NLSMs on K3

K3 as Torus Orbifold

Twining Genera of K3

New Frontiers in Theoretical Physics XXXVI Convegno Nazionale di Fisica Teorica

> Gorini Nicola 23 May 2018

Università degli Studi di Padova

K3 as Torus Orbifold

Outlines of the Talk

- Introduction to NLSMs on K3
- Definition of the Twining Genera of K3.
- Brief discussion on their physical and mathematical implications.

Superconformal	Field	Theories

K3 as Torus Orbifold

Index

- Superconformal Field Theories
 What are they?
 Where are they?
- 2 NLSMs on K3
 - Properties of K3
 - Physically relevant quantities
- 3 K3 as Torus Orbifold
 - Symmetries for NLSMs on K3
 - Final Results

4 Conclusions

K3 as Torus Orbifold

Superconformal Field Theories

Superconformal Field Theories ●○ What are they? NLSMs on K3 00000 K3 as Torus Orbifold

Quick Introduction

Superconformal Field Theories are supersymmetric extensions of Conformal Field Theories. We will focus in particular on $\mathcal{N} = 4$ SCFTs in D = 2, in which the Virasoro algebra is extended by the presence of four 3/2-spin supercurrents G(z) and three 1-spin currents J(z). Superconformal Field Theories ○●○ Where are they? NLSMs on K3

K3 as Torus Orbifold

String Theory point of view

The most common examples of 2D-SCFTs relevant in the String Theory context are Non-Linear σ -Models. Explicitly we have:

$$S = \frac{1}{4\pi\alpha'} \int_{\Sigma} d^2\sigma \left[\left(\delta^{ab} G_{\mu\nu}(X) + i\epsilon^{ab} B_{\mu\nu}(X) \right) \partial_a X^{\mu} \partial_b X^{\nu} \right]$$

We can clearly notice that the model is completely determined by fixing the couple $(G_{\mu\nu}, B_{\mu\nu})$.

Superconformal Field Theori	es
Where are they?	

K3 as Torus Orbifold

We want now to consider a $\mathcal{N}=(4,4)$ 2D-SCFTs whose target space is a K3 surface.

Such theories arise when we compactify Type IIA and Type IIB Theories on the 10D space-time:

$$M_{10} = \mathcal{M}_{1,3} \times K3 \times \mathbb{T}^2$$

K3 as Torus Orbifold

NLSMs on K3

Superconformal	Field	Theories

Properties of K3

K3 Surfaces

NLSMs on K3

K3 as Torus Orbifold

K3 surfaces are interesting because their (restricted) Holonomy group is SU(2) and thus only half of the number of starting supercharges is preserved. This means that we can have:

$$\underbrace{\text{Type II A-B}}_{D=10} \xrightarrow{K3 \times \mathbb{T}^2} \underbrace{\mathcal{N} = 4 \text{ SUGRA}}_{D=4}$$

NLSMs on K3 ○●○○○ K3 as Torus Orbifold

Physically relevant quantities

What can we compute?

In this context, the relevant physical quantities that can be potentially computed are:

- Partition Function
- Witten Index
- Elliptic Genus
- Twining Genus

Superconformal	Field Theories
Physically releva	ant quantities

K3 as Torus Orbifold

In Formulae (1)

■ The Partition Function is defined, as usual, as:

$$Z(q,ar{q})=\mathsf{Tr}_{\mathcal{H}}[e^{-2\pi(au_2H-i au_1P)}]=...=\mathsf{Tr}_{\mathcal{H}}[q^{L_0}\ ar{q}^{ar{L}_0}]$$

The Witten Index:

$$Z = {
m Tr}_{RR}[(-1)^{F+ar{F}}q^{L_0}\,\,ar{q}^{ar{L}_0}] = ... = \chi_{ts}$$

with $\tau = \tau_1 + i\tau_2$ the modular parameter of the torus, $q = e^{2\pi i \tau}$, $\bar{q} = e^{2\pi i \bar{\tau}}$ and F, \bar{F} the left- and right-moving fermion numbers.

NLSMs on K3

K3 as Torus Orbifold

In Formulae (2)

■ The Elliptic Genus is defined as:

$$Z(q, y) = \mathsf{Tr}_{RR}[(-1)^{F+\bar{F}}q^{L_0} \ \bar{q}^{\bar{L}_0}y^Q]$$

with $y = e^{2\pi i z}$, $z \in \mathbb{R}$ and Q the generator of a u(1) algebra contained in the su(2) R-symmetry algebra belonging to the $\mathcal{N} = (4, 4)$ superconformal algebra.

■ Finally, supposing that a given NLSM on K3 has a discrete symmetry g commuting with the $\mathcal{N} = (4, 4)$ algebra, the corresponding Twining Genus can be defined as:

$$Z_g(q, y) = \text{Tr}_{RR}[(-1)^{F+\bar{F}}q^{L_0} \ \bar{q}^{\bar{L}_0}y^Qg]$$

NLSMs on K3 ○○○○● K3 as Torus Orbifold

Physically relevant quantities

Here come the issues...

Everything we introduced above is not explicitly computable for a NLSM whose target-space is a GENERIC K3 surface. We need therefore to simplify the problem by choosing a NLSM defined on a "treatable" target-space.

One possibility is thus to choose a special point of the moduli space of K3 for which $K3 \simeq \mathbb{T}^4/\mathbb{Z}_2$.

