On the Lagrangian formulation of Gravity as a double-copy of two Yang-Mills theories

Pietro Ferrero
(in collaboration with Dario Francia)

Scuola Normale Superiore

New Frontiers in Theoretical Physics

XXXVI Convegno Nazionale di Fisica Teorica

May 23-26, 2018 - Cortona

Plan

Scattering amplitudes in Yang-Mills theory and Gravity

2 Lagrangian approach: attempts

Lagrangian approach: our results

Conclusions and outlook

Scattering amplitudes in Yang-Mills theory and Gravity

From KLT relations to the double copy

Two different theories, stricly related amplitudes

YM theory

$$\mathcal{L}_{YM} \sim A\partial^2 A + (\partial A)A^2 + A^4$$

General Relativity

$$\mathcal{L}_{EH} \sim h\partial^2 h + \sum_{n=3}^{+\infty} \partial^2 h^n$$

Two different theories, stricly related amplitudes

General Relativity

$$\mathcal{L}_{EH} \sim h\partial^2 h + \sum_{n=3}^{+\infty} \partial^2 h^n$$

Two different theories, stricly related amplitudes

Two different theories, stricly related amplitudes

$$\mathcal{L}_{YM} \sim A\partial^2 A + (\partial A)A^2 + A^4$$

KLT relations:

General Relativity

$$\mathcal{L}_{EH} \sim h\partial^2 h + \sum_{n=3}^{+\infty} \partial^2 h^n$$

[Kawai, Lewllen, Tye 1986]

$$\mathcal{M}_{4}^{\text{tree}}(1,2,3,4) = -is_{12}A_{4}^{\text{tree}}(1,2,3,4)\tilde{A}_{4}^{\text{tree}}(1,2,3,4),$$

$$\mathcal{M}_{5}^{\text{tree}}(1,2,3,4,5) = is_{12}s_{34}A_{5}^{\text{tree}}(1,2,3,4,5)\tilde{A}_{5}^{\text{tree}}(2,1,4,3,5) + is_{13}s_{34}A_{5}^{\text{tree}}(1,3,2,4,5)\tilde{A}_{5}^{\text{tree}}(3,1,4,2,5)$$

• • •

Two different theories, stricly related amplitudes

YM theory

$$\mathcal{L}_{YM} \sim A\partial^2 A + (\partial A)A^2 + A^4$$

General Relativity

$$\mathcal{L}_{EH} \sim h\partial^2 h + \sum_{n=3}^{+\infty} \partial^2 h^n$$

KLT relations:

Pure gravity amplitudes

[Kawai, Lewllen, Tye 1986]

$$\mathcal{M}_4^{\mathrm{tree}}(1,2,3,4) = -is_{12}A_4^{\mathrm{tree}}(1,2,3,4)\tilde{A}_4^{\mathrm{tree}}(1,2,3,4),$$

$$\mathcal{M}_5^{\mathrm{tree}}(1,2,3,4,5) = is_{12}s_{34}A_5^{\mathrm{tree}}(1,2,3,4,5)\tilde{A}_5^{\mathrm{tree}}(2,1,4,3,5) + is_{13}s_{34}A_5^{\mathrm{tree}}(1,3,2,4,5)\tilde{A}_5^{\mathrm{tree}}(3,1,4,2,5)$$

. . .

Two different theories, stricly related amplitudes

YM theory

$$\mathcal{L}_{YM} \sim A\partial^2 A + (\partial A)A^2 + A^4$$

General Relativity

$$\mathcal{L}_{EH} \sim h \partial^2 h + \sum_{n=3}^{+\infty} \partial^2 h^n$$
 [Kawai, Lewllen

KLT relations:

Pure gravity amplitudes

[Kawai, Lewllen, Tye 1986]

$$\mathcal{M}_{4}^{\text{tree}}(1,2,3,4) = -is_{12}A_{4}^{\text{tree}}(1,2,3,4)\tilde{A}_{4}^{\text{tree}}(1,2,3,4),$$

$$\mathcal{M}_{5}^{\text{tree}}(1,2,3,4,5) = is_{12}s_{34}A_{5}^{\text{tree}}(1,2,3,4,5)\tilde{A}_{5}^{\text{tree}}(2,1,4,3,5) + is_{13}s_{34}A_{5}^{\text{tree}}(1,3,2,4,5)\tilde{A}_{5}^{\text{tree}}(3,1,4,2,5)$$
 ...

Two different YM partial amplitudes (no color, gauge-invariant)

[Bern, Carrasco, Johansson 2008]

$$\mathcal{A}_n = g^{n-2} \sum_{i \in \Gamma_3} \frac{c_i \ n_i}{\prod_{\alpha_i} s_{\alpha_i}}$$

[Bern, Carrasco, Johansson 2008]

$$\mathcal{A}_n = g^{n-2} \sum_{i \in \Gamma_3} \frac{c_i \ n_i}{\prod_{\alpha_i} s_{\alpha_i}}$$
 diagrams with cubic vertices

[Bern, Carrasco, Johansson 2008]

[Bern, Carrasco, Johansson 2008]

[Bern, Carrasco, Johansson 2008]

[Bern, Carrasco, Johansson 2008]

Invariant under
$$n_i \to n_i' = n_i + \Delta_i$$
, if $\sum_{i \in \Gamma_3} \frac{c_i \Delta_i}{\prod_{\alpha_i} s_{\alpha_i}} = 0$ \longrightarrow gauge transformation

[Bern, Carrasco, Johansson 2008]

A hidden symmetry of YM scattering amplitudes.

Invariant under
$$n_i \to n_i' = n_i + \Delta_i$$
, if $\sum_{i \in \Gamma_3} \frac{c_i \Delta_i}{\prod_{\alpha_i} s_{\alpha_i}} = 0$ \longrightarrow gauge transformation

Color-kinematics duality (BCJ):

$$c_i + c_j + c_k = 0 \Rightarrow n_i + n_j + n_k = 0$$
 and $c_i = -c_j \Rightarrow n_i = -n_j$

(not evident from Feynman diagrams expansion!)

Proven at tree-level.

