Holographic Correlators and the Information Paradox

Stefano Giusto

University of Padua

Cortona 2018

based on 1606.01119, 1705.09250, 1710.06820 (with A. Bombini, A. Galliani, E. Moscato, R. Russo)

Overview

Main goal

Study black hole microstates using string theory and holography

 A b.h. microstate is dual to a "heavy" operator (Δ_H ~ c) and (in some cases) is described by a 10D classical geometry

 $O_H \Leftrightarrow ds_H^2$

- Microstates can be probed by "light" operators $(\Delta_L \sim O(c^0))$ $\langle \bar{O}_H(\infty)O_L(z)\bar{O}_L(1)O_H(0)\rangle \equiv \langle O_L(z)\bar{O}_L(1)\rangle_{ds^2_L}$
- HHLL correlators can diagnose information loss vs. unitarity

The semi-classical picture

- The classical b.h. has a central singularity and a smooth horizon
- For a large b.h. the curvature is small at the horizon and EFT should be valid
- EFT implies that the b.h. emits particles in an entangled state

$$|\psi\rangle_{\text{pair}} = \frac{1}{\sqrt{2}} (|\uparrow\rangle_{\text{in}} |\downarrow\rangle_{\text{out}} - |\downarrow\rangle_{\text{in}} |\uparrow\rangle_{\text{out}})$$

$$\rho_{\text{out}} = \text{Tr}_{\mathcal{H}_{\text{in}}} |\psi\rangle_{\text{pair}} \langle\psi|_{\text{pair}}$$

$$= \frac{1}{2} (|\downarrow\rangle_{\text{out}} \langle\downarrow|_{\text{out}} + |\uparrow\rangle_{\text{out}} \langle\uparrow|_{\text{out}})$$

 When the black hole has completely evaporated the outside radiation is entangled with nothing
 > Violation of unitarity!

Correlators and Information Loss

(Maldacena '01)

The 2-point function in a b.h. background vanishes at large t

 $\langle O(t) \, \overline{O}(0)
angle_{ ext{b.h.}} \sim e^{-4\pi \Delta T_H t}$

with T_H the b.h. temperature

• This is not what we expect for the correlator in the thermal state in a unitary theory with finite entropy

Reminder: how to compute correlators in holography

- $\phi(r, x)$ is the bulk field dual to the CFT operator O(x)
- Solve the e.o.m for ϕ with

$$\phi(r, x) \stackrel{r \to \infty}{\longrightarrow} \delta(x) r^{\Delta - d} + b(x) r^{-\Delta}$$

source for $\overline{O}(0)$

The correlator is

$$\langle O(x)\,\overline{O}(0)
angle=b(x)$$

► In the black hole background $b(t, \vec{x}) \sim e^{i\omega t}$ with ω = quasinormal frequency $\sim i T_H$ \Rightarrow large time decay!

Reminder: how to compute correlators in holography

- $\phi(r, x)$ is the bulk field dual to the CFT operator O(x)
- Solve the e.o.m for ϕ with

$$\phi(\mathbf{r}, \mathbf{x}) \xrightarrow{\mathbf{r} \to \infty} \delta(\mathbf{x}) \mathbf{r}^{\Delta - d} + \mathbf{b}(\mathbf{x}) \mathbf{r}^{-\Delta}$$

source for $\overline{O}(0)$

The correlator is

$$\langle O(x)\,\overline{O}(0)
angle=b(x)$$

In the black hole background
 b(t, x) ~ e^{iωt} with ω = quasinormal frequency ~ i T_H
 ⇒ large time decay!

Correlators in unitary theories

In a unitary theory with finite entropy and hence a discrete spectrum

$$\begin{split} \mathcal{C}_{\beta}(t) &\equiv \langle O(t) \, \overline{O}(0) \rangle_{\beta} = Z_{\beta}^{-1} \mathrm{Tr} \, \left[e^{-\beta H} O(t) \, \overline{O}(0) \right] \\ &= Z_{\beta}^{-1} \sum_{ij} e^{-\beta E_i} |\langle i | O(0) | j \rangle|^2 e^{i(E_i - E_j)t} \end{split}$$

• The long-time average of the correlator is

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T dt \, |\mathcal{C}_\beta(t)|^2 \sim \frac{Z_{2\beta}}{Z_\beta^2} \sim e^{-S}$$

