Planar $\mathcal{N}=4$ Wilson loops/Amplitudes and Integrability

Alfredo Bonini (University of Bologna & INFN)

New Frontiers in Theoretical Physics XXXVI, Cortona 2018

Collaborators: Davide Fioravanti, Simone Piscaglia, Marco Rossi

arXiv: 1511.05851, 1607.02084, 1707.05767

May 24, 2018

$\mathcal{N} = 4$ Super Yang-Mills

 \triangleright Supersymmetric gauge theory SU(N), $\mathcal{N}=4\Rightarrow$ Maximal amount of supersymmetries in 4d.

$$\boxed{\mathcal{L} = \textit{Tr} \left[-\frac{1}{2g_{YM}^2} F_{\mu\nu} F^{\mu\nu} - D_{\mu} \Phi_{A} D^{\mu} \Phi_{A} - i \bar{\Psi}^{A} \sigma^{\mu} D_{\mu} \Psi_{A} + \text{interactions} \right]}$$

 \Longrightarrow Fields: Gluon A_{μ} , 4 Fermions Ψ^{B}_{α} , $\bar{\Psi}^{B}_{\dot{\alpha}}$, 6 Scalars Φ^{A} \Rightarrow adjoint of SU(N)

▶ Properties:

- Conformal symmetry at the quantum level ($\beta = 0$) \implies Full symmetry group PSU(2, 2|4)
- SU(4) R-symmetry representations, $(A_{\mu}, \Psi_{\alpha}^{B}, \bar{\Psi}_{\dot{\alpha}}^{B}, \Phi^{A}) \Leftrightarrow (\mathbf{1}, \mathbf{4}, \bar{\mathbf{4}}, \mathbf{6})$
- Duality with IIB string in $AdS_5 \times S^5$ (AdS/CFT) \Rightarrow Strong/weak
- Planar limit $N \to \infty$, $\lambda \equiv g_{YM}^2 N \Rightarrow$ Integrability!

Integrability in $\mathcal{N} = 4$: the spectral problem

 $\triangleright \mathcal{N} = 4$: Operators $\mathcal{O}(x) = Tr[A_1(x) \dots A_n(x)] \Rightarrow$ CFT fixes the 2-point function:

$$\langle \mathcal{O}(x)\mathcal{O}(0)\rangle \sim \frac{1}{x^{2\Delta^{\mathcal{O}}}}, \quad \Delta^{\mathcal{O}}(g) = \Delta_0^{\mathcal{O}} + \gamma^{\mathcal{O}}(g)$$

 $\triangleright \gamma^{\mathcal{O}}(g)$ from Bethe Ansatz, spin chain description

Example: SU(2) sector $\Longrightarrow \boxed{\text{Tr}[ZZXZ...XZX] \leftrightarrow |\uparrow\uparrow\downarrow\uparrow.....\downarrow\uparrow\downarrow\rangle}$

- \triangleright Asymptotic (large L) Bethe Ansatz equations for the full theory PSU(2, 2|4), any loop [Minahan, Zarembo, Beisert, Staudacher]
- \triangleright Thermodynamic Bethe Ansatz and Quantum Spectral Curve \Rightarrow Finite L

 \Longrightarrow Complete solution of the spectral problem for $\mathcal{N}=4$ SYM

[Bombardelli, Fioravanti, Tateo, Arutyunov, Frolov, Gromov, Kazakov, Vieira]

$\mathcal{N}=4$ Wilson loops/amplitudes duality

 \triangleright Non local operators: Wilson loops $W(C) = \langle 0| \text{Tr} \mathcal{P} e^{i\oint_C ds \left(A^{\mu}\dot{x}_{\mu} + |\dot{x}|\Phi_i n^i\right)} |0\rangle$

Null polygonal contour \Rightarrow 4d gluon scattering amplitudes, when $p_i \equiv x_{i+1} - x_i$

- MHV amplitudes ⇔ Bosonic Wilson loops
- \triangleright CFT $\Rightarrow n > 5$, 3(n-5) conformal ratios τ_i, σ_i, ϕ_i (functions of x_i)
- ▶ *Hint*: Strong coupling from classical string (+ checks at weak coupling)

$$W_n \sim e^{-\frac{\sqrt{\lambda}}{2\pi}A_n}$$
 $A_n \Rightarrow$ Minimal area in AdS_5

[Alday, Maldacena, Korchemsky, Drummond, Sokatchev]

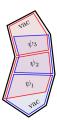
 $\triangleright A_n$ is the free energy of a TBA-like system [Alday, Gaiotto, Maldacena, Sever, Vieira] \rightarrow functional equations: *Y*-system with 3(n-5) nodes, masses $m=\sqrt{2},2$ \Longrightarrow Integrable description!

