Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix model approach

Perturbative checks

Conclusions

Correlators in presence of Wilson loops in superconformal gauge theories

Francesco Galvagno

Università degli Studi di Torino Dipartimento di Fisica and Arnold-Regge Center

Based on [1802.09813] with M. Billò, P. Gregori, A. Lerda Cortona, 24 Maggio 2018

Introduction: Wilson loops in gauge theories

Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix mode approach

Perturbative checks

Conclusions

Wilson loops are a powerful tool to investigate non-abelian gauge theories also in non-perturbative regimes.

Definition:

$$W_{\mathcal{R}}(C) = \frac{1}{N} \operatorname{Tr}_{\mathcal{R}} \mathcal{P} \exp\left[\mathrm{i}g \oint_{C} A_{\mu}(x) dx^{\mu} \right]$$

where *C* is the closed loop, \mathcal{R} the representation of the gauge group SU(*N*), \mathcal{P} path ordering, *g* gauge coupling and A_{μ} gauge field.

Physical meaning:

- It represents the world line of a massive, charged particle in a gauge background.
- Related to gauge invariant observables ($q\bar{q}$ potential, Bremsstrahlung, ...).
- Relevant in several areas of research (QCD, lattice QCD, AdS/CFT) of theoretical physics.

Introduction: superconformal gauge theories

Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix model approach

Perturbative checks

Conclusions

Gauge theories enjoying extra space-time symmetries:

- Supersymmetry: bosons and fermions organized in supermultiplets → many cancellations to quantum corrections.
- **Conformal symmetry**: scale invariance also at the quantum level.

Motivation

<u>Extra constraints</u> \rightarrow more tractable behaviour at the quantum level.

Framework:

- N = 2 Yang-Mills theory on \mathbb{R}^4 with gauge group SU(N) and N_f fundamental flavours.
- For $N_f = 2N$ the beta function $\beta(g) = 0 \rightarrow$ superconformal invariance.
- Goal: insertion of Wilson loop and evaluation of correlators.

Main contents

Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix model approach

Perturbative checks

Conclusions

1 Defect CFT set up

2 Matrix model approach

3 Perturbative checks

Supersymmetric Wilson loop and chiral operators

Correlators in presence of Wilson loops in superconformal gauge theories

Francesco Galvagno

Defect CFT set up

Matrix mode approach

Perturbative checks

Conclusions

Supersymmetric circular Wilson loop (1/2 BPS):

$$W_{\mathcal{R}}(C) = \frac{1}{N} \operatorname{Tr}_{\mathcal{R}} \mathcal{P} \exp \left\{ g \oint_{C} d\tau \Big[\mathrm{i} A_{\mu}(y) \, \dot{y}^{\mu}(\tau) + \frac{R}{\sqrt{2}} \, \left(\varphi(y) + \bar{\varphi}(y) \right) \Big] \right\}$$

where *R* radius of *C*, $\varphi(y)$ adjoint complex scalar.

Chiral operators $O_n(x)$ of dimension *n*:

- gauge singlets of φ ,
- annihilated by half of the supercharges \rightarrow protected operators.

$$\begin{aligned} O_2(x) &= \operatorname{Tr} \, \varphi^2(x) \quad O_3(x) = \operatorname{Tr} \, \varphi^3(x) \\ O_4^{(1)}(x) &= \operatorname{Tr} \, \varphi^4(x) \quad O_4^{(2)}(x) = \left(\operatorname{Tr} \, \varphi^2(x)\right)^2 \end{aligned}$$

The quantity of interest is the 1/2 BPS 1-point function:

 $\langle W(C) O_n(x) \rangle$

Line conformal defect

Geometrical set up and symmetry pattern

Correlators in presence of Wilson loops in superconformal gauge theories

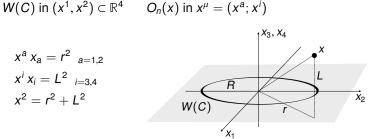
> Francesco Galvagno

Defect CFT set up

Matrix mode approach

Perturbative checks

Conclusions



Average distance:
$$\|x\|_C = rac{1}{R}\sqrt{\left(R^2 - x^2
ight)^2 + 4L^2R^2}$$

Residual Conformal symmetry¹

The extended operator W(C) breaks $SO(1,5) \rightarrow SO(1,2) \times SO(3)$, sufficient to fix the spacetime dependence:

$$\langle W(C) O_n(x) \rangle = rac{A_n(g,N)}{\left(2\pi ||x||_C\right)^n}$$

¹[Billò, Goncalves, Lauria, Meineri, 2016]

Exploiting the symmetries in field theories

Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix mode approach

Perturbative checks

Conclusions

 $A_n(g, N)$ with gauge dependence only \Rightarrow captured in QFT by combinatorics of Feynman diagrams.