A new implementation of GR=(YM)²

Yang-Mills amplitude:

$$\mathcal{A}_n = g^{n-2} \sum_{i \in \Gamma_3} \frac{c_i n_i}{\prod_{\alpha_i} s_{\alpha_i}}$$

(in CK-dual form)

$$g^{n-2} \sum_{i \in \Gamma_3} \frac{c_i n_i}{\prod_{\alpha_i} s_{\alpha_i}}$$

$$g^{n-2} \sum_{i \in \Gamma_3} \frac{c_i n_i}{\prod_{\alpha_i} s_{\alpha_i}}$$

$$i\left(\frac{\kappa}{2}\right)^{n-2} \sum_{i \in \Gamma_3} \frac{c_i n_i}{\prod_{\alpha_i} s_{\alpha_i}}$$

$$i\left(\frac{\kappa}{2}\right)^{n-2} \sum_{i \in \Gamma_3} \frac{(c_i n_i)}{\prod_{\alpha_i} s_{\alpha_i}}$$

$$i\left(\frac{\kappa}{2}\right)^{n-2} \sum_{i \in \Gamma_3} \frac{\tilde{n}_i \, n_i}{\prod_{\alpha_i} s_{\alpha_i}}$$

[Bern, Carrasco, Johansson 2008]

A new implementation of GR=(YM)²

(Super-) Gravity amplitude:

$$\mathcal{M}_n = i \left(\frac{\kappa}{2}\right)^{n-2} \sum_{i \in \Gamma_3} \frac{\tilde{n}_i \, n_i}{\prod_{\alpha_i} s_{\alpha_i}}$$

[Bern, Dennen, Huang, Kiermaier 2010]

Proven at tree-level.

Not only Gravity

We consider the case (Pure YM)² = $(\mathcal{N} = 0 \text{ SUGRA})$:

Proposed action (low-energy effective action of closed bosonic string, here any D):

$$S_{\mathcal{N}=0} = \int d^D x \sqrt{-g} \left\{ \frac{1}{2\kappa^2} R - \frac{1}{6} e^{-\frac{4\kappa\varphi}{D-2}} H_{\mu\nu\lambda} H^{\mu\nu\lambda} - \frac{1}{2(D-2)} \partial_\mu \varphi \partial^\mu \varphi \right\}$$

Not only Gravity

We consider the case (Pure YM)² = $(\mathcal{N} = 0 \text{ SUGRA})$:

Proposed action (low-energy effective action of closed bosonic string, here any D):

$$\mathcal{S}_{\mathcal{N}=0} = \int d^D x \sqrt{-g} \Big\{ \frac{1}{2\kappa^2} R - \frac{1}{6} e^{-\frac{4\kappa\varphi}{D-2}} H_{\mu\nu\lambda} H^{\mu\nu\lambda} - \frac{1}{2(D-2)} \partial_\mu \varphi \partial^\mu \varphi \Big\}$$
non-minimal coupling

Not only Gravity

We consider the case (Pure YM)² = $(\mathcal{N} = 0 \text{ SUGRA})$:

Proposed action (low-energy effective action of closed bosonic string, here any D):

$$\mathcal{S}_{\mathcal{N}=0} = \int d^D x \sqrt{-g} \left\{ \frac{1}{2\kappa^2} R - \frac{1}{6} e^{-\frac{4\kappa\varphi}{D-2}} H_{\mu\nu\lambda} H^{\mu\nu\lambda} - \frac{1}{2(D-2)} \partial_\mu \varphi \partial^\mu \varphi \right\}$$
non-minimal coupling non-canonical normalization

Not only Gravity

We consider the case (Pure YM)² = $(\mathcal{N} = 0 \text{ SUGRA})$:

Proposed action (low-energy effective action of closed bosonic string, here any D):

$$S_{\mathcal{N}=0} = \int d^D x \sqrt{-g} \left\{ \frac{1}{2\kappa^2} R - \frac{1}{6} e^{-\frac{4\kappa\varphi}{D-2}} H_{\mu\nu\lambda} H^{\mu\nu\lambda} - \frac{1}{2(D-2)} \partial_\mu \varphi \partial^\mu \varphi \right\}$$

Double copy relations also hold in the supersymmetric case:

$$[\mathcal{N}_L \ SYM] \otimes [\mathcal{N}_R \ SYM] = [\mathcal{N} = \mathcal{N}_L + \mathcal{N}_R \ SUGRA]$$

CK duality and DC at loop-level

[Bern, Carrasco, Johansson 2010]

An appealing conjecture

Difficult part: obtaining CK dual representations of YM amplitudes (only conjectured but several non-trivial examples). If this is possible:

$$\mathcal{A}_n^{L-\text{loop}} = i^L g^{n-2+2L} \sum_{i \in \Gamma_3} \int \left(\prod_{k=1}^L \frac{d^D l_k}{(2\pi)^D} \right) \frac{1}{S_i} \frac{c_i n_i}{\prod_{\alpha_i} s_{\alpha_i}}$$

DC follows from generalized unitarity cuts and the validity of the DC at tree-level.

$$\mathcal{M}_{n}^{L-loop} = i^{L+1} \left(\frac{\kappa}{2}\right)^{n-2+2L} \sum_{i \in \Gamma_{3}} \int \prod_{j=1}^{L} \left(\frac{d^{L}l_{j}}{(2\pi)^{D}}\right) \frac{1}{S_{i}} \frac{\tilde{n}_{i}n_{i}}{\prod_{\alpha_{i}} s_{\alpha_{i}}}$$

Open questions

CK duality and DC (can be made) manifest in scattering amplitudes

Open questions

CK duality and DC (can be made) manifest in scattering amplitudes

What is their Lagrangian origin?

What is their geometrical meaning?

(if any)

Lagrangian approach: attempts

A (short) review of the contributions to understand the double copy at the Lagrangian level

[Anastasiou, Borsten, Duff, Hughes, Nagy 2014]

Off-shell product of YM fields:

$$H_{\mu\nu}(x) \equiv \left[A^{a}_{\mu} \odot \Phi^{-1}_{aa'} \odot \tilde{A}^{a'}_{\nu} \right](x) \equiv \left[A^{a}_{\mu} \star \tilde{A}^{a'}_{\nu} \right](x)$$

$$\text{convolution}$$

[Anastasiou, Borsten, Duff, Hughes, Nagy 2014]

Off-shell product of YM fields:

$$H_{\mu\nu}(x) \equiv \left[A^a_{\mu} \circ \Phi_{aa'}^{-1} \circ \tilde{A}^{a'}_{\nu}\right](x) \equiv \left[A^a_{\mu} \star \tilde{A}^{a'}_{\nu}\right](x)$$
 biadjoint (spectator) scalar field

[Anastasiou, Borsten, Duff, Hughes, Nagy 2014]

Off-shell product of YM fields:

$$H_{\mu\nu}(x) \equiv \left[A^a_{\mu} \circ \Phi^{-1}_{aa'} \circ \tilde{A}^{a'}_{\nu} \right](x) \equiv \left[A^a_{\mu} \star \tilde{A}^{a'}_{\nu} \right](x)$$