• Hence $C_{\beta}(t)$ cannot be exponentially vanishing at late times

Qualitative behaviour of $C_{\beta}(t)$

$$\mathcal{C}_{\beta}(t) = Z_{\beta}^{-1} \sum_{ij} e^{-eta E_i} |\langle i|O(0)|j \rangle|^2 e^{i(E_i - E_j)t}$$

- For t ≪ (E_i − E_j)⁻¹ ~ βe^S the spectrum can be approximated as continuous: C_β is the Fourier transform of a function of width ~ β⁻¹ and hence C_β ~ e^{-t/β}
- For t ~ βS the correlator is of the order of its long-time average e^{-S}: it oscillates irregularly and no longer decreases
- For t ~ (E_i − E_j)⁻¹ most of the phases are again of order 1 and hence C_β ~ O(1)

< 日 > < 同 > < 回 > < 回 > < □ > <

A microscopic BH model: D1-D5-P

- (Strominger, Vafa)
- The simplest BPS black hole with a finite-area horizon is

D1-D5-P on $\mathbb{R}^{4,1} imes S^1 imes T^4$

- We take $\operatorname{vol}(T^4) \sim \ell_s^4$ and $R(S^1) \gg \ell_s \Rightarrow 2\mathsf{D} \mathsf{CFT}$
- $\bullet\,$ The b.h. has a "near-horizon" limit: $\text{AdS}_3\times \mathcal{S}^3\times \mathcal{T}^4$
- We take $G_N \rightarrow 0$ with R_{AdS} fixed $\Rightarrow c = 6n_1n_5 \equiv 6N \rightarrow \infty$
- The CFT has a 20-dim moduli space:
 - $g_s N
 ightarrow 0$: free orbifold point $\iff R_{AdS} \ll \ell_s$
 - $g_s N \gg 1$: strong coupling point $\iff R_{AdS} \gg \ell_s$

Goal

Understand b.h. microstates at the strong coupling point

The D1-D5 CFT

• Symmetries:

(4, 4) SUSY with $SU(2)_L \times SU(2)_R$ affine R-symmetry

At the orbifold point

sigma model on $(T^4)^N/S_N$

one has free bosons and fermions

 $(\partial X_r^{A\dot{A}}(z), \psi_r^{\alpha A}(z)), \ (\bar{\partial} X_r^{A\dot{A}}(\bar{z}), \tilde{\psi}_r^{\dot{\alpha} A}(\bar{z})) \text{ with } r = 1, \dots, N$

 $(\alpha \leftrightarrow SU(2)_L, \dot{\alpha} \leftrightarrow SU(2)_R, A \leftrightarrow SU(2)_1, \dot{A} \leftrightarrow SU(2)_2)$

Spectral flow:

$$\mathrm{NS}
ightarrow \mathrm{R} ~:~ j
ightarrow j + rac{N}{2} ~,~ h
ightarrow h + j + rac{N}{4}$$

2-charge states

- States carrying D1-D5 charges are RR ground states: *h* = *h* = ^N/₄
 Note: *h* ~ *c* ⇒ these are "heavy" operators
- They are constructed from elementary "strands" characterised by winding *w* and SU(2)_L × SU(2)_R spin |s⟩

with the constraint $\sum_i w_i N_i = N$

A small black hole

 The statistical ensemble of D1-D5 states is described by the "massless BTZ" geometry

$$\frac{ds^2}{R_{AdS}^2} = \frac{dr^2}{r^2} + r^2(-dt^2 + dy^2)$$

- It is a singular geometry with $A_{Hor} = 0$
- Correlators in this geometry still display information loss

 $\langle {\it O}(t)\overline{{\it O}}(0)
angle_{
m BTZ_0}\sim t^{-\Delta}$

The geometry of microstates

- We can associate a 10D geometry to (coherent superpositions of) RR ground states
- All these geometries are smooth and horizonless
- They are asymptotically AdS₃ × S³ × T⁴ but in the interior AdS₃ and S³ are non-trivially mixed
- They can be extended to asymptotically flat geometries

 $\mathbb{R}^{4,1} imes S^1 imes T^4$

 $AdS_3 \times \textit{S}^3 \times \textit{T}^4$

 $r \sim R_{
m Hor}$ no horizon!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A note on 3-charge states

