valued on
and that has the same properties as the HPLs 

C/{0, 1}

the SVHPLs ℒω(z)  also form a shuffle algebra

L!1(z)L!2(z) =
X

!

L!(z) with ω the shuffle of ω1 and ω2

Brown 2004
SVHPLs can be explicitly expressed as combinations of HPLs
such that all the branch cuts cancel

L0(z) = H0(z) +H0(z̄) = ln |z|2

L1(z) = H1(z) +H1(z̄) = � ln |1 + z|2

L0,1(z) =
1

4

⇥
�2H1,0 + 2H̄1,0 + 2H0H̄1 � 2H̄0H1 + 2H0.1 � 2H̄0,1

⇤

= Li2(z)� Li2(z̄) +
1

2
ln |z|2 (ln(1� z)� ln(1� z̄))



Single-valued multiple polylogarithms

Single-valued multiple polylogarithms (SVMPL) can be constructed through
a map that to each multiple polylogarithm associates its single-valued version

 Brown 2004, 2013, 2015

examples of SVMPLs

Ga,b(z) = Ga,b(z) +Gb̄,ā(z̄) +Gb(a)Gā(z̄) +Gb̄(ā)Gā(z̄)

�Ga(b)Gb̄(z̄) +Ga(z)Gb̄(z̄)�Gā(b̄)Gb̄(z̄)

Ga(z) = Ga(z) +Gā(z̄) = ln
���1�

z

a

���
2

3-mass triangles with massless propagators

p1 p3

p2

zz̄ =
p21
p23

(1� z)(1� z̄) =
p22
p23

can be written in terms of SVMPLs Chavez Duhr 2012



IR structure of a QCD amplitude with n massless partons

Mn({pi},↵s) = Zn({pi},↵s, µ)Hn({pi},↵s, µ)

Zn is solution to the RGE equation

Zn = Pexp

(
�1

2

Z µ2

0

d�2

�2
�n({pi},�,↵s(�

2
))

)

𝚪n is the soft anomalous dimension

�n({pi},�,↵s) = �dip
n ({pi},�,↵s) +�n({⇢ijkl},↵s)

�

dip
n ({pi},�,↵s) = �1

2

�̂K(↵s)

X
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log
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�sij
�2

◆
Ti ·Tj +

nX

i=1

�Ji(↵s)

Becher Neubert; Gardi Magnea 2009

At 2 loops, Δ(2) = 0, 𝚪2 : Catani 1998;  Aybat Dixon Sterman 2006

At 3 loops,

⇢ijkl =
(�sij)(�skl)

(�sik)(�sjl)

⇢1234 = zz̄ ⇢1432 = (1� z)(1� z̄) F (z) = L10101(z) + 2⇣2[L001(z) + L100(z)] + 6⇣4L1(z)

is given in terms of SVHPLs Almelid Duhr Gardi 2015
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Mueller-Navelet jets

pa = xaPA pb = xbPB

Dijet production cross section with two tagging 
jets in the forward and backward directions

incoming parton momenta

S:  hadron centre-of-mass energy

s = xaxbS:  parton centre-of-mass energy

ETj:  jet transverse energies

�y = |yj1 � yj2 | ' log

s

ETj1ETj2

is the rapidity interval between the tagging jets

gluon radiation is considered in MRK and 
resummed through the LL BFKL equation

Mueller-Navelet evaluated the inclusive dijet cross section up to 5 loops

Mueller Navelet 1987
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the cross section for dijet production at large rapidity
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can be described through the BFKL Green’s function
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Mueller-Navelet dijet cross section



Mueller-Navelet dijet cross section

azimuthal angle distribution (ɸjj = ɸ-π)
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Mueller-Navelet jets and SVHPLs

Mueller & Navelet  evaluated analytically the inclusive dijet cross section 
up to 5 loops. We evaluated it analytically up to 13 loops

The singlet LL BFKL ladder in QCD, and thus the dijet cross section
in the high-energy limit, can also be expressed in terms of SVHPLs, 
i.e. in terms of single-valued iterated integrals on ℳ0,4

Dixon Duhr Pennington VDD 2013

Also, we could evaluate analytically the dijet cross section differential
in the jet transverse energies or the azimuthal angle between the jets
(up to 6 loops)



use complex transverse momentum

and a complex variable

the BFKL Green's function can be expanded into a power series in 

where the coefficient functions fk are given by the Fourier-Mellin transform

the fk have a unique, well-defined value for every ratio of the magnitudes 
of the two jet transverse momenta and angle between them.
So, they are real-analytic functions of z

BFKL Green’s function and single-valued functions
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this allows us to write the azimuthal angle distribution as
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Mueller-Navelet dijet cross section reloaded

the MN dijet cross section is 

the first 5 loops were computed by Mueller-Navelet.
We computed it through the 13 loops

Dixon Duhr Pennington VDD 2013



Regge limit
in the

next-to-leading logarithmic
approximation



At NLLA in QCD and in N=4 SYM, the eigenvalue is 

Fadin Lipatov 1998
Kotikov Lipatov 2000, 2002

with one-loop beta function and two-loop cusp anomalous dimension

and with
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At NLLA, the BFKL gluon ladder is 
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Fourier-Mellin transform



are SVHPLs of uniform weight k with singularities at z=0 and z=1

C(3)
k (z) are MPLs of type G(a1, . . . , an; |z|) with ak 2 {�i, 0, i}

they are SV functions of z because they have no branch cut on the positive real axis,
and have weight 0 ≤ w ≤ k

C(1)
k (z)

