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e.g.: Parke-Taylor formula for MHV gluon tree-level amplitudes

Mn(. . . , i−, . . . , j−, . . . ) =
〈i, j〉4

〈1, 2〉〈2, 3〉 · · · 〈n−1, n〉〈n, 1〉

proved by induction with BCFW recursion relations for any n,
while increasingly painful for increasing n with Feynman graphs...

n 4 5 6 · · · 8

# 4 25 220 · · · 10525900
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Philosophy

Reconstructing the amplitude with the minimal amount of
information.

Amplitude is an asymptotic object

The states of the Hilbert space (particles) are identified by the
symmetry of space-time (Wigner classification)
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Uniqueness of the 3-p Amplitude

Lorentz structure of three-point amplitudes is fixed by symmetry
(at any order in perturbation theory!). Theory dependent
information is all in the coupling constants.

Uniqueness of Poincaré invariant 3-point amplitude in complex
spinor formalism for massless legs, up to one constant (coupling).

[Benincasa-Cachazo ’07]

Uniqueness of Poincaré invariant 3-point amplitude in complex
spinor formalism for any masses, up to some constants.

[E. Conde, AM arxiv/1601.08113]
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Outline

Poincaré representations and Little Group

LG for massless representations

LG for massive representations

Review of the massless 3-point amplitude

Spinor-Helicity formalism

Massive 3-point amplitude

Work in Progress
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Poincaré in 4 dim

Casimir operators

P 2 square of translation generator −→ mass

W 2 square of Pauli-Lubanski operator −→ spin

Wλ = ελµνρM
µνP ρ generator of the Little Group

LGp =
{

Λp ∈ L↑+
/

Λpp = p
}
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LG for massless representations

p
Lp−−−→ k = (E, 0, 0, E)

=⇒ LGk ≡ ISO2 : Isometries in 2 dim. euclidean space

Λk|k; a〉 = eiαAeiβBeiθJ3 |k; a〉

If α, β 6= 0 ⇒ continuous spin

J3 admits for discrete eigenvalues: ±h −→ helicity

J3 |p;h〉 = h |p;h〉
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LG for massive representations

P
LP−−−→ K = (m, 0, 0, 0)

=⇒ LGK ≡ SO(3) : 3-dim. spatial rotations

J0 |P ; s, σ〉 = σ |P ; s, σ〉

J±|P ; s, σ〉 = σ±|P ; s, σ ± 1〉

σ ∈ {−s, . . . ,+s}

σ± =
√

(s∓ σ)(s± σ + 1)
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How is this story helpful to constrain the amplitude?

|p; a〉 −→ Mn ∼
n⊗
i=1

|pi; ai〉

P −→ momentum conservation −→ Mn ∝ δ
(∑

i pi
)

W −→ little group scaling −→ LG equations
“spin conservation”
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LG equations in the massless case

From the LG action on the states descends the LG action on the
amplitude

eiθJ3 |p;h〉 = eiθh|p;h〉
⇓

eiθJ
j
3Mn({pi, hi}) = eiθhjMn({pi, hi})

The infinitesimal version of this equation,

J j3Mn({pi, hi}) = hjMn({pi, hi})

yields strong constraints on the amplitude, and it is actually
enough to fully fix the 3-point one.
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LG equations for massive particles

JI0 Mn(λj λ̃j ; ak) = σIMn(λj λ̃j ; ak) equivalent of helicity eq.

JI±Mn(λj λ̃j ; ..., σI , ...) = σ±I Mn(λj λ̃j ; ..., σI ± 1, ...)

j = 1, . . . , n+ # of massive particles

The latter equations relate different amplitudes!
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Equations for the “lowest-spin” amplitude

Solution: let’s take σI = −sI for every massive particle. (helicities
of possible massless legs are still free to vary)
Then

JI−Mn = 0

JI0 Mn = −sIMn

(JI+)2sI+1Mn = 0

The third equation is not as simple as the others, let’s keep it for
the end. So

2 eq.s for every massive leg + 1 eq. for every massless leg
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Spinor-Helicity formalism...

L↑+(R)
homomorph.−−−−−−−→

1 to 2
SL(2,C)

L+(C)
homomorph.−−−−−−−→

1 to 2
SL(2,C)× SL(2,C)

pµ −→ paȧ = σµaȧpµ

Λ ν
µ pν −→ ζ b

a pbḃ η
ḃ
ȧ

σµ = (I, ~σ)
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Spinor-Helicity formalism...