K3 as Torus Orbifold

K3 as Torus Orbifold

14 of 20

uperconformal	Field Theories	NI

K3 as Torus Orbifold ●0000

Symmetries for NLSMs on K3

Symmetries Classification

All such (discrete) symmetries have been classified, for generic NLSMs on K3, in [Gaberdiel, Hohenegger, Volpato, 1106.4315]. Thanks to the proposed Classification Theorem, in [Cheng, Harrison, Volpato, Zimet, 1612.04404], it is shown that there are exactly 81 different Twining Genera for K3.

NLSMs on K3

K3 as Torus Orbifold ○●○○○

Symmetries for NLSMs on K3

Symmetries of the Orbifold case

- Let us now focus only on symmetries which are realized on NLSMs on $\mathbb{T}^4/\mathbb{Z}_2.$
- Such symmetries can be explicitly obtained by starting from discrete symmetries g of generic NLSMs on \mathbb{T}^4 (classified in [Volpato, 1403.2410]), commuting with the non trivial element $h \in \mathbb{Z}_2$.

NLSMs on K3

K3 as Torus Orbifold 00●00

Symmetries for NLSMs on K3

Twining Genus for $\mathbb{T}^4/\mathbb{Z}_2^{-1}$

Knowing that fields defined on $\mathbb{T}^4/\mathbb{Z}_2$ must satisfy the conditions

$$X_i(\sigma + 2\pi R, \tau) = \begin{cases} +X_i(\sigma, \tau) & (\text{Untw-Sector}) \\ -X_i(\sigma, \tau) & (\text{Tw-Sector}), \end{cases}$$

the Twining Genus on $\mathbb{T}^4/\mathbb{Z}_2$ becomes:

$$Z_{g}(q, y) = \operatorname{Tr}_{untw} \left[\frac{(1+h)}{2} q^{L_{0}} \bar{q}^{\bar{L}_{0}} (-1)^{F+\bar{F}} y^{Q} g \right]$$
$$+ \operatorname{Tr}_{tw} \left[\frac{(1+h)}{2} q^{L_{0}} \bar{q}^{\bar{L}_{0}} (-1)^{F+\bar{F}} y^{Q} g \right]$$

Superconformal	Field	Theories

K3 as Torus Orbifold ○○○●○

Final Results

An Explicit Formula

The final formula for a generic symmetry g, realized on a Torus Orbifold, whose eigenvalues are $\zeta_L, \zeta_L^{-1}, \zeta_R, \zeta_R^{-1}$, with $\zeta_{L,R} = e^{2\pi i r_{L,R}}$ and both $(\neq 1)$, is:

$$Z_{g}^{orb}(\tau,z) = \frac{1}{2} \left[\frac{\theta_{1}(z+r_{L}|\tau) \ \theta_{1}(z-r_{L}|\tau)}{\theta_{1}(r_{L}|\tau) \ \theta_{1}(-r_{L}|\tau)} \cdot (2-\zeta_{L}-\zeta_{L}^{-1})(2-\zeta_{R}-\zeta_{R}^{-1}) \right. \\ \left. + \frac{\theta_{2}(z+r_{L}|\tau) \ \theta_{2}(z-r_{L}|\tau)}{\theta_{2}(r_{L}|\tau) \ \theta_{2}(-r_{L}|\tau)} \cdot (2+\zeta_{L}+\zeta_{L}^{-1})(2+\zeta_{R}+\zeta_{R}^{-1}) \right. \\ \left. + \left(\frac{\theta_{4}(z+r_{L}|\tau) \ \theta_{4}(z-r_{L}|\tau)}{\theta_{4}(r_{L}|\tau) \ \theta_{4}(-r_{L}|\tau)} + \frac{\theta_{3}(z+r_{L}|\tau) \ \theta_{3}(z-r_{L}|\tau)}{\theta_{3}(r_{L}|\tau) \ \theta_{3}(-r_{L}|\tau)} \right) \cdot \mathrm{Tr}_{\mathcal{H}_{gs}^{\mathrm{tw}}}[\rho(g)] \right] \right]$$

Superconformal	Field Theories
Final Results	

K3 as Torus Orbifold ○○○○●

Examples

• Elliptic Genus:
$$g = 1$$
 ($r_{L,R} = 0$)

$$Z^{orb}(\tau, z) = 8 \cdot \left[\frac{\theta_2(z|\tau)^2}{\theta_2(0|\tau)^2} + \frac{\theta_4(z|\tau)^2}{\theta_4(0|\tau)^2} + \frac{\theta_3(z|\tau)^2}{\theta_3(0|\tau)^2} \right]$$

• (New) $\pi_{g_1} = 1^8 \ 2^{-8} \ 4^8$ of Table 3, p.46, in [Paquette, Volpato, Zimet, 1702.05095], with the eigenvalues $\zeta_{L,R} = -1$, chosen in Table 2, p.20, from [Volpato, 1403.2410]:

$$Z_{g_1}^{orb}(\tau,z) = 8 \cdot rac{ heta_1(z+rac{1}{2}| au) \ heta_1(z-rac{1}{2}| au)}{ heta_1(rac{1}{2}| au) \ heta_1(-rac{1}{2}| au)},$$

K3 as Torus Orbifold

Possible Applications

The computation of the Twining Genera of K3 may be interesting:

- To study the hidden symmetries of $\mathcal{N} = 4$ SUGRA in D = 4.
- To exstimate the entropy of some kinds of Supersymmetric Black Holes.
- To verify the conjectured values of the 81 Twining Genera listed in [Paquette, Volpato, Zimet, 1702.05095].
- To have a better comprehension of the *Mathieu Moonshine Phenomenon*.