Yang-Mills linearized gauge symmetry $[\varepsilon(x)]$

$$\begin{cases} \delta A^{a}_{\mu} = \partial_{\mu} \varepsilon^{a} \\ \delta \tilde{A}^{a}_{\mu} = \partial_{\mu} \tilde{\varepsilon}^{a'} \\ \delta \Phi^{-1}_{aa'} = \end{cases}$$

[Anastasiou, Borsten, Duff, Hughes, Nagy 2014]

Off-shell product of YM fields:

$$H_{\mu\nu}(x) \equiv \left[A^a_{\mu} \circ \Phi_{aa'}^{-1} \circ \tilde{A}^{a'}_{\nu} \right](x) \equiv \left[A^a_{\mu} \star \tilde{A}^{a'}_{\nu} \right](x)$$

Yang-Mills linearized gauge symmetry $[\varepsilon(x)]$ + global symmetry [constant ϑ]:

$$\begin{cases} \delta A^a_{\mu} = \partial_{\mu} \varepsilon^a + f^{abc} A^b_{\mu} \vartheta^c, \\ \delta \tilde{A}^a_{\mu} = \partial_{\mu} \tilde{\varepsilon}^{a'} + f^{a'b'c'} \tilde{A}^{b'}_{\mu} \tilde{\vartheta}^{c'}, \\ \delta \Phi^{-1}_{aa'} = f^{abc} \Phi^{-1}_{ba'} \vartheta^c + f^{a'b'c'} \Phi^{-1}_{ab'} \tilde{\vartheta}^{c'}, \end{cases}$$

[Anastasiou, Borsten, Duff, Hughes, Nagy 2014]

Off-shell product of YM fields:

$$H_{\mu\nu}(x) \equiv \left[A^a_{\mu} \circ \Phi_{aa'}^{-1} \circ \tilde{A}^{a'}_{\nu} \right](x) \equiv \left[A^a_{\mu} \star \tilde{A}^{a'}_{\nu} \right](x)$$

Yang-Mills linearized gauge symmetry $[\varepsilon(x)]$ + global symmetry [constant ϑ]:

$$\begin{cases} \delta A^{a}_{\mu} = \partial_{\mu} \varepsilon^{a} + f^{abc} A^{b}_{\mu} \vartheta^{c}, \\ \delta \tilde{A}^{a}_{\mu} = \partial_{\mu} \tilde{\varepsilon}^{a'} + f^{a'b'c'} \tilde{A}^{b'}_{\mu} \tilde{\vartheta}^{c'}, \\ \delta \Phi^{-1}_{aa'} = f^{abc} \Phi^{-1}_{ba'} \vartheta^{c} + f^{a'b'c'} \Phi^{-1}_{ab'} \tilde{\vartheta}^{c'}, \end{cases} \Rightarrow \begin{cases} \alpha_{\mu} = \varepsilon^{a} \star \tilde{A}^{a'}_{\mu}, \quad \tilde{\alpha}_{\mu} = A^{a}_{\mu} \star \tilde{\varepsilon}^{a'} \\ \delta H_{\mu\nu} = \partial_{\mu} \alpha_{\nu} + \partial_{\nu} \tilde{\alpha}_{\mu} \end{cases}$$

Relating Yang-Mills and gravitational symmetries (1)

[Anastasiou, Borsten, Duff, Hughes, Nagy 2014]

Off-shell product of YM fields:

$$H_{\mu\nu}(x) \equiv \left[A^a_{\mu} \circ \Phi_{aa'}^{-1} \circ \tilde{A}^{a'}_{\nu} \right](x) \equiv \left[A^a_{\mu} \star \tilde{A}^{a'}_{\nu} \right](x)$$

Yang-Mills linearized gauge symmetry $[\varepsilon(x)]$ + global symmetry [constant ϑ]:

$$\begin{cases} \delta A^{a}_{\mu} = \partial_{\mu} \varepsilon^{a} + f^{abc} A^{b}_{\mu} \vartheta^{c}, \\ \delta \tilde{A}^{a}_{\mu} = \partial_{\mu} \tilde{\varepsilon}^{a'} + f^{a'b'c'} \tilde{A}^{b'}_{\mu} \tilde{\vartheta}^{c'}, \\ \delta \Phi^{-1}_{aa'} = f^{abc} \Phi^{-1}_{ba'} \vartheta^{c} + f^{a'b'c'} \Phi^{-1}_{ab'} \tilde{\vartheta}^{c'}, \end{cases} \Rightarrow \begin{cases} \alpha_{\mu} = \varepsilon^{a} \star \tilde{A}^{a'}_{\mu}, \quad \tilde{\alpha}_{\mu} = A^{a}_{\mu} \star \tilde{\varepsilon}^{a'} \\ \delta H_{\mu\nu} = \partial_{\mu} \alpha_{\nu} + \partial_{\nu} \tilde{\alpha}_{\mu} \end{cases}$$

Linearized (extended) gravitational symmetries: $[H_{\mu\nu} = h_{\mu\nu} + B_{\mu\nu} + \gamma \eta_{\mu\nu} \varphi]$

$$\begin{cases} h_{\mu\nu} = H_{\mu\nu}^{S} - \gamma \eta_{\mu\nu} \varphi \to \delta h_{\mu\nu} = \partial_{(\mu} \xi_{\nu)}, \\ B_{\mu\nu} = H_{\mu\nu}^{A} \to \delta B_{\mu\nu} = \partial_{[\mu} \Lambda_{\nu]}, \\ \varphi = H - \frac{\partial \cdot \partial \cdot H}{\Box} \to \delta \varphi = 0, \quad \left[H \equiv H_{\alpha}^{\alpha} \right] \end{cases} \qquad \xi_{\mu} = \frac{1}{2} (\alpha + \tilde{\alpha})_{\mu}, \Lambda_{\mu} = \frac{1}{2} (\alpha - \tilde{\alpha})_{\mu}.$$

Comment: definition of the scalar field

Scattering amplitudes are on-shell quantities, with physical polarizations:

$$p_{\mu} = (p, 0, ..., 0, p) : \quad \varepsilon_{\mu}(p)\tilde{\varepsilon}_{\nu}(p) \equiv H_{\mu\nu}(p) = \begin{pmatrix} 0 & ... & 0 \\ ... & H_{ij}^{(D-2)\times(D-2)} & ... \\ 0 & ... & 0 \end{pmatrix}$$

 \Rightarrow the actual scalar degree of freedom is the trace of H_{ij} .