L↑+(R)
homomorph.−−−−−−−→

1 to 2
SL(2,C)

L+(C)
homomorph.−−−−−−−→

1 to 2
SL(2,C)× SL(2,C)

pµ −→ paȧ = σµaȧpµ

Λ ν
µ pν −→ ζ b

a pbḃ η
ḃ
ȧ

σµ = (I, ~σ)

pµp
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... for massless momenta

det |paȧ| = pµp
µ = 0

⇓

paȧ = λa ⊗ λ̃ȧ = λaλ̃ȧ

reality condition: λ̃ȧ ≡ (λa)
∗

We define:
〈λ, µ〉 = εabλbµa

[λ̃, µ̃] = λ̃ȧε
ȧḃµ̃ḃ

〈i, j〉[i, j] ≡ 〈λi, λj〉[λ̃i, λ̃j ] = 2 pi ·pj
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... for massive momenta

A time-like momentum can be always decomposed into two
light-like ones

P = λλ̃+ µµ̃

with P 2 = −m2 = 〈λ, µ〉[λ̃, µ̃]

Crucial disadvantages with respect to the massless case:

◦ The on-shell condition was built-in in the spinor formalism for
massless particles, here we have to impose it

◦ The decomposition is not unique, so we are introducing some
non-physical redundancy

But we can still keep the advantage of having LG differential
equations in a simple and effective form!
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LG scaling for massless particles

eiθhi Mn

(
λj λ̃j ;hj

)
−→ t−2hi Mn

(
λj λ̃j ;hj

)
t ∈ C

λ −→ t λ

λ̃ −→ t−1λ̃

}
⇒ λλ̃ −→ λλ̃

X LG

LG differential equation:
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LG scaling for massless particles

eiθhi Mn

(
λj λ̃j ;hj

)
−→ t−2hi Mn

(
λj λ̃j ;hj

)
t ∈ C

λ −→ t λ

λ̃ −→ t−1λ̃

}
⇒ λλ̃ −→ λλ̃ X LG

LG differential equation:(
λi

∂

∂λi
− λ̃i

∂

∂λ̃i

)
Mn

(
λj λ̃j ;hj

)
= −2hiMn

(
λj λ̃j ;hj

)
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3-point massless amplitude

[Benincasa-Cachazo ’07]

(
λi

∂

∂λi
− λ̃i

∂

∂λ̃i

)
M3

(
λj λ̃j ;hj

)
= −2hiM3

(
λj λ̃j ;hj

)
3 equations for 6 variables

x1 = 〈2, 3〉 , x2 = 〈3, 1〉 , x3 = 〈1, 2〉
y1 = [2, 3] , y2 = [3, 1] , y3 = [1, 2]

Mh1,h2,h3
3 = xh1−h2−h31 xh2−h3−h12 xh3−h1−h23 f

(
x1y1, x2y2, x3y3

)
= yh2+h3−h1

1 yh3+h1−h2
2 yh1+h2−h3

3 f̃
(
x1y1, x2y2, x3y3

)
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3-point massless amplitude

... but then we have to impose momentum conservation:

0 = p2
1 = (−p2−p3)2 = 2p2·p3 = 〈2, 3〉[2, 3] ⇒ x1 = 0 , or y1 = 0

This implies:

or all xi are zero, or all yi are zero.
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3-point massless amplitude

For real kinematics (xi = 0 = yi) a 3p amplitude for massless
particles is zero, so the complex 3p amplitude had better go to
zero in this limit, rather than exploding.

This selects

M{hj} = gH x
h1−h2−h3
1 xh2−h3−h12 xh3−h1−h23 for h1+h2+h3 <0

M{hj} = gA y
h2+h3−h1
1 yh3+h1−h2

2 yh1+h2−h3
3 for h1+h2+h3 >0

For h1+h2+h3 = 0 the answer is left undetermined (there are
claims that such interactions cannot exist).
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Massive LG equations in spinor formalism

Take the transformation(
λ
µ

)
→ U

(
λ
µ

) (
λ̃ µ̃

)
→
(
λ̃ µ̃

)
U † U ∈ U(2)

under which the massive momentum is invariant (LG)