OPE and the Pentagonal approach

ightharpoonup CFT: Variant of the Operator Product Expansion \Longrightarrow Expansions around the collinear limit $au_i o \infty \Rightarrow$ Insertion of (pentagon) \hat{P}

[Alday,Basso,Gaiotto,Maldacena,Sever,Vieira]

 \triangleright 2D flux-tube: free evolutions and transitions



- n > 5: pentagonal decomposition
- Phases $e^{-E_{\psi_i}\tau_i+ip_{\psi_i}\sigma_i+im_{\psi_i}\phi_i}\Rightarrow$ Geometry of the loop
- Cusp \Rightarrow Transition $P(\psi_i|\psi_j) = \langle \psi_j|\hat{P}|\psi_i\rangle \Rightarrow$ Flux-tube dynamics
- Operator $\hat{P} \Longrightarrow$ Twist field (pentagonal monodromy)
- \triangleright Summing over ψ , OPE series \Rightarrow Non-perturbative in λ

$$\mathcal{W}_{n} = \sum_{\{\psi\}} \prod_{i=1}^{n-5} e^{-E_{\psi_{i}}\tau_{i} + ip_{\psi_{i}}\sigma_{i} + im_{\psi_{i}}\phi_{i}} P(0|\psi_{1}) P(\psi_{1}|\psi_{2}) \cdots P(\psi_{n-5}|0)$$

2D Flux-tube: Integrability

- ▷ GKP string solution: spinning string in AdS₅ [Gubser, Klebanov, Polyakov]
- \triangleright Large spin operator $TrZD_+^sZ(S\to\infty)$: operator insertion \Longrightarrow Excitation of the flux-tube

$$TrZD_{+}^{s-s_1}\hat{O}D_{+}^{s_1}Z, \qquad \hat{O}=F, \bar{F}, \Psi^a, \bar{\Psi}^{\bar{a}}, \Phi^i$$

Vacuum is SU(4) invariant \Longrightarrow Representations of the SU(4) R-symmetry 1,4, $\bar{4}$,6

- ▷ Asymptotic Bethe Ansatz for *Tr*[ZZ...ZZ] (BMN vacuum)
- ⇒ Excitation of the GKP flux-tube [Basso, Fioravanti, Piscaglia, Rossi]
- $\triangleright \psi$ are multiparticle Bethe states (gluons and bound states, fermions, scalars)
- \implies Scattering $S_{a,b}(u,v)$, dispersion $E_a(u)$, $p_a(u)$, transitions $P_{a,b}(u|v) \Rightarrow 2d$ physics
- \triangleright Integration over the rapidities u_i : for the hexagon

$$W_6 = \sum_n \frac{1}{n!} \sum_{part.} \int \prod_{i=1}^n \frac{du_i}{2\pi} \mu_i(u_i) e^{-E(u_i)\tau + ip(u_i)\sigma + im_i\phi} P(0|u_1,...,u_n) P(u_1,...,u_n|0)$$

Strong coupling $(\lambda \to \infty)$ regime

- ▶ Two different contributions, of the *same order*:
 - Perturbative: classical string in AdS_5 , fermions and gluons in the OPE: \Rightarrow Exponential in the coupling $W_n \sim e^{-\frac{\sqrt{\lambda}}{2\pi}A_n}$, minimal area from the TBA-like equations
 - Non perturbative: string dynamics in S^5 , from the scalars in the OPE [Basso, Sever, Vieira] \Rightarrow Dominant in the collinear limit $\tau \to \infty$

$$\mathcal{W} = C_{AdS}(\tau, \sigma, \phi) C_{S^5}(\tau, \sigma) \lambda^B e^{\sqrt{\lambda} A - \frac{\sqrt{\lambda}}{2\pi} A_n(\tau, \sigma, \phi)} \left[1 + O\left(\frac{1}{\sqrt{\lambda}}\right) \right]$$

- *▶ Tasks* for the OPE method:
 - Reproduce the minimal area for $\lambda \to \infty$
 - Analyse the correction from the scalars

AdS_5 string: OPE resummation

 \triangleright Gluons $(m = \sqrt{2})$ and fermions $(m = 1) \Longrightarrow SU(4)$ index a for the latter, $\sum_{a=1}^{4}$ in the OPE

 \triangleright Strong coupling, hypothesis: bound state (meson) $\psi \bar{\psi}$ with m=2:

- SU(4) singlet \Rightarrow Simplification, no sum over a
- Not in the spectrum of the Bethe equations, but E_M , p_M , S_{MM} , P_{MM} are still well-defined
- Bound states of *n* mesons, measure $1/n^2$ (+gluons): $\sum_n \Rightarrow Li_2$ (TBA node)

$$\triangleright \operatorname{Singlet} \Rightarrow P(u_1, ..., u_n | 0) = \prod_{i < i} P(u_i, u_i | 0) \quad \text{very simple!}$$

 \Rightarrow Hubbard-Stratonovich, two fields X_g , X_M (gluon, meson)

$$\frac{1}{P(u|v)P(v|u)} \equiv e^{\langle X(u)X(v)\rangle} \Rightarrow W = \int DX_g DX_M e^{-S[X_g, X_M]} \qquad S \sim \sqrt{\lambda}$$

Saddle point \Rightarrow TBA and minimal area $W_6 \sim e^{-\frac{\sqrt{\lambda}}{2\pi}A_6}$ [Fioravanti,Piscaglia,Rossi] \implies Extension to n > 6, TBA and Y-system for amplitudes, agreement with the string computations

Bound states $\psi \bar{\psi}$ from the OPE

 \triangleright OPE: *n* couples $\psi \bar{\psi}$ reads

▶ Polar structure of the matrix part

$$\Pi_{mat}^{(n)}(\{u_i\}, \{v_j\}) = \frac{P^{(n)}(u_1, \dots, u_n, v_1, \dots, v_n)}{\prod_{i < j} [(u_i - u_j)^2 + 1] \prod_{i < j}^n [(v_i - v_j)^2 + 1] \prod_{i,j=1}^n [(u_i - v_j)^2 + 4]}$$

▷ Strong coupling ⇒ Residues in $v_i = u_j - 2$ and properties of $P^{(n)}$:

$$\Longrightarrow W^{(M)} = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{C_S} \prod_{i=1}^{n} \frac{du_i}{2\pi} \hat{\mu}_M(u_i) \prod_{i < j}^{n} \frac{1}{P_{reg}^{MM}(u_i|u_j) P_{reg}^{MM}(u_j|u_i)} \prod_{i < j}^{n} \frac{u_{ij}^2}{u_{ij}^2 + 1}$$

 \triangleright Analogy with the Nekrasov function \mathcal{Z} : $\lambda \to \infty \Leftrightarrow \epsilon \to 0$ (NS limit)

Meson bound states and resummation

 \triangleright Resummation of the series $W^{(M)}$: works also for \mathcal{Z}

• Polar part
$$\Rightarrow \left[\prod_{i < j}^{n} \frac{u_{ij}^{2}}{u_{ij}^{2} + 1} = \frac{1}{i^{n}} \det \left(\frac{1}{u_{i} - u_{j} - i} \right) \right] \Rightarrow$$
 Fredholm determinant

• Hubbard-Stratonovich for the regular part $P_{reg}^{MM}(u|v)$

$$\Longrightarrow W^{(M)} \simeq \langle \det(1 - M[X]) \rangle$$
, average over the field $X(u)$

$$\triangleright \text{ Strong coupling} \Rightarrow \left| \frac{1}{n} Tr M^n = -\frac{1}{n^2} \int \frac{du}{2\pi i} \mu_M(u) e^{-n\tau E_M(u) + \dots} e^{nX(u)} + O(1) \right|$$

 \implies Sum over bound states $\sum_{n} x^{n}/n^{2} \Rightarrow$ Dilogarithm $Li_{2}(x)$ (TBA node)

$$W^{(M)} \simeq \left\langle \exp \left[- \int du \mu_M(u) Li_2 \left[e^{-\tau E_M(u) + \cdots} \right] \right] \right\rangle \Rightarrow \text{The same for } \mathcal{Z}$$

▷ Including gluons + saddle point

⇒ TBA equations directly from the OPE, no additional assumption

Non-perturbative regime, scalars contribution

⊳ Mass $m \sim e^{-\sqrt{\lambda}/4}$, 2d non-linear (relativistic) O(6) σ -model \Leftrightarrow String on S^5 W_N is a (N-4) point function in the O(6), for the hexagon:

$$W_6(z) = \langle \hat{P}(z)\hat{P}(0)\rangle_{O(6)} \simeq Cz^{-J}(\log 1/z)^s, \quad z \to 0$$
, $z = m\sqrt{\tau^2 + \sigma^2}$