 We know the dual geometries for a class of D1-D5-P states, known as superstrata
 (Bena, SG, Martinec, Russo, Shigemori, Turton, Warner)

$$\prod_{i} \left[(J_{-1}^{+})^{m_{i}} (L_{-1} - J_{-1}^{3})^{n_{i}} |s_{i}\rangle_{w_{i}} \right]^{N_{i}}$$

Note: J_{-1}^+ , $L_{-1} - J_{-1}^3 \xrightarrow{\text{spectral flow}} J_0^+$, L_{-1} generate the global chiral algebra

In this talk I will restrict to 2-charge states

A note on 3-charge states

 We know the dual geometries for a class of D1-D5-P states, known as superstrata
 (Bena, SG, Martinec, Russo, Shigemori, Turton, Warner)

$$\prod_{i} \left[(J_{-1}^{+})^{m_{i}} (L_{-1} - J_{-1}^{3})^{n_{i}} |s_{i}\rangle_{w_{i}} \right]^{N_{i}}$$

Note: J_{-1}^+ , $L_{-1} - J_{-1}^3 \xrightarrow{\text{spectral flow}} J_0^+$, L_{-1} generate the global chiral algebra

In this talk I will restrict to 2-charge states

Example I: maximally rotating ground state

The simplest D1-D5 state is the maximally rotating one

Spectral flow maps this state into the NS vacuum:

$$|+,+\rangle_1^N \xrightarrow{\mathrm{s.f.}} |0\rangle_{NS}$$

 On the gravity side spectral flow is a change of coordinates mixing AdS₃ (t, y) and S³ (φ, ψ) coordinates

$$\phi \to \phi + \frac{t}{R} \quad , \quad \psi \to \psi + \frac{y}{R}$$

and maps the geometry dual to $|+,+\rangle_1^N$ into $AdS_3 \times S^3$

14/26

Example II: conical defects

• A state made of *N*/*k* identical copies of strands of winding *k*

The non-globally-defined change of coordinates

$$\phi \to \phi + \frac{t}{kR} \quad , \quad \psi \to \psi + \frac{y}{kR}$$

maps the geometry dual to $|+,+\rangle_k^{N/k}$ into $AdS_3/\mathbb{Z}_k \times S^3$

• Generic states in the 2-charge ensemble have $k \sim \sqrt{N}$

The light operators

We consider

$$O_L^{(1)} = \sum_{r=1}^N \frac{\epsilon_{AB}}{\sqrt{2N}} \psi_r^{-A} \tilde{\psi}_r^{-B} , \ O_L^{(2)} = \sum_{r=1}^N \frac{\epsilon_{AB}}{\sqrt{2N}} \partial X_r^{A\dagger} \bar{\partial} X_r^{B\dagger}$$

O_L⁽¹⁾ is an anti-chiral-primary with h_L = h
_L = -j_L = -j
_L = 1/2
O_L⁽²⁾ is a superdescendant

$$O_L^{(2)} = G_{-1/2}^+ \tilde{G}_{-1/2}^+ O_L^{(1)}$$
 with $h_L = \bar{h}_L = 1, j_L = \bar{j}_L = 0$

• Since $G|O_H
angle= ilde{G}|O_H
angle=0$, correlators satisfy the Ward identity

$$\langle O_{H}|O_{L}^{(2)}\overline{O}_{L}^{(2)}|O_{H}\rangle = \partial\bar{\partial}\left[|z|\langle O_{H}|O_{L}^{(1)}\overline{O}_{L}^{(1)}|O_{H}\rangle\right]$$

The light operators: gravity picture

•
$$O_L^{(2)}$$
 is dual to a 6D minimally coupled scalar

• $O_L^{(1)}$ is dual to a scalar coupled to a 2-form in 6D

Solving the wave equation for $O_L^{(2)}$ is much simpler than for $O_L^{(1)}$

In the following we will use the notation:

 $\mathcal{C}_{H}^{(i)}(z,ar{z})\equiv \langlear{O}_{H}(\infty)O_{L}^{(i)}(z,ar{z})ar{O}_{L}^{(i)}(1)O_{H}(0)
angle$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