Comment: definition of the scalar field

Scattering amplitudes are on-shell quantities, with physical polarizations:

$$p_{\mu} = (p, 0, ..., 0, p) : \quad \varepsilon_{\mu}(p)\tilde{\varepsilon}_{\nu}(p) \equiv H_{\mu\nu}(p) = \begin{pmatrix} 0 & ... & 0 \\ ... & H_{ij}^{(D-2)\times(D-2)} & ... \\ 0 & ... & 0 \end{pmatrix}$$

 \Rightarrow the actual scalar degree of freedom is the trace of H_{ij} .

The covariant formulation of theories with massless particles calls for gauge invariance, while $\delta H \neq 0 \to \text{introduce}$ a pure gauge term to compensate:

$$\varphi \equiv H - \frac{\partial \cdot \partial \cdot H}{\Box}$$
 such that $\delta \varphi = 0$

the non-local term is due to the necessity of extracting covariantly a gauge-invariant scalar. It is identically zero on-shell.

The theory is local in terms of $h_{\mu\nu}$, $B_{\mu\nu}$, φ .

Relating Yang-Mills and gravitational symmetries (2)

Towards a free Lagrangian

From the definition of the "product" $H_{\mu\nu} = A_{\mu} \star \tilde{A}_{\nu}$:

[Anastasiou, Borsten, Duff, Hughes, Nagy 2014]

- Linearized Riemann tensor (with torsion): $R^*_{\mu\nu\rho\sigma} \equiv -\frac{1}{2}F_{\mu\nu}\star \tilde{F}_{\rho\sigma}$
 - \rightarrow from $H_{\mu\nu}^S$: purely metric part $[g_{\mu\nu} = \eta_{\mu\nu} + H_{\mu\nu}^S]$.
 - \rightarrow from $H_{\mu\nu}^A$: purely torsion part $[-T_{\mu\alpha\beta} = H_{\mu\alpha\beta} = (dB)_{\mu\alpha\beta}]$.

Relating Yang-Mills and gravitational symmetries (2)

Towards a free Lagrangian

From the definition of the "product" $H_{\mu\nu} = A_{\mu} \star \tilde{A}_{\nu}$:

[Anastasiou, Borsten, Duff, Hughes, Nagy 2014]

- Linearized Riemann tensor (with torsion): $R^*_{\mu\nu\rho\sigma} \equiv -\frac{1}{2} F_{\mu\nu} \star \tilde{F}_{\rho\sigma}$
 - \rightarrow from $H_{\mu\nu}^S$: purely metric part $[g_{\mu\nu} = \eta_{\mu\nu} + H_{\mu\nu}^S]$.
 - \rightarrow from $H_{\mu\nu}^A$: purely torsion part $[-T_{\mu\alpha\beta} = H_{\mu\alpha\beta} = (dB)_{\mu\alpha\beta}]$.
- Linearized YM e.o.m. \Rightarrow linearized e.o.m. for $h_{\mu\nu}$, $B_{\mu\nu}$, φ .
 - \rightarrow without sources.

[Cardoso, Inverso, Nagy, Nampuri 2018]

 \rightarrow with sources, introducing non-localities.

[Bern, Dennen, Huang, Kiermaier 2010]

Lagrangian DC at fixed gauge for A_4

At four points (Feynman gauge) CK-dual rules from:

$$\mathcal{L}_{\text{BDHK}} = \frac{1}{2} A^{a\mu} \Box A^a_{\mu} - B^{a\rho\mu\nu} \Box B^a_{\rho\mu\nu} - g f^{abc} (\partial_{\mu} A^a_{\nu} + \partial^{\rho} B^a_{\rho\mu\nu}) A^{b\mu} A^{c\nu}$$

[Bern, Dennen, Huang, Kiermaier 2010]

Lagrangian DC at fixed gauge for A_4

At four points (Feynman gauge) CK-dual rules from:

[Bern, Dennen, Huang, Kiermaier 2010]

Lagrangian DC at fixed gauge for A_4

At four points (Feynman gauge) CK-dual rules from:

$$\mathcal{L}_{\text{BDHK}} = \frac{1}{2} A^{a\mu} \Box A^a_{\mu} - B^{a\rho\mu\nu} \Box B^a_{\rho\mu\nu} - g f^{abc} (\partial_{\mu} A^a_{\nu} + \partial^{\rho} B^a_{\rho\mu\nu}) A^{b\mu} A^{c\nu}$$

DC in momentum space: $A_{\mu}\tilde{A}_{\nu} \to H_{\mu\nu}$.

•
$$-\frac{1}{2} \int dk_{1,2} \delta(k_1 + k_2) k_1^2 \left[A_\mu^1 A_2^\mu - 2B_1^{a\rho\mu\nu} B_{a\rho\mu\nu}^2 \right]$$

•
$$\int dk_{1,2,3} \delta(k_1 + k_2 + k_3) \sum_{\sigma \in S_3} (-1)^{sgn(\sigma)} \left[\left(k_{\mu}^{\sigma(1)} A_{\nu}^{\sigma(1)} + k_{\sigma(1)}^{\rho} B_{\rho\mu\nu}^{\sigma(1)} \right) A_{\sigma(2)}^{\mu} A_{\sigma(3)}^{\nu} \right]$$

[Bern, Dennen, Huang, Kiermaier 2010]

Lagrangian DC at fixed gauge for A_4

At four points (Feynman gauge) CK-dual rules from:

$$\mathcal{L}_{\text{BDHK}} = \frac{1}{2} A^{a\mu} \Box A^a_{\mu} - B^{a\rho\mu\nu} \Box B^a_{\rho\mu\nu} - g f^{abc} (\partial_{\mu} A^a_{\nu} + \partial^{\rho} B^a_{\rho\mu\nu}) A^{b\mu} A^{c\nu}$$

DC in momentum space: $A_{\mu}\tilde{A}_{\nu} \to H_{\mu\nu}$.