- \triangleright Scaling dimension of $\hat{P} \Rightarrow J = 1/24, s = -1/36$
- \implies non-perturbative enhancement $W_6 \simeq f_6 \lambda^{-\frac{7}{288}} e^{\frac{\sqrt{\lambda}}{144}}$ [Basso, Sever, Vieira]
- \triangleright <u>Goal</u>: Compute *J*, *s*, *C* from the OPE series (Form factor expansion)

$$\implies W_6 = \sum_{n=0}^{\infty} \frac{1}{(2n)!} \int \prod_{i=1}^{2n} d\theta_i G^{(2n)}(\theta_1, ..., \theta_{2n}) e^{-z \sum_k \cosh \theta_k}$$

ightharpoonup Asymptotic factorisation of $G^{(2n)} \Longrightarrow g^{(2n)} \to 0$ when the rapidities are sent far away

Connected functions: series represtation for J

 \triangleright The series of the logarithm contains the connected counterparts $g^{(2n)}$

$$\mathcal{F}_6 \equiv \log W_6 = \sum_{n=1}^{\infty} \frac{1}{(2n)!} \int \prod_{i=1}^{2n} d\theta_i g^{(2n)}(\theta_1, \cdots, \theta_n) e^{-z \sum_k \cosh \theta_k}$$

 $> g^{(2n)}$ depends on the differences $\alpha_i \equiv \theta_{i+1} - \theta_1$, we integrate over θ_1 to get

$$\mathcal{F}_6 = 2 \sum_{n=1}^{\infty} \int \prod_{i=1}^{2n-1} d\alpha_i g^{(2n)}(\alpha_1, \dots, \alpha_{2n-1}) K_0(z\xi)$$

 \triangleright Expand for small $z \Rightarrow K_0(x) = -\log x + O(1)$, <u>Series</u> for J: (also s, $\log C$)

$$J = \sum_{n=1}^{\infty} \frac{1}{(2n)!} \int \prod_{i=1}^{2n-1} d\alpha_i g^{(2n)}(\alpha_1, \dots, \alpha_{2n-1}) = \sum_{n=1}^{\infty} J^{(2n)}$$

⊳ Fast convergence: $J^{(2)} + J^{(4)} \simeq J = 1/24$ with 99% of accuracy

Scalar Polygons N > 6: recursion formula

 \triangleright Polygons N > 6, same picture: N-gonal Wilson loop $\Leftrightarrow (N-4)$ -point function

$$W_N(\tau_i, \sigma_i) = \langle \hat{P}(z_1)....\hat{P}(z_{N-4}) \rangle, \quad z_{i+i} - z_i = m(\tau_i, \sigma_i)$$

- ightharpoonup Logarithm $\mathcal{F}_N = \log W_N$, multiconnected parts $G^{(2n_1,\ldots,2n_{N-5})} \Rightarrow g^{(2n_1,\ldots,2n_{N-5})}$
- \triangleright Features of $g^{(2n_1,...,2n_{N-5})} \Rightarrow$ Recursion among the polygons:

$$\mathcal{F}_{N} = \mathcal{F}_{N-1}(1,...,N-6) + \mathcal{F}_{N-1}(2,...,N-5) - \mathcal{F}_{N-2}(2,...,N-6) + \sum_{\{n\}=1}^{\infty} \mathcal{F}_{N}^{(2n_{1},\cdots,2n_{N-5})}$$

- \Rightarrow Picture: two inner (N-1)-gons minus the overlapping (N-2)-gon, plus corrections $(\to 0 \text{ for large } N) \Rightarrow \text{Same for } J_N, s_N$
- \triangleright Simplest solution with $J_4 = J_5 = 0$ (square and pentagon are trivial):

$$\left| J_N = \frac{(N-4)(N-5)}{12N} \right| \Rightarrow \text{agreement with the BSV proposal } W \sim e^{\sqrt{\lambda}J_N}$$

 \Longrightarrow Does it hold for s_N as well?

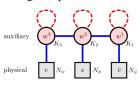
Twist operator \hat{P} : form factors

 $\triangleright \Psi_B$, Φ_A charged under $SU(4) \Rightarrow$ sum over internal indices, for the hexagon:

$$\boxed{\sum_{\{a\}} |\langle 0|\hat{P}|\Phi_{a_1}(u_1)\cdots\Phi_{a_n}(u_n)\rangle|^2 = \Pi_{mat}(\{u\})\Pi_{dyn}(\{u\})} \Rightarrow \text{Simpler than usual}$$

- $\Pi_{dyn}^{(2n)} \Rightarrow$ Two-body factorizable, coupling constant g
- $\Pi_{mat}^{(2n)} \Rightarrow$ Coupling independent, NOT factorized

 \triangleright Integral representation: auxiliary roots of SU(4) spin chain:



- Different variables, solid blue line $f(x) = x^2 + 1/4$
- Self interaction, shaded red line $g(x) = x^2(x^2 + 1)$

