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Overview

Main goal

Study black hole microstates using string theory and holography

A b.h. microstate is dual to a “heavy” operator (∆H ∼ c)
and (in some cases) is described by a 10D classical geometry

OH ⇔ ds2
H

Microstates can be probed by “light” operators (∆L ∼ O(c0))

〈ŌH(∞)OL(z)ŌL(1)OH(0)〉 ≡ 〈OL(z)ŌL(1)〉ds2
H

HHLL correlators can diagnose information loss vs. unitarity
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The information paradox

The semi-classical picture

The classical b.h. has a central singularity and a smooth horizon
For a large b.h. the curvature is small at the horizon and EFT
should be valid
EFT implies that the b.h. emits particles in an entangled state

|ψ〉pair =
1√
2

(| ↑〉in | ↓〉out−| ↓〉in | ↑〉out)

ρout = TrHin |ψ〉pair〈ψ|pair

=
1
2

(| ↓〉out〈↓ |out + | ↑〉out〈↑ |out)

When the black hole has completely evaporated the outside
radiation is entangled with nothing
⇒ Violation of unitarity!
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The information paradox

Correlators and Information Loss (Maldacena ’01)

The 2-point function in a b.h. background vanishes at large t

〈O(t) O(0)〉b.h. ∼ e−4π∆TH t

with TH the b.h. temperature

This is not what we expect for the correlator in the thermal state
in a unitary theory with finite entropy
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The information paradox

Reminder: how to compute correlators in holography

φ(r , x) is the bulk field dual to the CFT operator O(x)

Solve the e.o.m for φ with
vev of O(x)↗

φ(r , x)
r→∞−→ δ(x) r∆−d + b(x) r−∆

↘
source for O(0)

The correlator is
〈O(x) O(0)〉 = b(x)

I In the black hole background

b(t , ~x) ∼ e i ω t with ω = quasinormal frequency ∼ i TH

⇒ large time decay!
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The information paradox

Correlators in unitary theories (Dyson, Lindesay, Susskind; Barbon, Rabinovici)

In a unitary theory with finite entropy and hence a discrete
spectrum

Cβ(t)≡ 〈O(t) O(0)〉β = Z−1
β Tr

[
e−βHO(t) O(0)

]
= Z−1

β

∑
ij

e−βEi |〈i |O(0)|j〉|2ei(Ei−Ej )t

The long-time average of the correlator is

lim
T→∞

1
T

∫ T

0
dt |Cβ(t)|2 ∼

Z2β

Z 2
β

∼ e−S

Hence Cβ(t) cannot be exponentially vanishing at late times
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The information paradox

Qualitative behaviour of Cβ(t)

Cβ(t) = Z−1
β

∑
ij

e−βEi |〈i |O(0)|j〉|2ei(Ei−Ej )t

For t � 〈Ei − Ej〉−1 ∼ βeS the spectrum
can be approximated as continuous: Cβ
is the Fourier transform of a function of
width ∼ β−1 and hence Cβ ∼ e−t/β

For t ∼ βS the correlator is of the order
of its long-time average e−S: it
oscillates irregularly and no longer
decreases

For t ∼ 〈Ei − Ej〉−1 most of the phases
are again of order 1 and hence
Cβ ∼ O(1)
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The D1-D5-P black hole

A microscopic BH model: D1-D5-P (Strominger, Vafa)

The simplest BPS black hole with a finite-area horizon is

D1-D5-P on R4,1 × S1 × T 4

We take vol(T 4) ∼ `4s and R(S1)� `s ⇒ 2D CFT
The b.h. has a “near-horizon” limit: AdS3 × S3 × T 4

We take GN → 0 with RAdS fixed⇒ c = 6n1n5 ≡ 6N →∞
The CFT has a 20-dim moduli space:

gsN → 0 : free orbifold point ⇐⇒ RAdS � `s

gsN � 1 : strong coupling point ⇐⇒ RAdS � `s

Goal
Understand b.h. microstates at the strong coupling point
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The D1-D5-P black hole

The D1-D5 CFT

Symmetries:
(4,4) SUSY with SU(2)L × SU(2)R affine R-symmetry

At the orbifold point
sigma model on (T 4)N/SN

one has free bosons and fermions

(∂X AȦ
r (z), ψαA

r (z)) , (∂̄X AȦ
r (z̄), ψ̃α̇A

r (z̄)) with r = 1, . . . ,N

(α↔ SU(2)L, α̇↔ SU(2)R, A↔ SU(2)1, Ȧ↔ SU(2)2)
Spectral flow:

NS→ R : j → j +
N
2
, h→ h + j +

N
4
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The D1-D5-P black hole

2-charge states

States carrying D1-D5 charges are RR ground states: h = h̄ = N
4

Note: h ∼ c ⇒ these are “heavy” operators
They are constructed from elementary “strands” characterised by
winding w and SU(2)L × SU(2)R spin |s〉

...

w1w 2 i

si1 2 ⇔
∏

i (|si〉wi )
Ni

with the constraint
∑

i wiNi = N
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The D1-D5-P black hole

A small black hole

The statistical ensemble of D1-D5 states is described by the
“massless BTZ” geometry

ds2

R2
AdS

=
dr2

r2 + r2(−dt2 + dy2)

It is a singular geometry with AHor = 0
Correlators in this geometry still display information loss

〈O(t)O(0)〉BTZ0 ∼ t−∆
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Fuzzballs

The geometry of microstates (Lunin, Mathur et al.)

We can associate a 10D geometry to (coherent superpositions of)
RR ground states
All these geometries are smooth and horizonless
They are asymptotically AdS3 × S3 × T 4

but in the interior AdS3 and S3 are non-trivially mixed
They can be extended to asymptotically flat geometries

R4,1 × S1 × T 4

AdS3 × S3 × T 4

←− r ∼ RHor no horizon!
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Fuzzballs

A note on 3-charge states

We know the dual geometries for a class of D1-D5-P states,
known as superstrata (Bena, SG, Martinec, Russo, Shigemori, Turton, Warner)∏

i

[
(J+
−1)mi (L−1 − J3

−1)ni |si〉wi

]Ni

Note: J+
−1 , L−1 − J3

−1
spectral flow
−−−−−−−→ J+

0 , L−1
generate the global chiral algebra

I In this talk I will restrict to 2-charge states
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Fuzzballs

Example I: maximally rotating ground state

The simplest D1-D5 state is the maximally rotating one

|+,+〉N1 ↔ ...

N

Spectral flow maps this state into the NS vacuum:

|+,+〉N1
s.f.−→ |0〉NS

On the gravity side spectral flow is a change of coordinates mixing
AdS3 (t , y) and S3 (φ, ψ) coordinates

φ→ φ+
t
R

, ψ → ψ +
y
R

and maps the geometry dual to |+,+〉N1 into AdS3 × S3
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Fuzzballs

Example II: conical defects

A state made of N/k identical copies of strands of winding k

|+,+〉N/k
k ↔

N/

k

k

The non-globally-defined change of coordinates

φ→ φ+
t

kR
, ψ → ψ +

y
kR

maps the geometry dual to |+,+〉N/k
k into AdS3/Zk × S3

Generic states in the 2-charge ensemble have k ∼
√

N
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HHLL correlators

The light operators

We consider

O(1)
L =

N∑
r=1

εAB√
2N

ψ−A
r ψ̃−B

r , O(2)
L =

N∑
r=1

εAB√
2N

∂X A1̇
r ∂̄X B1̇

r

O(1)
L is an anti-chiral-primary with hL = h̄L = −jL = −j̄L = 1

2

O(2)
L is a superdescendant

O(2)
L = G+

−1/2G̃+
−1/2O(1)

L with hL = h̄L = 1, jL = j̄L = 0

Since G|OH〉 = G̃|OH〉 = 0, correlators satisfy the Ward identity

〈OH |O
(2)
L O

(2)
L |OH〉 = ∂∂̄

[
|z|〈OH |O

(1)
L O

(1)
L |OH〉

]
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HHLL correlators

The light operators: gravity picture

O(2)
L is dual to a 6D minimally coupled scalar

O(1)
L is dual to a scalar coupled to a 2-form in 6D

Solving the wave equation for O(2)
L is much simpler than for O(1)

L

In the following we will use the notation:

C(i)
H (z, z̄) ≡ 〈ŌH(∞)O(i)

L (z, z̄)Ō(i)
L (1)OH(0)〉
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HHLL correlators

Correlators in conical defects: |OH〉 = (|++〉k)N/k

C(1)
k (z, z̄) =

k−1

|z||1− z|2
1− |z|2

1− |z|
2
k

The result is the same both in gravity and in the orbifold CFT

The only operators in the OPE O(1)
L O

(1)
L that have a non-zero vev

in the state (|+ +〉k )N/k are J3-descendants of the identity

O(1)
L (z)O

(1)
L (1) =

1
|1− z|2

[
1 + (1− z)J3 + (1− z̄)J̃3 + . . .

]

In this case the correlator is completely determined by the chiral
algebra and thus it is protected
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HHLL correlators

Late time behaviour of C(1)
k

Using z = ei(τ+σ) , z̄ = ei(τ−σ) with τ = t/R, σ = y/R

C(1)
k ∼ e−iτ sin τ

cos τ − cosσ
k−1

1− e 2 i τ/k

For large τ (τ & k ) C(1)
k is an oscillating function of τ

⇒ no information loss!