Review of a simpler problem:

- *N* = 4 theories (pure conformal SYM, stronger SUSY constraints).
- Pure $\langle W(C) \rangle$ vev (no operators insertion).
- \bullet No length scales \rightarrow pure gauge dependence.

Using field theory techniques:

(²) and (³) resummed the various contributions to the vev:

$$\langle W(C) \rangle = rac{1}{N} L_{N-1}^1 \left(-rac{g^2}{4}
ight) \exp \left[rac{g^2}{8} \left(1 - rac{1}{N}
ight)
ight]$$

 L_m^n are Laguerre polynomials.

Remarks: • Exact result for any value of the coupling g.

• Conjecture of an underlying matrix model.

²[Erikson, Semenoff, Zarembo, 2000]

³[Drukker, Gross, 2004]

Supersymmetric Localization: $\mathcal{N} = 4$ matrix model

Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix model approach

Perturbative checks

Conclusions

With extended supersymmetry ($N \ge 2$) Pestun⁴ computed $\langle W(C) \rangle$ on a **sphere** S_4 using a **localization** procedure:

- Powerful technique, it requires a global invariance (SUSY).
- Idea: path integral localized to north/south poles contributions and so reduced to a finite-dimensional integral over the Cartan subalgebra of the gauge group.
- The result is a matrix model on S_4 :

$${\mathcal Z}_{\mathcal{S}_4} = \int_h {\it d} a \, | \, Z_{{\mathbb R}^4}({
m i} a,g) \, |^2 \, \, ,$$

where $ia = \langle \varphi \rangle$ is a traceless $N \times N$ matrix.

- In $\mathcal{N}=4$ the matrix model is Gaussian: $\mathcal{Z}_{S_4}=\int da \; e^{-\mathrm{Tr} \, a^2}$.
- The Wilson loop operator has a matrix model equivalent:

$$\mathcal{W}(a) = \frac{1}{N} \operatorname{Tr} \exp\left(\frac{g}{\sqrt{2}}a\right)$$

• $\langle \mathcal{W}(a) \rangle_{S_4}$ matches the field theory results $\langle W(C) \rangle_{\mathbb{R}^4}$.

⁴[Pestun, 2007]

Matrix model calculations

Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix model approach

Perturbative checks

Conclusions

The only variable *a* takes values in the gauge algebra:

$$a = a^b T^b, \ b = 1, \dots, N^2 - 1.$$

We only handle multitrace expressions like:

 $\langle (\operatorname{Tr} a^{n_1})(\operatorname{Tr} a^{n_2}) \dots \rangle$

We need:

- color Wick contraction $\langle a^b a^c \rangle = \delta^{bc}$.
- Matrix trace identities, e.g. Tr $T^b T^c = \frac{1}{2} \delta^{bc}$.

• We use *recursive formulas*⁵, with initial conditions: $\langle \operatorname{Tr} \mathbb{1} \rangle = N$ $\langle \operatorname{Tr} a \rangle = 0$ $\langle \operatorname{Tr} a^2 \rangle = \frac{N^2 - 1}{2}$

The procedure returns **rational functions of** *N*.

⁵[Billò, Fucito, Lerda, Morales, Stanev, Wen, 2017]

$\mathcal{N}=2$ interacting matrix model

Correlators in presence of Wilson loops in superconformal gauge theories

Francesco Galvagno

Defect CFT set up

Matrix model approach

Perturbative checks

Conclusions

Pestun's formula holds for $\mathcal{N} = 2$.

