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Overview

Main goal
Study black hole microstates using string theory and holography

@ A b.h. microstate is dual to a “heavy” operator (Ay ~ ¢)
and (in some cases) is described by a 10D classical geometry

Oy & ds?,

@ Microstates can be probed by “light” operators (A, ~ O(c?))

(On(00)OL(2)OL(1)OH(0)) = (O(2)Or(1)) g,

@ HHLL correlators can diagnose information loss vs. unitarity



The information paradox

The semi-classical picture

@ The classical b.h. has a central singularity and a smooth horizon

@ For a large b.h. the curvature is small at the horizon and EFT
should be valid

@ EFT implies that the b.h. emits particles in an entangled state

a
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@ When the black hole has completely evaporated the outside
radiation is entangled with nothing
= Violation of unitarity!



The information paradox

Correlators and Information Loss (Maldacena '01)

@ The 2-point function in a b.h. background vanishes at large t

(O(t) O(0))p.p. ~ e~ 47ATH!

with Ty the b.h. temperature

@ This is not what we expect for the correlator in the thermal state
in a unitary theory with finite entropy



The information paradox

Reminder: how to compute correlators in holography

@ ¢(r, x) is the bulk field dual to the CFT operator O(x)

@ Solve the e.o.m for ¢ with vev of O(x)

o(r,x) =F 6(x)r2=9 4 b(x) r 2

source for O(0)

@ The correlator is

(O(x) 0(0)) = b(x)




The information paradox

Reminder: how to compute correlators in holography

@ ¢(r, x) is the bulk field dual to the CFT operator O(x)

@ Solve the e.o.m for ¢ with vev of O(x)

o(r,x) =F 6(x)r2=9 4 b(x) r 2

source for O(0)

@ The correlator is

(O(x) 0(0)) = b(x)

» In the black hole background
b(t,X) ~ e'“! with w = quasinormal frequency ~ i Ty

= large time decay!



The information paradox

Correlato rS in unitary th eorieS (Dyson, Lindesay, Susskind; Barbon, Rabinovici)

@ In a unitary theory with finite entropy and hence a discrete
spectrum

Cs(t)= (O(H) O(0))5 = Z; ' T [efﬂHO(t) 0(0)

=2Z;') e PE(i|o(0)lj)[2e"E BN
;

@ The long-time average of the correlator is
lim / it Ca(t 725 oS
T—oo T Z

@ Hence Cs(t) cannot be exponentially vanishing at late times



The information paradox

Qualitative behaviour of Cs(t)
Co(t) = 25> e PEi|(i10(0) ) P&/ Ei=E)
i

@ Fort < (E; — Ej)~" ~ e’ the spectrum
can be approximated as continuous: Cg
is the Fourier transform of a function of
width ~ 3~" and hence Cs ~ e~ /?
@ For t ~ 3S the correlator is of the order
of its long-time average e~°: it
oscillates irregularly and no longer e
decreases
@ For t ~ (E; — Ej)~" most of the phases

are again of order 1 and hence
Cs ~ O(1)

<0({-\'(_)(m>(i




A miCFOSCOpiC BH mOdel D1 'D5'P (Strominger, Vafa)

@ The simplest BPS black hole with a finite-area horizon is

|D1-D5-P on R4 x ST x T#|

@ We take vol(T#) ~ ¢4 and R(S") > ¢s = 2D CFT
@ The b.h. has a “near-horizon” limit: AdS3 x S° x T#
@ We take Gy — 0 with Ryg4s fixed = ¢ = 6nyns = 6N — oo
@ The CFT has a 20-dim moduli space:
e gsN — 0 : free orbifold point < Rpgs < g

@ gsN > 1 :strong coupling point <= Rags > (s

Goal
Understand b.h. microstates at the strong coupling point }




The D1-D5 CFT

@ Symmetries:
(4,4) SUSY with SU(2), x SU(2)pg affine R-symmetry
@ At the orbifold point
sigma model on (T*)N /Sy
one has free bosons and fermions

(OX(2),054(2)) , (BXA(2),084(Z)) with r=1,...,N

(a <> SU(2),, & <> SU(2)R, A+ SU(2)1, A > SU(2),)
@ Spectral flow:

NS - R : j—>j+gl, h—>h+j+2/



The D1-D5-P black hole

2-charge states

@ States carrying D1-D5 charges are RR ground states: h= h = %
Note: h ~ ¢ = these are “heavy” operators

@ They are constructed from elementary “strands” characterised by
winding w and SU(2), x SU(2)g spin |s)

& TLUs)w)™

2 i

with the constraint >, wiN; = N
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The D1-D5-P black hole

A small black hole

@ The statistical ensemble of D1-D5 states is described by the
“massless BTZ” geometry

ds?  dr?

