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Introduction: Wilson loops in gauge theories

Wilson loops are a powerful tool to investigate non-abelian gauge
theories also in non-perturbative regimes.

Definition:

WR(C) =
1
N

Tr R P exp
[
ig

∮
C

Aµ(x)dxµ
]

where C is the closed loop, R the representation of the gauge
group SU(N), P path ordering, g gauge coupling and Aµ gauge
field.

Physical meaning:
• It represents the world line of a massive, charged particle in a

gauge background.
• Related to gauge invariant observables (qq̄ potential,

Bremsstrahlung, . . . ).

Relevant in several areas of research (QCD, lattice QCD,
AdS/CFT) of theoretical physics.
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Introduction: superconformal gauge theories

Gauge theories enjoying extra space-time symmetries:

Supersymmetry: bosons and fermions organized in
supermultiplets→ many cancellations to quantum corrections.

Conformal symmetry: scale invariance also at the quantum
level.

Motivation

Extra constraints→ more tractable behaviour at the quantum level.

Framework:
• N = 2 Yang-Mills theory on R4 with gauge group SU(N) and Nf

fundamental flavours.
• For Nf = 2N the beta function β(g) = 0→ superconformal

invariance.
• Goal: insertion of Wilson loop and evaluation of correlators.
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Supersymmetric Wilson loop and chiral operators

Supersymmetric circular Wilson loop (1/2 BPS):

WR(C) =
1
N

TrR P exp
{

g
∮

C
dτ

[
i Aµ(y) ẏµ(τ) +

R
√

2
(ϕ(y) + ϕ̄(y))

]}
where R radius of C, ϕ(y) adjoint complex scalar.

Chiral operators On(x) of dimension n:
• gauge singlets of ϕ,
• annihilated by half of the supercharges→ protected operators.

O2(x) = Tr ϕ2(x) O3(x) = Tr ϕ3(x)

O(1)
4 (x) = Tr ϕ4(x) O(2)

4 (x) =
(
Tr ϕ2(x)

)2

The quantity of interest is the 1/2 BPS 1-point function:〈
W(C) On(x)

〉
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Line conformal defect
Geometrical set up and symmetry pattern

W(C) in (x1, x2) ⊂ R4 On(x) in xµ = (xa ; x i)

xa xa = r2
a=1,2

x i xi = L2
i=3,4

x2 = r2 + L2

x

W(C)
x2

x1

x3, x4

r

L
R

Average distance: ‖x‖C =
1
R

√
(R2 − x2)2 + 4L2R2

Residual Conformal symmetry1

The extended operator W(C) breaks SO(1, 5)→ SO(1, 2) × SO(3),
sufficient to fix the spacetime dependence:

〈W(C) On(x) 〉 =
An(g,N)(
2π‖x‖C

)n

1[Billò, Goncalves, Lauria, Meineri, 2016]
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Exploiting the symmetries in field theories

An(g,N) with gauge dependence only⇒ captured in QFT by
combinatorics of Feynman diagrams.

Review of a simpler problem:
• N = 4 theories (pure conformal SYM, stronger SUSY

constraints).
• Pure 〈W(C)〉 vev (no operators insertion).
• No length scales→ pure gauge dependence.

Using field theory techniques:
(2) and (3) resummed the various contributions to the vev:

〈W(C) 〉 =
1
N

L1
N−1

(
−

g2

4

)
exp

[g2

8

(
1 −

1
N

)]
Ln

m are Laguerre polynomials.
Remarks: • Exact result for any value of the coupling g.

• Conjecture of an underlying matrix model.
2[Erikson, Semenoff, Zarembo, 2000]
3[Drukker, Gross, 2004]
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Supersymmetric Localization: N = 4 matrix
model

With extended supersymmetry (N ≥ 2) Pestun4 computed 〈W(C)〉
on a sphere S4 using a localization procedure:

Powerful technique, it requires a global invariance (SUSY).

Idea: path integral localized to north/south poles contributions
and so reduced to a finite-dimensional integral over the Cartan
subalgebra of the gauge group.

The result is a matrix model on S4:

ZS4 =
∫

h da |ZR4 (ia, g) |2 ,

where ia = 〈ϕ〉 is a traceless N × N matrix.

In N = 4 the matrix model is Gaussian: ZS4 =
∫

da e−Tr a2
.

The Wilson loop operator has a matrix model equivalent:

W(a) =
1
N

Tr exp
( g
√

2
a
)

〈W(a)〉S4 matches the field theory results 〈W(C)〉R4 .

4[Pestun, 2007]
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Matrix model calculations

The only variable a takes values in the gauge algebra:

a = ab Tb , b = 1, . . . ,N2 − 1.

We only handle multitrace expressions like:〈
(Tr an1 )(Tr an2 ) . . .

〉
We need:
• color Wick contraction 〈 ab ac 〉 = δbc .

• Matrix trace identities, e.g. Tr TbT c = 1
2δ

bc .