- Less amount of symmetry ⇒ more complicated matrix model.
- Order by order in g it is reduced to Gaussian case.

$$\mathcal{Z}_{\mathcal{S}_4} = \int da \; \mathrm{e}^{-\mathrm{Tr}\, a^2 - S_{\mathrm{int}}(a,g)}$$

where

$$\begin{split} S_{\text{int}}(a,g) &= 1 + \frac{g^2}{8\pi^2} \zeta(1) \, S_2 + (\frac{g^2}{8\pi^2})^2 \zeta(3) S_4 + (\frac{g^2}{8\pi^2})^3 \zeta(5) S_6 + \dots \\ S_2 &= (2N - N_f) \, \text{Tr} \, a^2 \qquad S_4 = \frac{1}{2} \Big[(2N - N_f) \text{Tr} \, a^4 + 6 \left(\text{Tr} \, a^2 \right)^2 \Big] \end{split}$$

In
$$\mathcal{N} = 2$$
 a general correlator is:
 $\langle f(a) \rangle = \mathcal{Z}_{S_4}^{-1} \int da \, e^{-\text{Tr} \, a^2 - S_{\text{int}}(a,g)} f(a) = \frac{\langle e^{-S_{\text{int}}(a,g)} f(a) \rangle_0}{\langle e^{-S_{\text{int}}(a,g)} \rangle_0}$

Comparison with field theory (⁶) verified $\langle W(a) \rangle_{S_4} \Big|_{N=2} = \langle W(C) \rangle_{\mathbb{R}^4}$ up to 2-loops order.

⁶[Andree, Young, 2010]

Chiral operators in the matrix model

Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix model approach

Perturbative checks

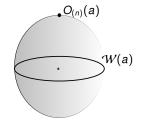
Conclusions

Recap

- Circular ⟨W(C)⟩ has enough symmetries ⇒ no space-time but only gauge dependence.
- The S_4 -matrix model captures $\langle W(C) \rangle$ in both $\mathcal{N} = 2, 4$ theories.

Original problem $\langle W(C) O_n(x) \rangle$ also reduced to the evaluation of the gauge-dependent part $A_n(g, N)$.

- We need the equivalent of $O_n(x)$ in the matrix model.
- Naive idea: $O_n(a) = O_n(x)\Big|_{\omega \to a}$.
- E.g. $O_2(x) = \operatorname{Tr} \varphi^2 \to \operatorname{Tr} a^2$.



<u>Issue</u>: field theory propagator connects φ only with $\overline{\varphi} \Rightarrow O_n(x)$ has **no self-contraction** and this is not true for $O_n(a)$.

Dictionary between \mathbb{R}^4 and S_4

Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix model approach

Perturbative checks

Conclusions

Normal ordered operators

We need $O_n(a)$ with <u>no self-contractions</u>.

Definition: Given $\{O_p(a)\}$ matrix operators with dimension smaller than *n*, we define:

$$O(a) = :O(a):_g = O(a) - \sum_{p,q} \left\langle O(a) O_p(a) \right\rangle (C_n^{-1})^{pq} O_q(a)$$

where $\left(C_n\right)_{pq} = \left\langle O_p(a) O_q(a) \right\rangle$, $p + q \le n$

Example:
$$O_2(a) = : \operatorname{Tr} a^2 :_g = \operatorname{Tr} a^2 - \frac{N^2 - 1}{2} + \frac{3\zeta(3) g^4}{(8\pi^2)^2} \frac{(N^2 - 1)(N^2 + 1)}{2} + O(g^6)$$
.

Remarks: • $O_n(a)$ are *g*-dependent.

• we have a map between \mathbb{R}^4 and S_4^7 operators

$$O_n(x) \rightarrow O_n(a) = :O_n(a):_g$$
.

⁷See also: [Baggio, Niarchos, Papadodimas, 2014] and [Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu, 2016]

Examples: exact results in $\mathcal{N} = 4$

Pure Gaussian matrix model

Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix model approach

Perturbative checks

Conclusions

Computation of $\mathcal{A}_n = \langle \mathcal{W}(a) O_n(a) \rangle$:

• All the results in terms of Wilson loop vev: $\mathcal{W}(g, N)$.

$$\bullet \mathcal{A}_{(2)} = \left\langle \mathcal{W}(a) : \operatorname{tr} a^2 : \right\rangle = \frac{1}{N} \sum_k \frac{g^k}{2^{k/2} k!} \left(\langle \operatorname{tr} a^k \operatorname{tr} a^2 \rangle - \frac{N^2 - 1}{2} \langle \operatorname{tr} a^k \rangle \right).$$

$$=rac{g}{2}\partial_g \mathcal{W}(g,N)$$

$$\bullet \mathcal{A}_{(3)} = \frac{g}{\sqrt{2}} \partial_g^2 \mathcal{W}(g, \mathsf{N}) - \frac{g^2}{4\sqrt{2}\mathsf{N}} \partial_g \mathcal{W}(g, \mathsf{N}) - \frac{g(\mathsf{N}^2 - 1)}{4\sqrt{2}\mathsf{N}} \mathcal{W}(g, \mathsf{N})$$

Remarks

4

- Always compact expressions of $\{\partial_g^{(m)} \mathcal{W}(g, N)\}$;
- Exact results for any g and N.
- Powerful and efficient technique to compute gauge dependence of flat field theory.
- Results checked against N = 4 field theory⁸.