, then

J+ = −µ ∂

∂λ
+ λ̃

∂

∂µ̃

J0 = −1

2

(
λ
∂

∂λ
− λ̃ ∂

∂λ̃
− µ ∂

∂µ
+ µ̃

∂

∂µ̃

)
J− = −λ ∂

∂µ
+ µ̃

∂

∂λ̃
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Massive LG equations in spinor formalism

and so

JI0 M
lw
n = −sIM lw

n

JI−M
lw
n = 0
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Massive LG equations in spinor formalism

and so

(
λI

∂

∂λI
− λ̃I

∂

∂λ̃I
− µI

∂

∂µI
+ µ̃I

∂

∂µ̃I

)
M lw
n = 2sIM

lw
n

(
λI

∂

∂µI
− µ̃I

∂

∂λ̃I

)
M lw
n = 0
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1-massive 2-massless 3-point amplitude

p1 = λ1λ̃1 p2 = λ2λ̃2 P3 = λ3λ̃3 + λ4λ̃4

〈3, 4〉[3, 4] = −m3
2

1 + 1 + 2 = 4 eq.s

4 · 3
2

angle prod.s +
4 · 3

2
square prod.s = 12 spinor prod.s

momentum conservation: 12 −→ 6

mass on-shell condition: 6 −→ 5
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1-massive 2-massless 3-point amplitude

Mh1, h2,−s3 = 〈1, 2〉−s3−h1−h2〈2, 3〉h1−h2+s3〈3, 1〉h2−h1+s3 f1

(
〈3, 4〉

)
all angle products!

〈3, 4〉 in the real-momenta limit is essentially the mass, so f1 can
be reduced to dimensionless constant

f1(〈3, 4〉) = gm
1+h1+h2−s3−[g]
3 f̃1

(
〈3, 4〉
m3

)

1-massive 2-massless 3-point amplitude fixed up to 1 constant
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1-massive 2-massless 3-point amplitude

Mh1, h2,−s3 = 〈1, 2〉−s3−h1−h2 〈2, 3〉h1−h2+s3 〈3, 1〉h2−h1+s3 f1

This amplitude is physically allowed for real momenta! (contrarily
to the massless one)
⇒ full non-perturbative result

If we apply the third LG equation

(J3
+)2s3+1Mh1, h2,−s3 = 0

we get the following condition on the allowed helicities

|h1 − h2| ≤ s3

“conservation of the spin”!
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2-massive 1-massless 3-point amplitude

P1 = λ1λ̃1 + λ5λ̃5 P2 = λ2λ̃2 + λ4λ̃4 p3 = λ3λ̃3

〈1, 5〉[1, 5] = −m1
2 〈2, 4〉[2, 4] = −m2

2

2 + 2 + 1 = 5 eq.s

5 · 4 = 20 spinor prod.s

momentum conservation: 20 −→ 10

mass on-shell conditions: 10 −→ 8
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2-massive 1-massless 3-point amplitude

M−s1,−s2, h3 =

〈1, 2〉s1+s2+h3 〈3, 1〉s1−s2−h3 〈2, 3〉s2−s1−h3 f2

(
〈1, 5〉, 〈2, 4〉, [4, 5]

〈1, 2〉

)

Again from dimensional considerations

f2 = gm
1−s1−s2+h3−[g]
1 f̃2

(
〈1, 5〉
m1

,
〈2, 4〉
m2

,
[4, 5]

〈1, 2〉

)

Using the third LG equation: (JI+)2sI+1Mn = 0 for I = 1, 2

f̃2 =

2s1∑
k=0

ak

(
〈1, 5〉
m1

,
〈2, 4〉
m2

)(
m2

m1
+
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If s1 6=s2, requiring the two different expression to be consistent,
we get the following condition on the spins/helicities

|h3| ≤ s1 + s2

2-mass. 1-massless 3p ampl. fixed up to max. 2smin+1 const.s
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Remark:

If the two massive particles are the same
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Remark:

If the two massive particle are the same the two expressions are the
same

f̃2 =

2s∑
k=0

ak

(
〈1, 5〉
m

,
〈2, 4〉
m

)(
1 +
〈1, 5〉
m

〈2, 4〉
m

[4, 5]

〈1, 2〉

)2s+h3−k

So we cannot match, and we cannot derive any condition on
spins...