•
$$-\frac{1}{2} \int dk_{1,2} \delta(k_1 + k_2) k_1^2 \left[A_{\mu}^1 A_2^{\mu} - 2B_1^{a\rho\mu\nu} B_{a\rho\mu\nu}^2 \right] \left[\tilde{A}_{\alpha}^1 \tilde{A}_2^{\alpha} - 2\tilde{B}_1^{a\gamma\alpha\beta} \tilde{B}_{a\gamma\alpha\beta}^2 \right]$$

$$\rightarrow -\frac{1}{2} \int d^D x \left[H^{\mu\alpha} \Box H_{\mu\alpha} - 2g^{\mu\gamma\alpha\beta} \Box g_{\mu\gamma\alpha\beta} + \dots \right] \longrightarrow \text{auxiliary fields}$$

•
$$\int dk_{1,2,3} \delta(k_1 + k_2 + k_3) \sum_{\sigma \in S_3} (-1)^{sgn(\sigma)} \left[\left(k_{\mu}^{\sigma(1)} A_{\nu}^{\sigma(1)} + k_{\sigma(1)}^{\rho} B_{\rho\mu\nu}^{\sigma(1)} \right) \right]$$

 $A_{\sigma(2)}^{\mu} A_{\sigma(3)}^{\nu} \cdot \sum_{\tau \in S_3} (-1)^{sgn(\tau)} \left[\left(k_{\alpha}^{\tau(1)} \tilde{A}_{\beta}^{\tau(1)} + k_{\tau(1)}^{\gamma} \tilde{B}_{\gamma\alpha\beta}^{\tau(1)} \right) \tilde{A}_{\tau(2)}^{\alpha} \tilde{A}_{\tau(3)}^{\beta} \right]$

[Bern, Dennen, Huang, Kiermaier 2010]

Lagrangian DC at fixed gauge for A_4

At four points (Feynman gauge) CK-dual rules from:

$$\mathcal{L}_{\text{BDHK}} = \frac{1}{2} A^{a\mu} \Box A^a_{\mu} - B^{a\rho\mu\nu} \Box B^a_{\rho\mu\nu} - g f^{abc} (\partial_{\mu} A^a_{\nu} + \partial^{\rho} B^a_{\rho\mu\nu}) A^{b\mu} A^{c\nu}$$

DC in momentum space: $A_{\mu}\tilde{A}_{\nu} \to H_{\mu\nu}$.

•
$$-\frac{1}{2} \int dk_{1,2} \delta(k_1 + k_2) k_1^2 \left[A_{\mu}^1 A_2^{\mu} - 2B_1^{a\rho\mu\nu} B_{a\rho\mu\nu}^2 \right] \left[\tilde{A}_{\alpha}^1 \tilde{A}_2^{\alpha} - 2\tilde{B}_1^{a\gamma\alpha\beta} \tilde{B}_{a\gamma\alpha\beta}^2 \right]$$

 $\rightarrow -\frac{1}{2} \int d^D x \left[H^{\mu\alpha} \Box H_{\mu\alpha} - 2g^{\mu\gamma\alpha\beta} \Box g_{\mu\gamma\alpha\beta} + \dots \right]$

•
$$\int dk_{1,2,3} \delta(k_1 + k_2 + k_3) \sum_{\sigma \in S_3} (-1)^{sgn(\sigma)} \left[\left(k_{\mu}^{\sigma(1)} A_{\nu}^{\sigma(1)} + k_{\sigma(1)}^{\rho} B_{\rho\mu\nu}^{\sigma(1)} \right) A_{\sigma(2)}^{\mu} A_{\sigma(3)}^{\nu} \right] \cdot \sum_{\tau \in S_3} (-1)^{sgn(\tau)} \left[\left(k_{\alpha}^{\tau(1)} \tilde{A}_{\beta}^{\tau(1)} + k_{\tau(1)}^{\gamma} \tilde{B}_{\gamma\alpha\beta}^{\tau(1)} \right) \tilde{A}_{\tau(2)}^{\alpha} \tilde{A}_{\tau(3)}^{\beta} \right]$$

Generalized up to A_6 at tree-level:

non-local CK dual Lagrangian → auxiliary fields with cubic interactions → DC

On the Lagrangian formulation of Gravity as a double-copy of two Yang-Mills theories

Lagrangian approach: attempts

Duff et al.

only linearized level

Duff et al.

Bern et al.

Lagrangian approach: our results

A step forward towards an off-shell double copy

$$(\mathcal{N} = 0 \text{ SUGRA}) = (\mathbf{YM})^2!$$

$$\mathcal{L}_{H} = -\frac{1}{8} (F_{\mu\alpha} \star \tilde{F}_{\nu\beta}) \frac{1}{\Box} (F^{\mu\alpha} \star \tilde{F}^{\nu\beta}) = -\frac{1}{2} R^{*}_{\mu\alpha\nu\beta} \frac{1}{\Box} R^{*\mu\alpha\nu\beta} =$$

$$= \frac{1}{2} H^{\alpha\beta} (\eta_{\alpha\mu} \eta_{\beta\nu} \Box - \eta_{\beta\nu} \partial_{\alpha} \partial_{\mu} - \eta_{\alpha\mu} \partial_{\beta} \partial_{\nu} + \frac{\partial_{\alpha} \partial_{\beta} \partial_{\mu} \partial_{\nu}}{\Box}) H^{\mu\nu}.$$

$$(\mathcal{N} = 0 \text{ SUGRA}) = (\mathbf{YM})^2!$$

$$\mathcal{L}_{H} = -\frac{1}{8} (F_{\mu\alpha} \star \tilde{F}_{\nu\beta}) \frac{1}{\Box} (F^{\mu\alpha} \star \tilde{F}^{\nu\beta}) = -\frac{1}{2} R^{*}_{\mu\alpha\nu\beta} \frac{1}{\Box} R^{*\mu\alpha\nu\beta} =$$

$$= \frac{1}{2} H^{\alpha\beta} \Big(\eta_{\alpha\mu} \eta_{\beta\nu} \Box - \eta_{\beta\nu} \partial_{\alpha} \partial_{\mu} - \eta_{\alpha\mu} \partial_{\beta} \partial_{\nu} + \frac{\partial_{\alpha} \partial_{\beta} \partial_{\mu} \partial_{\nu}}{\Box} \Big) H^{\mu\nu}.$$

$$[H_{\mu\nu} = h_{\mu\nu} + B_{\mu\nu} + \gamma \eta_{\mu\nu} \varphi]$$

•
$$\gamma = 0$$
: $\mathcal{L}_H = \mathcal{L}_h + \mathcal{L}_B - \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi$,

•
$$\gamma = \frac{1}{D-2}$$
: $\mathcal{L}_H = \mathcal{L}_h + \mathcal{L}_B - \frac{1}{2(D-2)} \partial_\mu \varphi \partial^\mu \varphi$.