^{8[}Semenoff,Zarembo, 2001]

Results in $\mathcal{N} = 2$ for each transcendentality order

Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix model approach

Perturbative checks

Conclusions

- Due to $S_{int}(a)$, \mathcal{A}_n is computed perturbatively.
- In the conformal case

$$S_{\text{int}}(a,g)\Big|_{N_{f}=2N} = 1 - \left(\frac{g^{2}}{8\pi^{2}}\right)^{2} 3\zeta(3) \left(\operatorname{tr} a^{2}\right)^{2} + O(g^{6})$$

$$\mathbf{S}_{2}(a)\Big|_{N_{l}=2N} = 0 \qquad \Rightarrow \qquad \mathcal{A}_{n}\Big|_{\mathrm{tree},1-\mathrm{loop}}^{N=2} = \mathcal{A}_{n}\Big|_{\mathrm{tree},1-\mathrm{loop}}^{N=4}$$

At each order $(\zeta(3), \zeta(5), ...)$ we can get a compact polynomial in $\{\partial_g^{(m)} \mathcal{W}(g, N)\}$ as before.

0

Examples:

$$\bullet \mathcal{A}_0 \Big|_{\zeta(3)} = \langle \mathcal{W}(\boldsymbol{a}) \rangle = \frac{3 \zeta(3) g^4}{(8\pi^2)^2} \left(-\frac{g^2}{4} \partial_g^2 \mathcal{W} - \frac{g(2N^2+1)}{4} \partial_g \mathcal{W} \right)$$

•
$$\mathcal{A}_2\Big|_{\zeta(3)} = \frac{3\zeta(3)g^4}{(8\pi^2)^2} \Big(-\frac{g^3}{8} \partial_g^3 \mathcal{W} - \frac{g^2(2N^2+7)}{8} \partial_g^2 \mathcal{W} - \frac{5g(2N^2+1)}{8} \partial_g \mathcal{W} \Big).$$

■ No field theory results in literature → perturbative check needed.

Perturbative computation: approach

Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix model approach

Perturbative checks

Conclusions

Goals

(A) Verify the factorization $\langle W(C) O_n \rangle = \frac{1}{(2\pi ||x||_C)^n} A_n(g, N);$ (B) prove the equality: $\mathcal{A}(g, N)|_{S_4} = A(g, N)|_{\mathbb{R}^4}$

Issues

Diagrammatic evaluation of $\langle W(C)O_n(x) \rangle$ quite complicated (several diagrams, path-ordered integrals).

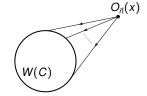


Figure: **Tree level**: $O_n(x)$ connected to W(C) by *n* scalar propagators.

Tools

- *N* = 1 superspace formalism: efficient way to implement Feynman rules with susy invariance.
- Diagrammatic difference (N = 2) (N = 4).

Diagrammatic difference (N = 2) - (N = 4)

Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix mode approach

Perturbative checks

Conclusions

$$\mathcal{N} = 2: [\mathbf{vector}]: V_{N=2} = (\varphi, \lambda_{\alpha}^{(1,2)}, A^{\mu})$$
[hyper]: $Q = (q^{(1,2)}, \psi_{\alpha}^{(1,2)})$

$$\mathcal{N} = 4: [\mathbf{vector}] V_{N=4} = (\varphi^{(1,2,3)}, \lambda_{\alpha}^{(1,2,3,4)}, A^{\mu})$$

$$= V_{N=2} + H$$

where $H = (\varphi^{(2,3)}, \lambda_{\alpha}^{(3,4)})$ is an adjoint hypermultiplet.