But this amplitude is zero for real momenta!
So analogously to the massless case there are no constraints on
spins and helicities
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3-massive 3-point amplitude

P1 = λ1λ̃1 + λ3λ̃3 P2 = λ2λ̃2 + λ4λ̃4 P3 = λ3λ̃3 + λ6λ̃6

〈1, 4〉[1, 4] = −m1
2 〈2, 4〉[2, 4] = −m2

2 〈3, 6〉[3, 6] = −m3
2

2 + 2 + 2 = 6 eq.s

6 · 5 = 30 spinor prod.s

momentum conservation: 30 −→ 14

mass on-shell conditions: 14 −→ 11
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3-massive 3-point amplitude

M−s1,−s2,−s3 =

〈1, 2〉s1+s2−s3 〈3, 1〉s3+s1−s2 〈2, 3〉s2+s3−s1×

× f3

(
〈1, 4〉, 〈2, 5〉, 〈3, 6〉; [4, 5]

〈1, 2〉
,

[6, 4]

〈3, 1〉

)

Again from dimensional considerations

f3 = gm
1−s1−s2−s3−[g]
1 f̃3

(
〈1, 4〉
m1

,
〈2, 5〉
m2

,
〈3, 6〉
m3

;
[4, 5]

〈1, 2〉
,

[6, 4]

〈3, 1〉

)

Here the third equations are more involved, since f3 depends on
two scaling variables. J2

+ acts only on [4,5]
〈1,2〉 , J

3
+ acts only on [6,4]

〈3,1〉 ,

while J1
+ acts on both.
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Poincaré representations and LG Massless 3-p amplitude Massive 3-p amplitude Work in Progress

3-massive 3-point amplitude

From (JI+)2sI+1Mn = 0 for I = 2, 3

f3

(
. . . ; ξ2, ξ3

)
=

2sI∑
k=0

c
(I)
k

(
. . . ; ξĪ

)(
〈2, 5〉ξ2 + 〈3, 6〉ξ3 −

m1
2

〈1, 4〉

)s1−s2−s3+k

with ξ2 =
[4, 5]

〈1, 2〉
, ξ3 =

[6, 4]

〈3, 1〉

The action of J1
+ is more complicated...

... but can be worked out case by case
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Looking backward...

We have determined all Poincaré invariant 3-point amplitudes
where massive particles are involved, in spinor-helicity formalism.

Moreover...

• Constructive SM: all 3-p vertices of SM reproduced
[N. Christensen, B. Field 1802.00448]

• Massive Higher-Spins amplitudes in 4 dimensions
[E. Conde et al. 1605.07402]
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Looking backward...

We have determined all Poincaré invariant 3-point amplitudes
where massive particles are involved, in spinor-helicity formalism.

It is fixed up to some constants. How many?

1 massive 1 const.

2 massive

s1 + s2 − h3 + 1 if s2 − s1 ≤ h3 ≤ s1 + s2

2s1 + 1 if s1 − s2 ≤ h3 ≤ s2 − s1

s1 + s2 + h3 + 1 if −s1 − s2 ≤ h3 ≤ s1 − s2

3 massive still computing...

Moreover...

• Constructive SM: all 3-p vertices of SM reproduced
[N. Christensen, B. Field 1802.00448]

• Massive Higher-Spins amplitudes in 4 dimensions
[E. Conde et al. 1605.07402]
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Looking backward...

We have determined all Poincaré invariant 3-point amplitudes
where massive particles are involved, in spinor-helicity formalism.

We have it for the lowest value of the spin projection, but

JI+M
...,−sI ,...
3 = M ...,−sI+1,...

3

Moreover...

• Constructive SM: all 3-p vertices of SM reproduced
[N. Christensen, B. Field 1802.00448]

• Massive Higher-Spins amplitudes in 4 dimensions
[E. Conde et al. 1605.07402]



Poincaré representations and LG Massless 3-p amplitude Massive 3-p amplitude Work in Progress

Looking backward...

We have determined all Poincaré invariant 3-point amplitudes
where massive particles are involved, in spinor-helicity formalism.

For given known 3-point interactions these theoretical expressions
reproduce existing results.

Moreover...

• Constructive SM: all 3-p vertices of SM reproduced
[N. Christensen, B. Field 1802.00448]

• Massive Higher-Spins amplitudes in 4 dimensions
[E. Conde et al. 1605.07402]
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Poincaré representations and LG Massless 3-p amplitude Massive 3-p amplitude Work in Progress

Looking backward...