Scalars
$$\Rightarrow \prod_{mat}^{(2n)} = \frac{1}{(2n)!(n!)^2} \int_{-\infty}^{+\infty} \prod_{k=1}^{n} \frac{da_k dc_k}{(2\pi)^2} \prod_{k=1}^{2n} \frac{db_k}{2\pi} \times \frac{\prod_{i < j}^{n} g(a_i - a_j)g(c_i - c_j) \prod_{i < j}^{2n} g(b_i - b_j)}{\prod_{j=1}^{n} \left(\prod_{i=1}^{n} f(a_i - b_j)f(c_i - b_j) \prod_{l=1}^{2n} f(u_l - b_j)\right)}$$

Residues evaluation and Young diagrams

$$ightharpoonup$$
 Integrals over $a, c \Rightarrow \int \prod_{i=1}^{2n} \frac{db_i}{2\pi} [\delta_{2n}(b_1, \dots, b_{2n})]^2 \prod_{i,j}^{2n} \frac{1}{f(u_i - b_j)} \prod_{i < j} \frac{b_{ij}^2}{(b_{ij}^2 + 1)}$

 \triangleright Zeroes and poles structure, analogy with Nekrasov function \mathcal{Z} :

- Double zeros $b_i = b_j \Rightarrow$ No residues with the same rapidity
- Poles $b_i = u_j + i/2$ and $b_{ij} = +i \Rightarrow$ Strings in the complex plane with real part u_i and displaced by +i
- $\delta_{2n}(b_1, b_1 + i, b_1 + 2i, b_4, \dots, b_{2n}) = 0 \Rightarrow l_i \leq 2$ residues with u_i
- \triangleright Symmetrization $u_i \leftrightarrow u_j \Rightarrow$ Young diagrams: for 2n scalars

$$\Pi_{mat}^{(2n)} = \sum_{l_1 + \ldots + l_{2n} = 2n, l_i < 3, l_{i+1} \le l_i} (l_1, \ldots, l_{2n})_s = \sum_{|Y| = 2n, l_i < 3} (Y)_s \text{ rational function}$$

$$\Longrightarrow Example: \Pi_{mat}^{(2)}(u_1, u_2) = (2, 0) + (1, 1) + (0, 2) = (2, 0)_s + (1, 1)_s$$

$$\triangleright n \ \psi \bar{\psi} \Rightarrow \boxed{\Pi_{mat}^{(n)}(u_1, \dots, u_n, v_1, \dots, v_n) = \sum_{l_1 + \dots + l_{2n} = n, l_i = 0, 1} (l_1, \dots, l_{2n})}$$

Poles structure of Π_{mat}

 \triangleright Asymptotic factorisation of $\Pi_{mat}^{(2n)} \Rightarrow$ polar structure in the complex plane:

$$\Pi_{mat}^{(2n)}(u_1,\cdots,u_{2n}) = \frac{P^{(2n)}(u_1,\cdots,u_{2n})}{\prod_{i< j}(u_{ij}^2+1)(u_{ij}^2+4)}$$

 \triangleright Some properties of the polynomials $P^{(2n)}$ are known, for instance:

$$P_{2n}(u_1 - i, u_1 + i, u_3, \dots, u_{2n}) = 6P_{2n-2}(u_3, \dots, u_{2n}) \prod_{j=3}^{2n} (u_{1j}^2 + 4)(u_{1j}^2 + 9)$$

- ⇒ Kinematic poles of the form factors
- \triangleright Similar considerations for *n* couples $\psi \bar{\psi} \Rightarrow$ Poles and polynomials P_n
- ⇒ Formation of the mesons and bound states, important check of the integral formula!

Summary and perspectives

Integrability + OPE series ⇒ Non-perturbative approach to Wl/amplitudes

- > Strong coupling regime: exponential contributions
 - AdS₅ minimal area: OPE resummation (gluons, fermions) ⇒ TBA-like equations for any polygon
 - OPE prediction: non-pertubative correction from scalars, string on S⁵ ⇒ Series for the leading coefficients J_N, any N
- ⇒ Extension to NMHV, subleading corrections?
- \triangleright Form factors of the twist operator \hat{P} :
 - Split dynamical + matrix ⇒ Simplification
 - SU(4) matrix part \Rightarrow Young diagrams representation (rational functions)
- \Longrightarrow Split, properties of \hat{P} , integral formula of Π_{mat}
- \triangleright Analogies with $\mathcal{N}=2$
- \Longrightarrow Relation between \mathcal{Z} and $W^{(M)}$, role of integrability?

Thank you for your attention!