If we split the actions as:

$$\begin{aligned} \bullet S_{\mathcal{N}=2}^{(\mathcal{N}_{l})} &= S_{\mathcal{N}=2}^{\text{gauge}} + S_{\mathcal{Q}} , \\ \bullet S_{\mathcal{N}=4} &= S_{\mathcal{N}=2}^{\text{gauge}} + S_{\mathcal{H}} \implies S_{\mathcal{N}=2}^{\text{gauge}} = S_{\mathcal{N}=4} - S_{\mathcal{H}} \end{aligned}$$

we write the full $\mathcal{N} = 2$ action as:

$${f S}_{{\cal N}=2}^{(N_f)}={f S}_{{\cal N}=4}+{f S}_{Q}-{f S}_{H}$$
 .

Then the amplitudes: $A_n^{\mathcal{N}=2} - A_n^{\mathcal{N}=4} = A_{n,Q} - A_{n,H}$.

In the difference we only consider diagrams with Q or H.

Tree level and one loop

Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix mode approach

Perturbative checks

Conclusions

Tree level

Only $\varphi - \bar{\varphi}$ propagators \rightarrow it does not contribute to the difference. **One loop**

Two possibilities:

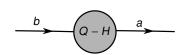


Figure: In the 1-loop correction to scalar propagator Q and H fields run, but its colour factor is $\propto (N_f - 2N)\delta^{ab}$

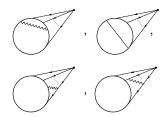


Figure: Only gluon/scalar exchanges, all these vanish in the difference

In full agreement with the matrix model result:

$$A_n \Big|_{\text{tree},1-\text{loop}}^{N=2} = A_n \Big|_{\text{tree},1-\text{loop}}^{N=4}$$

Two loops

Correlators in presence of Wilson loops in superconformal gauge theories

Francesco Galvagno

Defect CFT set up

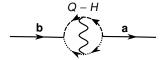
Matrix model approach

Perturbative checks

Conclusions

 At g⁴ order again several diagrams vanish due to colour factors or in the difference with N = 4.

• Efficient procedure: we are left with just 2 diagrams



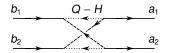


Figure: 2-loops propagator

Figure: 2-loops effective vertex

• Goal (A): Superdiagrams computations confirm $\langle W(C) O_n \rangle \propto \frac{1}{(2\pi ||x||_C)^n}$. • Goal (B): The 2-loops result for the gauge dependence:

$$\begin{split} \delta A_{\vec{n}}\Big|_{2-\text{loop}} &= -g^4 \; \frac{3\,\zeta(3)}{(8\pi^2)^2} \left[\frac{g^n}{N2^{\frac{n}{2}}} \; R_{\vec{n}}^{b_1\dots b_n} \operatorname{tr}\left(T^{a_1}\dots T^{a_n}\right) \right] \\ &\times \Big[n\,(N^2+1)\delta^{b_1a_1}\dots \delta^{b_na_n} - 2\sum_{\rho\in S_{n-1}} \, C_4^{b_1b_2a_{\rho(1)}a_{\rho(2)}} \delta^{b_3a_{\rho(3)}}\dots \delta^{b_{n-1}a_{\rho(n-1)}} \delta^{b_na_n} \, \Big]. \end{split}$$
which matches the (much simpler) matrix model computation.

Conclusions

Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix mode approach

Perturbative checks

Conclusions

In the present work:

- We discussed the implementation of **extra symmetries** in a field theory computation of the 1-point function of a chiral operator in presence of a line defect $\langle W(C) O_n(x) \rangle$.
- We exploited the residual conformal symmetry to fix the space-time dependence for any values of g.
- We verified up to 2-loops order that SUSY invariance allows the gauge dependent part *A_n*(*g*, *N*) to be captured by the **matrix model** on a 4-sphere.
- We developed some tools:
 - To handle matrix model computations.
 - To simplify perturbative analysis.

Future developments

Correlators in presence of Wilson loops in superconformal gauge theories

> Francesco Galvagno

Defect CFT set up

Matrix mode approach

Perturbative checks

Conclusions

■ Different operators insertion → Other observables. For example:

 $\langle W(C) T^{\mu\nu}(x) \rangle$ related to energy emitted by the heavy particle (**Bremsstrahlung function**).

- Pestun localization formula on S₄ is still valid in non-conformal case.
 - Correspondence with field theory is less immediate (renormalization, anomalous dimensions, ...).
 - Can the matrix model still predict something?
- We have finite-N results → possible investigation on the holographic dual for large-N limit in AdS/CFT context.