For τ not so large (τ � k )

C(1)
k ∼ τ−1

⇒ non-unitary b.h. behaviour

Note that for typical states k ∼
√

N ∼ S as expected
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HHLL correlators

A more generic state

Consider the semiclassical RR ground state (Kanitscheider, Skenderis, Taylor)

|sB〉 = 1

N
N
2

∑N
p=0 AN−pBp

(A2 + B2 = N)

...

pN-p

↗|00〉1

In the large N limit the sum is dominated by p ∼ B2

The dual geometry is a deformation of AdS3 × S3 and cannot be
mapped into AdS3 × S3 by any change of coordinates
The deformation is essentially controlled by one scalar w ∼ C(0)

w = b
a√

r2 + a2
sin θ cosφ

with a = a0
A√
N
, b√

2
= a0

B√
N
, a0 =

√
Q1Q5
R
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HHLL correlators

A dynamical correlator: |OH〉 = |s〉B

Free CFT

C(1)
B =

1
|z||1− z|2

+
B2

2N
|z|2 + |1− z|2 − 1
|z||1− z|2

+
A2B2

N

(
1− 1

N

)
1
|z|

Gravity

C(1)
B =

a
a0

e−iτ
∑
l∈Z

eilσ
∞∑

n=1

exp
[
−i a

a0

√
(|l |+ 2n)2 + b2l2

2a2 τ

]
√

1 + b2

2a2
l2

(|l|+2n)2

+ N
b2

2a2
0

e−iτ
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HHLL correlators

Properties of C(1)
B

For b2/a2 � 1 we can compute independently the correlators with
O(1)

L and O(2)
L and check the Ward identity

Non-BPS multiparticle operators contribute to C(1)
B

O(1)
L (z)O

(1)
L (1) =

∑
n,`

(1− z)n+`−1(1− z̄)`−1 : O(1)
L ∂n+`∂̄`O

(1)
L : + . . .

⇒ the correlator is non-protected
In the light-cone limit z̄ → 1 (τ → σ) only the L−n and J3

−n
descendants of the identity can contribute at strong coupling.
Indeed the gravity correlator tends to

C(1)
B ∼ 1

1− z̄
α z−1/2

1− zα
with α =

a2

a2
0

which is the affine block of the identity at large c (Fitzpatrick, Kaplan)
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HHLL correlators

Late time behaviour of C(1)
B

When a� a0 the microstate geometry reduces to massless BTZ

In this limit the C(1)
B series is dominated by terms with n� a0

2a |l |

C(1)
B ∼ e−iτ

[
1

1− ei(σ−τ)
+

1
1− e−i(σ+τ)

− 1
] a

a0

1− e−2i a
a0
τ

For τ � a0
a one recovers the BTZ behaviour C(1)

B ∼ τ−1

For τ & a0
a C

(1)
B oscillates and stops decreasing with τ

No information loss even for non-protected correlators!
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HHLL correlators

Connection with LLLL correlators?

Our computation does not use Witten diagrams: OH → ds2
H

OH

_
OH

OL OL

_

+

OH

_
OH

OL OL

_

+ . . .→

OL OL

_

X
ds2H

Witten diagrams in AdS3 are subtle ... (D’Hoker, Freedman, Rastelli)

When b � a0 the state |OH〉, spectrally flowed to the NS sector, is
“light”: hNS = N

4
b2

a2
0
� N

In this limit HHLL correlators reduce to LLLL ones?
No! There is an order of limits problem:

HHLL: take N →∞ with b2/N fixed, and then b2/N � 1
LLLL: take N →∞ with b fixed and small
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Conclusions

An overview of the fuzzball program

We know families of smooth horizonless geometries with the
same charges as 2, 3 (and 4)-charge black holes
We can link these geometries to states of the D1-D5 CFT that is
dual to the Strominger-Vafa black hole

Fuzzballs represent black hole microstates

In some limits the microstate geometries are indistinguishable
from the black hole if probed for a short time
For sufficiently long times the microstate geometries deviate
significantly from the black hole and produce correlators that are
consistent with unitarity
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Conclusions

Fuzzballs: open problems

2-charge: formally we know all the states but the sugra description
becomes unreliable for typical ones (Chen, Michel, Polchinski, Puhm)

3-charge: the known geometris capture a parametrically small
fraction of the entropy
It is possible that most of the 3-charge states (“pure Higgs states”)
do not admit a description in supergravity

(Bena, Berkooz, de Boer, El-Showk, Van den Bleeken; Sen)

If sugra probes cannot distinguish typical states from the black
hole, which tools do we have to describe them?
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