= — + r*(—d* + dy?)
Rigs I

@ ltis a singular geometry with Ay, =0
@ Correlators in this geometry still display information loss

(O()O(0))p1z, ~ t™4
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Fuzzballs

The geometry of microstates (i) Maix et

@ We can associate a 10D geometry to (coherent superpositions of)
RR ground states

@ All these geometries are smooth and horizonless

@ They are asymptotically AdSg x S% x T4
but in the interior AdS; and S are non-trivially mixed

@ They can be extended to asymptotically flat geometries

R4 x 81 x T4

AdS; x S% x T4

— r ~ Ryor N0 horizon!
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A note on 3-charge states

@ We know the dual geometries for a class of D1-D5-P states,
knOWn as Superstrata (Bena, SG, Martinec, Russo, Shigemori, Turton, Warner)

T [ (s = ]

i

spectral flow

Note: J*,, L4 — J3, Ji Loy
generate the global chiral algebra
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A note on 3-charge states

@ We know the dual geometries for a class of D1-D5-P states,
knOWn as Superstrata (Bena, SG, Martinec, Russo, Shigemori, Turton, Warner)

T [ (s = ]

]
Note: Jj_l 7 I__1 —J§1 spectral flow Ja—, L_1
generate the global chiral algebra

» In this talk I will restrict to 2-charge states
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Fuzzballs

Example I: maximally rotating ground state

@ The simplest D1-D5 state is the maximally rotating one

+ 4+ e ,@/@ ,@

@ Spectral flow maps this state into the NS vacuum:
R L S I
@ On the gravity side spectral flow is a change of coordinates mixing
AdS; (t,y) and S® (¢, 1) coordinates
t y
¢— o+ B Y=Y+ B

and maps the geometry dual to |+, +>4V into AdS3 x S8

14/26



Fuzzballs

Example II: conical defects

@ A state made of N/k identical copies of strands of winding k
k

+ -+ e

———

@ The non-globally-defined change of coordinates
t y
o= o+ kB Y=+ kB

maps the geometry dual to |+, +>,’:’/k into AdS3/7Zy x S3
@ Generic states in the 2-charge ensemble have k ~ /N
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The light operators

@ We consider

(1) Z 6AB —A Z €AB 6XA1 axB1

° OF) is an anti-chiral-primary with hy = hy = —j, = —j, = }
° 022) is a superdescendant
o® =Gt G

12GT1 2O with hy = By =1, ju =], =0

@ Since G|Oy) = G|Oy) = 0, correlators satisfy the Ward identity

= = —(1
(0|00 04) = 00 [|21(04| 0[O} O)]
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HHLL correlators

The light operators: gravity picture

° OEZ) is dual to a 6D minimally coupled scalar

° Of) is dual to a scalar coupled to a 2-form in 6D

Solving the wave equation for Oﬁz) is much simpler than for Of) J

17/26



HHLL correlators

The light operators: gravity picture

° OEZ) is dual to a 6D minimally coupled scalar

° Of) is dual to a scalar coupled to a 2-form in 6D

Solving the wave equation for Oﬁz) is much simpler than for Of) J

In the following we will use the notation:

¢ (2,2) = (On(o0)0[" (2, 2)0{" (1) 0n(0))
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HHLL correlators

Correlators in conical defects: |O) = (| + +)x)V/*

B k1 1- |Z\2
21— 2P 1 |2}

c(z,2)

@ The result is the same both in gravity and in the orbifold CFT

@ The only operators in the OPE O£1)5(L1) that have a non-zero vev
in the state (| + +)x)V/* are J-descendants of the identity

’
12

oN(zy0"(1) = 1+(1-2)P+(1-2)P+...