We have determined all Poincaré invariant 3-point amplitudes
where massive particles are involved, in spinor-helicity formalism.
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• Constructive SM: all 3-p vertices of SM reproduced
[N. Christensen, B. Field 1802.00448]

• Massive Higher-Spins amplitudes in 4 dimensions
[E. Conde et al. 1605.07402]
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...and going further

• Massive BCFW: tree-level 4-p amplitudes for any masses and
spins [N. Arkani-Hamed et al. 1709.04891]

• 3- and 4-p amplitudes in massive gravity
[N. Moynihan, J. Murugan 1711.03956]

• QCD 4-p tree-level amplitudes with massive quarks
[A. Ochirov 1802.06730]

• . . .
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Next level

Poincaré irreps classificationy
constraints on the amplitude
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Next level

Amplitude is an asymptotic object

The states of the Hilbert space (particles) are identified by the
symmetry of space-time (Wigner classification)
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Next level: Asymptotic Symmetries

BMS irreps classification L o ST
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Next level: Asymptotic Symmetries

Poincaré irreps classificationy
constraints on the amplitude

L o T4

BMS irreps classification L o ST
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Next level: Asymptotic Symmetries

BMS irreps classificationy
(super)constraints on the amplitude (?)

L o ST
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Next level: Asymptotic Symmetries

BMS irreps classification L o ST

Note: one may wish to include superrotations, but Wigner
classification not known for that
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Next level: Asymptotic Symmetries

L o ST
↙

same LG as Poincaré
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Next level: Asymptotic Symmetries

L o ST
↙ ↘

same LG as Poincaré enhancement to infinite symmetries
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Next level: Asymptotic Symmetries

W.I.’s of large “gauge” transformationsy [Strominger et al.]

soft theorems

lim
ε→0

An+1(εq, p1, . . . , pn) =
(
ε−1S(0) + ε0S(1) + · · ·

)
An(pi)

S(0) leading soft factor, S(1) sub-leading soft factor, . . .
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Next level: Asymptotic Symmetries

lim
ε→0

An+1(εq, p1, . . . , pn) =
(
ε−1S(0) + ε0S(1) + · · ·

)
An(pi)

integer spin s

S(l) universal up to l = s (for s = 1, 2)

◦ large “gauge” W.I. ←→ soft theorems up to (sub)s-order ?

◦ higher orders in the soft expansion (εk, k ≥ s) ?
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Next level: Asymptotic Symmetries
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Next level: Asymptotic Symmetries

higher orders in the soft expansion?

they do not give soft theorems (no universally determined factors),
but they should give anyway constraints on the amplitude
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Hopes

• hope 1: spinor-helicity formalism as effective in implementing
higher-order soft constraints as for LG constraints

• hope 2: it may provide a general fashion (naturally
generalizable to arbitrary spin) for deriving higher-spin
sub-leading soft theorems (ref. Carlo’s talk of yesterday)
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Massive LG equations in spinor formalism

Remark!

This group of transformations has the same algebra as the LG, but
it is not the largest group that leaves

λλ̃+ µµ̃

invariant. Once we fix a frame by a physical LG transformation, we
can still scale µ, µ̃ independently of λ, λ̃

λλ̃+ µ t t−1µ̃

non-physical transformation ⇒ amplitude should be invariant
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Kinematic Constraints
n∑
i=1

λiλ̃i = 0 (n = 3 + # of mass. particles)

Schouten identity (linear dependency in 2 dim. vector sp.):

〈j, k〉λi + 〈k, i〉λj + 〈i, j〉λk = 0

Choose λ1 and λ2, and express all the spinor products in term of

〈1, 2〉 , 〈1, i〉 , 〈2, i〉 , with i = 3, . . . , n

and then we use momentum conservation for the tilded spinors

λ̃1 = −
n∑
i=3

〈i, 2〉
〈1, 2〉

λ̃i λ̃2 = −
n∑
i=3

〈1, i〉
〈1, 2〉

λ̃i
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Kinematic Constraints

With this we can eventually reduce the total number of
independent variables to


2n− 3 + 1

2(n− 2)(n− 3) = 1
2n (n− 1) if n ≤ 5

2n− 3 + 2n− 7 = 2 (2n− 5) if n > 5
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1-massive 2-massless 3-point amplitude

Why f1(〈3, 4〉) should be a constant?

Remove the redundancy in our description of time-like momentum!
After we have fixed a LG transformation, we have still the freedom
to rotate λ4λ̃4 independently of λ3λ̃3

λ4 → t λ4 λ̃4 → t−1λ̃4

and we impose the amplitude to be invariant under it

⇒ f1

(
〈3, 4〉

)
constant
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