$$(\mathcal{N} = 0 \text{ SUGRA}) = (\mathbf{YM})^2!$$

$$\mathcal{L}_{H} = -\frac{1}{8} (F_{\mu\alpha} \star \tilde{F}_{\nu\beta}) \frac{1}{\Box} (F^{\mu\alpha} \star \tilde{F}^{\nu\beta}) = -\frac{1}{2} R^{*}_{\mu\alpha\nu\beta} \frac{1}{\Box} R^{*\mu\alpha\nu\beta} =$$

$$= \frac{1}{2} H^{\alpha\beta} (\eta_{\alpha\mu} \eta_{\beta\nu} \Box - \eta_{\beta\nu} \partial_{\alpha} \partial_{\mu} - \eta_{\alpha\mu} \partial_{\beta} \partial_{\nu} + \frac{\partial_{\alpha} \partial_{\beta} \partial_{\mu} \partial_{\nu}}{\Box}) H^{\mu\nu}$$

$$[H_{\mu\nu} = h_{\mu\nu} + B_{\mu\nu} + \gamma \eta_{\mu\nu} \varphi]$$

$$\bullet \gamma = 0: \mathcal{L}_{H} = \mathcal{L}_{h} + \mathcal{L}_{B} - \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi,$$

$$\bullet \gamma = \frac{1}{D-2}: \mathcal{L}_{H} = \mathcal{L}_{h} + \mathcal{L}_{B} - \frac{1}{2(D-2)} \partial_{\mu} \varphi \partial^{\mu} \varphi.$$
N.B. $\frac{\partial \cdot \partial \cdot H}{\Box} = H - \varphi$

$$(\mathcal{N} = 0 \text{ SUGRA}) = (\mathbf{YM})^2!$$

$$\mathcal{L}_{H} = -\frac{1}{8} (F_{\mu\alpha} \star \tilde{F}_{\nu\beta}) \frac{1}{\Box} (F^{\mu\alpha} \star \tilde{F}^{\nu\beta}) = -\frac{1}{2} R^{*}_{\mu\alpha\nu\beta} \frac{1}{\Box} R^{*\mu\alpha\nu\beta} =$$

$$= \frac{1}{2} H^{\alpha\beta} (\eta_{\alpha\mu} \eta_{\beta\nu} \Box - \eta_{\beta\nu} \partial_{\alpha} \partial_{\mu} - \eta_{\alpha\mu} \partial_{\beta} \partial_{\nu} + \frac{\partial_{\alpha} \partial_{\beta} \partial_{\mu} \partial_{\nu}}{\Box}) H^{\mu\nu}$$

$$[H_{\mu\nu} = h_{\mu\nu} + B_{\mu\nu} + \gamma \eta_{\mu\nu} \varphi]$$

$$\bullet \gamma = 0: \mathcal{L}_{H} = \mathcal{L}_{h} + \mathcal{L}_{B} - \frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi,$$

$$\bullet \gamma = \frac{1}{D-2}: \mathcal{L}_{H} = \mathcal{L}_{h} + \mathcal{L}_{B} - \frac{1}{2(D-2)} \partial_{\mu} \varphi \partial^{\mu} \varphi.$$
N.B. $\frac{\partial \cdot \partial \cdot H}{\Box} = H - \varphi$

Possible Faddeev-Popov gauge-fixing such that:

$$\mathcal{L}_H + \mathcal{L}_{GF} = \frac{1}{2} H_{\mu\alpha} \square H^{\mu\alpha} \rightarrow \text{"square" of Feynman gauge: } \mathcal{P}_{\mu\alpha\nu\beta} = \frac{i}{p^2} \eta_{\mu\nu} \eta_{\alpha\beta}.$$

Noether procedure

A powerful tool to build interacting gauge theories

From free theory (S_0) + free gauge invariance $(\delta_0 \varphi)$ we add vertices with a perturbative expansion. The gauge transformation must be deformed consistently:

$$S = S_0 + gS_1 + g^2S_2 + \dots \Rightarrow \delta\varphi = \delta_0\varphi + g\delta_1\varphi + g^2\delta_2\varphi + \dots$$

$$\delta S = 0 \Rightarrow \begin{cases} \delta_0S_0 = 0, \\ \delta_1S_0 + \delta_0S_1 = 0, \\ \delta_2S_0 + \delta_1S_1 + \delta_0S_2 = 0, \\ \dots \end{cases}$$

 \rightarrow order by order we can find S_n and then $\delta_n \varphi$.

Cubic vertices for $H_{\mu\nu}$

$$[\mathcal{D}_{\beta} \equiv \partial^{\mu} H_{\mu\beta} - \frac{1}{2} \partial_{\beta} \frac{\partial \cdot \partial \cdot H}{\Box}, \quad \tilde{\mathcal{D}}_{\alpha} \equiv \partial^{\mu} H_{\alpha\mu} - \frac{1}{2} \partial_{\alpha} \frac{\partial \cdot \partial \cdot H}{\Box}]$$

$$\mathcal{L}_{1} = a \left\{ H^{\mu\nu} \partial_{\mu} \partial_{\nu} H_{\alpha\beta} H^{\alpha\beta} + H^{\mu\nu} \partial_{\mu} H^{\alpha\beta} \partial_{\beta} H_{\alpha\nu} + H^{\mu\nu} \partial_{\nu} H^{\alpha\beta} \partial_{\alpha} H_{\mu\beta} + \right.$$

$$\left. - \frac{1}{2} \partial \cdot \mathcal{D} H_{\alpha\beta} H^{\alpha\beta} - \mathcal{D}^{\beta} \partial^{\alpha} \frac{\partial \cdot \mathcal{D}}{\Box} H_{\alpha\beta} - \tilde{\mathcal{D}}^{\alpha} \partial^{\beta} \frac{\partial \cdot \mathcal{D}}{\Box} H_{\alpha\beta} \right\} + \\ \left. + b \left\{ H^{\mu\nu} \partial_{\mu} \partial_{\nu} H_{\alpha\beta} H^{\alpha\beta} + 2 H^{\mu\nu} \partial_{\mu} \partial_{\nu} H_{\alpha\beta} H^{\beta\alpha} + H^{\mu\nu} \partial_{\mu} H^{\alpha\beta} \partial_{\alpha} H_{\beta\nu} + \right. \\ \left. + H^{\mu\nu} \partial_{\nu} H^{\alpha\beta} \partial_{\alpha} H_{\beta\mu} + H^{\mu\nu} \partial_{\nu} H^{\alpha\beta} \partial_{\beta} H_{\alpha\mu} + H^{\mu\nu} \partial_{\mu} H^{\alpha\beta} \partial_{\alpha} H_{\nu\beta} + \right. \\ \left. + H^{\mu\nu} \partial_{\mu} H^{\alpha\beta} \partial_{\beta} H_{\nu\alpha} + H^{\mu\nu} \partial_{\nu} H^{\alpha\beta} \partial_{\beta} H_{\mu\alpha} + \right. \\ \left. - \frac{1}{2} \partial \cdot \mathcal{D} H_{\alpha\beta} H^{\alpha\beta} - \partial \cdot \mathcal{D} H_{\alpha\beta} H^{\beta\alpha} - \mathcal{D}^{\beta} \partial^{\alpha} \frac{\partial \cdot \mathcal{D}}{\Box} H_{\alpha\beta} + \right. \\ \left. - \tilde{\mathcal{D}}^{\alpha} \partial^{\beta} \frac{\partial \cdot \mathcal{D}}{\Box} H_{\alpha\beta} - 2 \mathcal{D}^{\beta} \partial^{\alpha} \frac{\partial \cdot \mathcal{D}}{\Box} H_{\beta\alpha} - 2 \tilde{\mathcal{D}}^{\alpha} \partial^{\beta} \frac{\partial \cdot \mathcal{D}}{\Box} H_{\beta\alpha} \right\}$$