@ In this case the correlator is completely determined by the chiral
algebra and thus it is protected
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HHLL correlators

Late time behaviour of C,((”
@ Usingz=¢€("t9)  z=¢(r=9) withr =t/R, 0 =y/R

) e 'msint k1
k cosST —coso 1 — g2it/k

@ Forlarge 7 (1 Z k) C,((” is an oscillating function of 7

= no information loss!
@ For 7 not so large (7 < k)
C/(<1) U
= non-unitary b.h. behaviour

@ Note that for typical states k ~ v/N ~ S as expected
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HHLL correlators

A more generic state

@ Consider the semiclassical RR ground state  (kanitscheider. skenderis, Tayion)

/\‘00>1

N _
56) = Iy SHL AVPE"

(A2 + B2 = N)

N-p p
@ In the large N limit the sum is dominated by p ~ B?
@ The dual geometry is a deformation of AdS3 x S® and cannot be
mapped into AdS3 x S® by any change of coordinates
@ The deformation is essentially controlled by one scalar w ~ C(©)

W:bLSIHH COS ¢

Ve + a2
i QQ

20/26



HHLL correlators

A dynamical correlator: |Oy) = |S)s

Free CFT
e — 1 B lzP+ 1 -2 -1 AB (0 1) 1
|z|l1 —z2 2N 1Z||1 — z|2 N N) |z|
Gravity
. 2
o exp [—/;\/(|l| +2n)2 + 2’27} b2
1M _ < —IT ilo 0 0 —ir
Cp = > €7, 1L PP +N23§ ©
ez n=1 242 (|l|+2n)2

21/26



HHLL correlators

Properties of Cg)

@ For b?/a®> < 1 we can compute independently the correlators with
OF) and O{Z) and check the Ward identity

@ Non-BPS multiparticle operators contribute to C,(;)

oM (20 (1) = S(1 = 2y (1 — 21 oo+ a ol <+
nJt
= the correlator is non-protected

@ In the light-cone limit Z — 1 (r — o) only the L_, and J3 ,
descendants of the identity can contribute at strong coupling.
Indeed the gravity correlator tends to

1 az 12 . a2
with o= —

(1)
6 ~7-z1-m &2

B

which is the affine block of the identity at large ¢ (Fitzpatrick, Kaplan)
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HHLL correlators

Late time behaviour of C,(;)

@ When a « ay the microstate geometry reduces to massless BTZ
@ In this limit the CS) series is dominated by terms with n>> 2|/

(1) 1 1 B
—ir _ %
CB e 1 — gilo—1) + 1 — g—fi(o+7) 1 72[‘%T

1—e

@ Forr <« a—a" one recovers the BTZ behaviour CS) ~ 71

e Forr > a—; C,(;) oscillates and stops decreasing with 7
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HHLL correlators

Late time behaviour of Cg)

@ When a « ay the microstate geometry reduces to massless BTZ
@ In this limit the Cg) series is dominated by terms with n>> 2|/

(1) 1 1 B
—ir _ %
CB e 1 — gilo—1) + 1 — g—fi(o+7) 1 72i%7

1—e

@ Forr <« a—a" one recovers the BTZ behaviour Cg) ~ 71

e Forr > a—; C,(;) oscillates and stops decreasing with 7

No information loss even for non-protected correlators! )
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HHLL correlators

Connection with LLLL correlators?

@ Our computation does not use Witten diagrams: Oy — dsf,

o W|tten diagl’ams in Ad83 are Subtle (D’Hoker, Freedman, Rastelli)
@ When b <« gg the state |Oy), spectrally flowed to the NS sector, is
“: ”, 2
light”: hys = %‘f?o <N
@ In this limit HHLL correlators reduce to LLLL ones?
@ No! There is an order of limits problem:

e HHLL: take N — oo with b2 /N fixed, and then b?/N < 1
o LLLL: take N — oo with b fixed and small
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Conclusions

An overview of the fuzzball program

@ We know families of smooth horizonless geometries with the
same charges as 2, 3 (and 4)-charge black holes

@ We can link these geometries to states of the D1-D5 CFT that is
dual to the Strominger-Vafa black hole

Fuzzballs represent black hole microstates J

@ In some limits the microstate geometries are indistinguishable
from the black hole if probed for a short time

@ For sufficiently long times the microstate geometries deviate
significantly from the black hole and produce correlators that are
consistent with unitarity

25/26



Fuzzballs: open problems

@ 2-charge: formally we know all the states but the sugra description
becomes unreliable for typical ones (Chen, Michel, Polchinski, Puhm)

@ 3-charge: the known geometris capture a parametrically small
fraction of the entropy

@ lItis possible that most of the 3-charge states (“pure Higgs states”)
do not admit a description in supergravity

(Bena, Berkooz, de Boer, EI-Showk, Van den Bleeken; Sen)

@ If sugra probes cannot distinguish typical states from the black
hole, which tools do we have to describe them?
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