C(2)
k (z) one needs Schnetz’ generalised SVMPLs with singularities at

z =
↵ z̄ + �

� z̄ + �
, ↵,�, �, � 2 C

For
Schnetz 2016

are Schnetz’ generalised SVMPLsthen one can show that C(2)
k (z)

with singularities atG(a1, . . . , an; z) ai 2 {�1, 0, 1,�1/z̄}
Duhr Marzucca Verbeek VDD 2017

Interestingly, in transverse momentum space at NLLA, the maximal weight 
of the BFKL ladder in QCD is not the same as the one of the ladder in N=4 SYM

In moment space, the maximal weight of the BFKL eigenvalue and of 
the anomalous dimensions of the leading twist operators which control 
the Bjorken scaling violations in QCD is the same as the corresponding
quantities in N=4 SYM (Principle of Maximal Transcendentality) Kotikov Lipatov 2000, 2002

Kotikov Lipatov Velizhanin 2003

Duhr Marzucca Verbeek VDD 2017

generalised SVMPLs



one can consider the BFKL eigenvalue at NLLA in a SU(Nc) gauge theory
with scalar or fermionic matter in arbitrary representations
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BFKL ladder in a generic SU(Nc) gauge theory

number of  scalars (Weyl fermions) in the representation Rñs(ñf ) =

�(3)⌫n (Ñf , Ñs) = �(3,1)⌫n (Ñf , Ñs) + �(3,2)⌫n (Ñf , Ñs)
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Necessary and sufficient conditions for a SU(Nc) gauge theory to have a BFKL ladder
of maximal weight are:

— the one-loop beta function must vanish
— the two-loop cusp AD must be proportional to ζ2

—         must vanish  →  �(3,2)⌫n

There is no theory whose BFKL ladder has uniform maximal weight which agrees 
with the maximal weight terms of QCD

Duhr Marzucca Verbeek VDD 2017

2Ñf = N2
c + Ñs

Duhr Marzucca Verbeek VDD 2017



Matter in the fundamental and in the adjoint

We solve the conditions above for matter in the fundamental F and in the adjoint A
representations. We obtain:

2nF
f = nF

s 2nA
f = 2 + nA

s

which describes the spectrum of a gauge theory with N supersymmetries
and nF = nfF chiral multiplets in F and nA = nfA - N chiral multiplets in A

There are four solutions to those conditions

— the first is N=4 SYM
— the second is N=2 superconformal QCD with Nf = 2Nc hypermultiplets
— the third is N=1 superconf. QCD

Caveat:
because the one-loop beta function is fixed by matter loops in gluon self-energies,
we are only sensitive to the matter content of a theory, and not to its details
(like scalar potential or Yukawa couplings)

Duhr Marzucca Verbeek VDD 2017



Hic sunt leones …



Elliptic iterated integrals

2-loop sunrise graph

2-loop 3-pt functions 

electroweak form factor t-tbar 

Aglietti Bonciani Grassi Remiddi 2007 von Manteuffel Tancredi 2017

2-loop 4-pt function for Higgs + 1 jet

Bonciani VDD Frellesvig Henn Moriello V. Smirnov 2016

Broadhurst 1989; …; Bloch Vanhove 2013;  … 

H



2-loop 10-pt N3MHV amplitude in planar N=4 SYM
Caron-Huot Larsen 2012
Bourjaily McLeod Spradlin von Hippel Wilhelm 2017

massless elliptic iterated integrals

traintracks:
L-loop Feynman integrals involving (2L+6) massless legs
they occur in massless 𝜑4 and in planar N=4 SYM

Bourjaily He McLeod von Hippel Wilhelm today



iterated integrals on ℳ0,p are multiple polylogarithms
ℳ0,p = space of configurations of p points on the Riemann sphere

Brown 2006

G(a, ⌥w; z) =
⇤ z

0

dt

t� a
G(⌥w; t) , G(a; z) = ln

�
1� z

a

⇥
a, ~w 2 C

�̃
⇣

n1 . . . nk

z1 . . . zk
; z, ⌧

⌘
=

Z z

0
dt g(n1)(t� z1, ⌧) �̃

⇣
n2 . . . nk

z2 . . . zk
; t, ⌧

⌘
iterated integrals on a torus … Brown Levin 2011

with kernels defined through the Eisenstein-Kronecker series  

F (z,↵, ⌧) =
1

↵

1X

n=0

g(n)(z, ⌧)↵n =
✓01(0, ⌧)✓1(z + ↵, ⌧)

✓1(z, ⌧)✓1(↵, ⌧)

ni 2 N, zi 2 C

𝜃1 Jacobi theta function; g(n) has at most simple poles at z = m + n𝜏 m,n 2 Z
𝜏 = 𝜔2/𝜔1

… are elliptic multiple polylogarithms (eMPL)

E3

⇣
n1 . . . nk

z1 . . . zk
; z,~a

⌘
=

Z z

0
dt'n1(z1, t,~a)E3

⇣
n2 . . . nk

z2 . . . zk
; t,~a

⌘

E3 (; z,~a) = 1

with

and

~a = (a1, a2, a3) are the zeroes of the elliptic curve 
y

2 = (x� a1)(x� a2)(x� a3)

ni 2 Z, zi 2 C ai 2 R

2-loop sunrise can be written in terms of eMPLs
Brödel Duhr Dulat Penante Tancredi 2017



In the last few years, a lot of progress has been made in understanding 
the analytic structure of multi-loop amplitudes

Conclusions

we understand the analytic and algebraic properties of amplitudes,
when they are written in terms of MPLs and/or SVMPLs

an in-depth exploration of how elliptic iterated integrals arise
at 2 loops and beyond has just begun