Comments on the cubic vertices

• The choice a=1,b=0 reproduces the results of the DC and matches (modulo local field redefinitions) the vertices of $\mathcal{N}=0$ SUGRA if $H_{\mu\nu}=h_{\mu\nu}+B_{\mu\nu}+\frac{1}{D-2}\eta_{\mu\nu}\varphi$ ($\gamma=\frac{1}{D-2}$).

- The choice a=1,b=0 reproduces the results of the DC and matches (modulo local field redefinitions) the vertices of $\mathcal{N}=0$ SUGRA if $H_{\mu\nu}=h_{\mu\nu}+B_{\mu\nu}+\frac{1}{D-2}\eta_{\mu\nu}\varphi$ ($\gamma=\frac{1}{D-2}$).
- With this choice: same as BDHK DC Lagrangian (at three points) + pure gauge part → we expect this to be the choice selected by the insertion of quartic vertices.

- The choice a=1,b=0 reproduces the results of the DC and matches (modulo local field redefinitions) the vertices of $\mathcal{N}=0$ SUGRA if $H_{\mu\nu}=h_{\mu\nu}+B_{\mu\nu}+\frac{1}{D-2}\eta_{\mu\nu}\varphi$ ($\gamma=\frac{1}{D-2}$).
- With this choice: same as BDHK DC Lagrangian (at three points) + pure gauge part → we expect this to be the choice selected by the insertion of quartic vertices.
- b=0 selects an enhanced symmetry: $O(D-1,1)_L\otimes O(D-1,1)_R\otimes \mathbb{Z}_2$.

- The choice a=1,b=0 reproduces the results of the DC and matches (modulo local field redefinitions) the vertices of $\mathcal{N}=0$ SUGRA if $H_{\mu\nu}=h_{\mu\nu}+B_{\mu\nu}+\frac{1}{D-2}\eta_{\mu\nu}\varphi$ ($\gamma=\frac{1}{D-2}$).
- With this choice: same as BDHK DC Lagrangian (at three points) + pure gauge part → we expect this to be the choice selected by the insertion of quartic vertices.
- b=0 selects an enhanced symmetry: $O(D-1,1)_L\otimes O(D-1,1)_R\otimes \mathbb{Z}_2$.
- The choice a = b eliminates the two-form field.

- The choice a=1,b=0 reproduces the results of the DC and matches (modulo local field redefinitions) the vertices of $\mathcal{N}=0$ SUGRA if $H_{\mu\nu}=h_{\mu\nu}+B_{\mu\nu}+\frac{1}{D-2}\eta_{\mu\nu}\varphi$ ($\gamma=\frac{1}{D-2}$).
- With this choice: same as BDHK DC Lagrangian (at three points) + pure gauge part → we expect this to be the choice selected by the insertion of quartic vertices.
- b=0 selects an enhanced symmetry: $O(D-1,1)_L\otimes O(D-1,1)_R\otimes \mathbb{Z}_2$.
- The choice a = b eliminates the two-form field.
- Other choices produce the same type of amplitudes but with different relative coefficients.

Hints of geometry

From the Noether procedure:

$$\begin{cases} \delta_{1}H_{\mu\nu}^{S} = \xi \cdot \partial H_{\mu\nu}^{S} + \partial_{\mu}\xi^{\alpha}H_{\alpha\nu}^{S} + \partial_{\nu}\xi^{\alpha}H_{\mu\alpha}^{S}, \\ \delta_{1}H_{\mu\nu}^{A} = \xi \cdot \partial H_{\mu\nu}^{A} + \partial_{\mu}\xi^{\alpha}H_{\alpha\nu}^{A} - \partial_{\nu}\xi^{\alpha}H_{\alpha\mu}^{A}, \end{cases}$$
but $\delta_{1}\varphi \neq \xi \cdot \partial\varphi!$

Hints of geometry

From the Noether procedure:

$$\begin{cases} \delta_{1}H_{\mu\nu}^{S} = \xi \cdot \partial H_{\mu\nu}^{S} + \partial_{\mu}\xi^{\alpha}H_{\alpha\nu}^{S} + \partial_{\nu}\xi^{\alpha}H_{\mu\alpha}^{S}, \\ \delta_{1}H_{\mu\nu}^{A} = \xi \cdot \partial H_{\mu\nu}^{A} + \partial_{\mu}\xi^{\alpha}H_{\alpha\nu}^{A} - \partial_{\nu}\xi^{\alpha}H_{\alpha\mu}^{A}, \end{cases} \text{ but } \delta_{1}\varphi \neq \xi \cdot \partial\varphi!$$

Solution: the actual scalar is $\psi = \psi^{(1)} + \psi^{(2)} + ...$, with $\psi^{(1)} = \varphi = \frac{R_H^{(1)}}{R}$.

Ricci scalar in terms of H

Hints of geometry

From the Noether procedure:

$$\begin{cases} \delta_{1}H_{\mu\nu}^{S} = \xi \cdot \partial H_{\mu\nu}^{S} + \partial_{\mu}\xi^{\alpha}H_{\alpha\nu}^{S} + \partial_{\nu}\xi^{\alpha}H_{\mu\alpha}^{S}, \\ \delta_{1}H_{\mu\nu}^{A} = \xi \cdot \partial H_{\mu\nu}^{A} + \partial_{\mu}\xi^{\alpha}H_{\alpha\nu}^{A} - \partial_{\nu}\xi^{\alpha}H_{\alpha\mu}^{A}, \end{cases} \text{ but } \delta_{1}\varphi \neq \xi \cdot \partial\varphi!$$

Solution: the actual scalar is
$$\psi = \psi^{(1)} + \psi^{(2)} + ...$$
, with $\psi^{(1)} = \varphi = \frac{R_H^{(1)}}{\Pi}$.