The light operators: gravity picture

•
$$O_L^{(2)}$$
 is dual to a 6D minimally coupled scalar

• $O_L^{(1)}$ is dual to a scalar coupled to a 2-form in 6D

Solving the wave equation for $O_L^{(2)}$ is much simpler than for $O_L^{(1)}$

In the following we will use the notation:

 $\mathcal{C}_{H}^{(i)}(z,\bar{z})\equiv \langle ar{O}_{H}(\infty)O_{L}^{(i)}(z,\bar{z})ar{O}_{L}^{(i)}(1)O_{H}(0)
angle$

Correlators in conical defects: $|O_H\rangle = (|++\rangle_k)^{N/k}$

$$\mathcal{C}_{k}^{(1)}(z, \bar{z}) = rac{k^{-1}}{|z||1-z|^{2}} rac{1-|z|^{2}}{1-|z|^{rac{2}{k}}}$$

- The result is the same both in gravity and in the orbifold CFT
- The only operators in the OPE $O_L^{(1)}\overline{O}_L^{(1)}$ that have a non-zero vev in the state $(|++\rangle_k)^{N/k}$ are J^3 -descendants of the identity

$$O_L^{(1)}(z)\overline{O}_L^{(1)}(1) = rac{1}{|1-z|^2} \Big[1 + (1-z)J^3 + (1-ar{z}) ilde{J}^3 + \dots \Big]$$

 In this case the correlator is completely determined by the chiral algebra and thus it is protected Late time behaviour of $C_k^{(1)}$

• Using $z = e^{i(\tau+\sigma)}$, $\bar{z} = e^{i(\tau-\sigma)}$ with $\tau = t/R$, $\sigma = y/R$

$$C_k^{(1)} \sim \frac{e^{-i\tau}\sin\tau}{\cos\tau - \cos\sigma} \frac{k^{-1}}{1 - e^{2i\tau/k}}$$

• For large τ ($\tau \gtrsim k$) $C_k^{(1)}$ is an oscillating function of τ \Rightarrow no information loss!

• For τ not so large ($\tau \ll k$)

$$\mathcal{C}_k^{(1)} \sim \tau^{-1}$$

 \Rightarrow non-unitary b.h. behaviour

• Note that for typical states $k \sim \sqrt{N} \sim S$ as expected

A more generic state

- In the large N limit the sum is dominated by $p \sim B^2$
- The dual geometry is a deformation of AdS₃ × S³ and cannot be mapped into AdS₃ × S³ by any change of coordinates
- The deformation is essentially controlled by one scalar $w \sim C^{(0)}$

$$w = b \frac{a}{\sqrt{r^2 + a^2}} \sin \theta \cos \phi$$

with $a = a_0 \frac{A}{\sqrt{N}}$, $\frac{b}{\sqrt{2}} = a_0 \frac{B}{\sqrt{N}}$, $a_0 = \frac{\sqrt{Q_1 Q_5}}{B}$

20/26

A dynamical correlator: $|O_H\rangle = |s\rangle_B$

Free CFT

$$\mathcal{C}_B^{(1)} = \frac{1}{|z||1-z|^2} + \frac{B^2}{2N} \frac{|z|^2 + |1-z|^2 - 1}{|z||1-z|^2} + \frac{A^2 B^2}{N} \left(1 - \frac{1}{N}\right) \frac{1}{|z|}$$

Gravity

$$\mathcal{C}_{B}^{(1)} = \frac{a}{a_{0}}e^{-i\tau}\sum_{l\in\mathbb{Z}}e^{il\sigma}\sum_{n=1}^{\infty}\frac{\exp\left[-i\frac{a}{a_{0}}\sqrt{(|l|+2n)^{2}+\frac{b^{2}l^{2}}{2a^{2}}\tau}\right]}{\sqrt{1+\frac{b^{2}}{2a^{2}}\frac{l^{2}}{(|l|+2n)^{2}}}} + N\frac{b^{2}}{2a_{0}^{2}}e^{-i\tau}$$

Properties of $C_B^{(1)}$

- For $b^2/a^2 \ll 1$ we can compute independently the correlators with $O_L^{(1)}$ and $O_L^{(2)}$ and check the Ward identity
- Non-BPS multiparticle operators contribute to $C_B^{(1)}$

$$O_{L}^{(1)}(z)\overline{O}_{L}^{(1)}(1) = \sum_{n,\ell} (1-z)^{n+\ell-1} (1-\overline{z})^{\ell-1} : O_{L}^{(1)} \partial^{n+\ell} \overline{\partial}^{\ell} \overline{O}_{L}^{(1)} : + \dots$$

 \Rightarrow the correlator is non-protected

In the light-cone limit z̄ → 1 (τ → σ) only the L_{-n} and J³_{-n} descendants of the identity can contribute at strong coupling. Indeed the gravity correlator tends to

$$\mathcal{C}_B^{(1)} \sim \frac{1}{1-\bar{z}} \frac{\alpha \, z^{-1/2}}{1-z^{\alpha}} \quad \text{with} \quad \alpha = \frac{a^2}{a_0^2}$$

which is the affine block of the identity at large c (F

22/26

Late time behaviour of $\mathcal{C}_{B}^{(1)}$

When a ≪ a₀ the microstate geometry reduces to massless BTZ
 In this limit the C⁽¹⁾_B series is dominated by terms with n ≫ ^{a₀}_{2a}|I|

$$\mathcal{C}_{B}^{(1)} \sim e^{-i\tau} \left[rac{1}{1 - e^{i(\sigma - \tau)}} + rac{1}{1 - e^{-i(\sigma + \tau)}} - 1
ight] rac{rac{a}{a_{0}}}{1 - e^{-2irac{a}{a_{0}} au}}$$

For τ ≪ ^{a₀}/_a one recovers the BTZ behaviour C⁽¹⁾_B ~ τ⁻¹
 For τ ≥ ^{a₀}/_a C⁽¹⁾_B oscillates and stops decreasing with τ

No information loss even for non-protected correlators!

Late time behaviour of $C_B^{(1)}$

When a ≪ a₀ the microstate geometry reduces to massless BTZ
 In this limit the C⁽¹⁾_B series is dominated by terms with n ≫ ^{a₀}_{2a}|I|

$$\mathcal{C}_{B}^{(1)} \sim e^{-i\tau} \left[rac{1}{1 - e^{i(\sigma - \tau)}} + rac{1}{1 - e^{-i(\sigma + \tau)}} - 1
ight] rac{rac{a}{a_{0}}}{1 - e^{-2irac{a}{a_{0}} au}}$$

For τ ≪ ^{a₀}/_a one recovers the BTZ behaviour C⁽¹⁾_B ~ τ⁻¹
 For τ ≥ ^{a₀}/_a C⁽¹⁾_B oscillates and stops decreasing with τ

No information loss even for non-protected correlators!

Connection with LLLL correlators?

• Our computation does not use Witten diagrams: $O_H \rightarrow ds_H^2$

• Witten diagrams in *AdS*₃ are subtle ...

(D'Hoker, Freedman, Rastelli)

- When $b \ll a_0$ the state $|O_H\rangle$, spectrally flowed to the NS sector, is "light": $h_{NS} = \frac{N}{4} \frac{b^2}{a_0^2} \ll N$
- In this limit HHLL correlators reduce to LLLL ones?
- No! There is an order of limits problem:
 - HHLL: take $N \to \infty$ with b^2/N fixed, and then $b^2/N \ll 1$
 - LLLL: take $N \rightarrow \infty$ with *b* fixed and small

An overview of the fuzzball program

- We know families of smooth horizonless geometries with the same charges as 2, 3 (and 4)-charge black holes
- We can link these geometries to states of the D1-D5 CFT that is dual to the Strominger-Vafa black hole

Fuzzballs represent black hole microstates

- In some limits the microstate geometries are indistinguishable from the black hole if probed for a short time
- For sufficiently long times the microstate geometries deviate significantly from the black hole and produce correlators that are consistent with unitarity

Fuzzballs: open problems

- 2-charge: formally we know all the states but the sugra description becomes unreliable for typical ones (Chen, Michel, Polchinski, Puhm)
- 3-charge: the known geometris capture a parametrically small fraction of the entropy
- It is possible that most of the 3-charge states ("pure Higgs states") do not admit a description in supergravity

(Bena, Berkooz, de Boer, El-Showk, Van den Bleeken; Sen)

 If sugra probes cannot distinguish typical states from the black hole, which tools do we have to describe them?