Ricci scalar in terms of H

$$\delta\psi = \xi \cdot \partial\psi \Rightarrow \psi^{(2)} = \frac{1}{\Box} \left(R_H^{(2)} - \hat{\Box}^{(1)} \frac{R_H^{(1)}}{\Box} \right) = \left(\frac{R_H}{\hat{\Box}} \right)^{(2)}.$$

Hints of geometry

From the Noether procedure:

$$\begin{cases} \delta_{1}H_{\mu\nu}^{S} = \xi \cdot \partial H_{\mu\nu}^{S} + \partial_{\mu}\xi^{\alpha}H_{\alpha\nu}^{S} + \partial_{\nu}\xi^{\alpha}H_{\mu\alpha}^{S}, \\ \delta_{1}H_{\mu\nu}^{A} = \xi \cdot \partial H_{\mu\nu}^{A} + \partial_{\mu}\xi^{\alpha}H_{\alpha\nu}^{A} - \partial_{\nu}\xi^{\alpha}H_{\alpha\mu}^{A}, \end{cases}$$
but $\delta_{1}\varphi \neq \xi \cdot \partial\varphi!$

Solution: the actual scalar is $\psi = \psi^{(1)} + \psi^{(2)} + ...$, with $\psi^{(1)} = \varphi = R_H^{(1)}$.

Ricci scalar in terms of H $\delta \psi = \xi \cdot \partial \psi \Rightarrow \psi^{(2)} = \frac{1}{\Box} \left(R_H^{(2)} - \hat{\Box}^{(1)} \frac{R_H^{(1)}}{\Box} \right) = R_H^{(2)}$.

Laplace-Beltrami operator for a scalar

Hints of geometry

From the Noether procedure:

$$\begin{cases} \delta_{1}H_{\mu\nu}^{S} = \xi \cdot \partial H_{\mu\nu}^{S} + \partial_{\mu}\xi^{\alpha}H_{\alpha\nu}^{S} + \partial_{\nu}\xi^{\alpha}H_{\mu\alpha}^{S}, \\ \delta_{1}H_{\mu\nu}^{A} = \xi \cdot \partial H_{\mu\nu}^{A} + \partial_{\mu}\xi^{\alpha}H_{\alpha\nu}^{A} - \partial_{\nu}\xi^{\alpha}H_{\alpha\mu}^{A}, \end{cases} \text{ but } \delta_{1}\varphi \neq \xi \cdot \partial\varphi!$$

Solution: the actual scalar is $\psi = \psi^{(1)} + \psi^{(2)} + ...$, with $\psi^{(1)} = \varphi = \frac{R_H^{(1)}}{\Box}$.

$$\delta\psi = \xi \cdot \partial\psi \Rightarrow \psi^{(2)} = \frac{1}{\Box} \left(R_H^{(2)} - \hat{\Box}^{(1)} \frac{R_H^{(1)}}{\Box} \right) = \left(\frac{R_H}{\hat{\Box}} \right)^{(2)}.$$

Also the graviton must be modified: $h_{\mu\nu} = H_{\mu\nu}^S - \gamma X_{\mu\nu}\psi$, $X_{\mu\nu}^{(0)} = \eta_{\mu\nu}$. $\Rightarrow X_{\mu\nu}^{(1)} = H_{\mu\nu}^S$. Doesn't generate new cubic vertices $\leftrightarrow \gamma = \frac{1}{D-2}$.

On the Lagrangian formulation of Gravity as a double-copy of two Yang-Mills theories Conclusions and outlook

Conclusions and outlook

Conclusions

• Field theory def. of $h_{\mu\nu}, B_{\mu\nu}, \varphi$ as DC, with (first) nonlinear corrections.

Conclusions

- Field theory def. of $h_{\mu\nu}$, $B_{\mu\nu}$, φ as DC, with (first) nonlinear corrections.
- Quadratic Lagrangian for the DC with clear interpretation as "YM2".

Conclusions

- Field theory def. of $h_{\mu\nu}$, $B_{\mu\nu}$, φ as DC, with (first) nonlinear corrections.
- Quadratic Lagrangian for the DC with clear interpretation as "YM2".
- Cubic Lagrangian, related to the BDHK DC but without gauge-fixing.

Conclusions

- Field theory def. of $h_{\mu\nu}$, $B_{\mu\nu}$, φ as DC, with (first) nonlinear corrections.
- Quadratic Lagrangian for the DC with clear interpretation as "YM2".
- Cubic Lagrangian, related to the BDHK DC but without gauge-fixing.
- Hints of new geometry given by the presence of the scalar field.

Conclusions

- Field theory def. of $h_{\mu\nu}$, $B_{\mu\nu}$, φ as DC, with (first) nonlinear corrections.
- Quadratic Lagrangian for the DC with clear interpretation as "YM2".
- Cubic Lagrangian, related to the BDHK DC but without gauge-fixing.
- Hints of new geometry given by the presence of the scalar field.

Outlook

• Need for quartic vertices: compare with BDHK and understand CK duality.

Conclusions

- Field theory def. of $h_{\mu\nu}$, $B_{\mu\nu}$, φ as DC, with (first) nonlinear corrections.
- Quadratic Lagrangian for the DC with clear interpretation as "YM2".
- Cubic Lagrangian, related to the BDHK DC but without gauge-fixing.
- Hints of new geometry given by the presence of the scalar field.

Outlook

- Need for quartic vertices: compare with BDHK and understand CK duality.
- Understand the geometry (DFT? Generalized geometry?).

Conclusions

- Field theory def. of $h_{\mu\nu}$, $B_{\mu\nu}$, φ as DC, with (first) nonlinear corrections.
- Quadratic Lagrangian for the DC with clear interpretation as "YM2".
- Cubic Lagrangian, related to the BDHK DC but without gauge-fixing.
- Hints of new geometry given by the presence of the scalar field.

Outlook

- Need for quartic vertices: compare with BDHK and understand CK duality.
- Understand the geometry (DFT? Generalized geometry?).
- Generalize to SUSY.

Conclusions

- Field theory def. of $h_{\mu\nu}$, $B_{\mu\nu}$, φ as DC, with (first) nonlinear corrections.
- Quadratic Lagrangian for the DC with clear interpretation as "YM2".
- Cubic Lagrangian, related to the BDHK DC but without gauge-fixing.
- Hints of new geometry given by the presence of the scalar field.

Outlook

- Need for quartic vertices: compare with BDHK and understand CK duality.
- Understand the geometry (DFT? Generalized geometry?).
- Generalize to SUSY.
- Soft theorems and asymptotic symmetries from the DC perspective.

Thank you for your attention.