We use recursive formulas5, with initial conditions:

〈Tr 1〉 = N 〈Tr a〉 = 0 〈Tr a2〉 =
N2 − 1

2
The procedure returns rational functions of N.

5[Billò, Fucito, Lerda, Morales, Stanev, Wen, 2017]
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N = 2 interacting matrix model

Pestun’s formula holds for N = 2.
• Less amount of symmetry⇒ more complicated matrix model.
• Order by order in g it is reduced to Gaussian case.

ZS4 =
∫

da e−Tr a2−Sint(a,g)

where
Sint(a, g) = 1 + g2

8π2 ζ(1)S2 + ( g2

8π2 )
2ζ(3)S4 + ( g2

8π2 )
3ζ(5)S6 + . . .

S2 = (2N − Nf )Tr a2 S4 = 1
2

[
(2N − Nf )Tr a4 + 6

(
Tr a2

)2
]

In N = 2 a general correlator is:

〈 f(a) 〉 = Z−1
S4

∫
da e−Tr a2−Sint(a,g) f(a) =

〈 e−Sint(a,g) f(a) 〉0

〈 e−Sint(a,g) 〉0
.

Comparison with field theory
(6) verified 〈W(a)〉S4

∣∣∣∣
N=2

= 〈W(C)〉R4 up to 2-loops order.

6[Andree, Young, 2010]
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Chiral operators in the matrix model

Recap
• Circular 〈W(C)〉 has enough symmetries⇒ no space-time but

only gauge dependence.
• The S4-matrix model captures 〈W(C)〉 in both N = 2, 4 theories.

Original problem 〈W(C) On(x) 〉 also reduced to the evaluation of
the gauge-dependent part An(g,N).

•We need the equivalent of
On(x) in the matrix model.

• Naive idea: On(a) = On(x)
∣∣∣∣
ϕ→a

.

• E.g. O2(x) = Trϕ2 → Tr a2.

O(n)(a)

W(a)

Issue: field theory propagator connects ϕ only with ϕ̄ ⇒ On(x) has

no self-contraction and this is not true for On(a).
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Dictionary between R4 and S4

Normal ordered operators

We need On(a) with no self-contractions.
Definition: Given

{
Op(a)

}
matrix operators with dimension smaller

than n, we define:

O(a) = :O(a) :g = O(a) −
∑

p,q

〈
O(a) Op(a)

〉
(C−1

n )pq Oq(a) .

where
(
Cn

)
pq

=
〈

Op(a) Oq(a)
〉
, p + q ≤ n

Example: O2(a) = :Tr a2 :g = Tr a2 − N2−1
2

+
3 ζ(3) g4

(8π2)2
(N2−1)(N2+1)

2 + O(g6) .

Remarks: • On(a) are g-dependent.

• we have a map between R
4 and S4

7 operators

On(x) → On(a) = :On(a) :g .

7See also: [Baggio, Niarchos, Papadodimas, 2014] and [Gerchkovitz, Gomis, Ishtiaque, Karasik, Komargodski, Pufu, 2016]
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Examples: exact results in N = 4
Pure Gaussian matrix model

Computation of An =
〈
W(a)On(a)

〉
:

• All the results in terms of Wilson loop vev: W(g,N).

•A(2) =
〈
W(a) : tr a2 :

〉
= 1

N

∑
k

gk

2k/2 k !

(
〈tr ak tr a2〉 − N2−1

2 〈tr ak 〉

)
.

= g
2 ∂gW(g,N)

•A(3) = g
√

2
∂2

gW(g,N) − g2

4
√

2N
∂gW(g,N) −

g(N2−1)
4
√

2N
W(g,N)

Remarks

Always compact expressions of
{
∂
(m)
g W(g,N)

}
;

Exact results for any g and N.

Powerful and efficient technique to compute gauge dependence
of flat field theory.

Results checked against N = 4 field theory8.

8[Semenoff,Zarembo, 2001]
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Results in N = 2 for each transcendentality order
Interacting matrix model

Due to Sint(a), An is computed perturbatively.

In the conformal case
Sint(a, g)

∣∣∣∣
Nf=2N

= 1 − ( g2

8π2 )23ζ(3)
(
tr a2

)2
+ O(g6)

S2(a)
∣∣∣∣
Nf=2N

= 0 ⇒ An

∣∣∣∣N=2

tree,1−loop
= An

∣∣∣∣N=4

tree,1−loop
.

At each order (ζ(3), ζ(5), . . . ) we can get a compact polynomial
in

{
∂
(m)
g W(g,N)

}
as before.

Examples:
•A0

∣∣∣∣
ζ(3)

= 〈W(a)〉 =
3 ζ(3) g4

(8π2)2

(
−

g2

4 ∂2
gW−

g(2N2+1)
4 ∂gW

)
•A2

∣∣∣∣
ζ(3)

=
3 ζ(3) g4

(8π2)2

(
−

g3

8 ∂3
gW−

g2(2N2+7)
8 ∂2

gW−
5g(2N2+1)

8 ∂gW
)
.

No field theory results in literature→ perturbative check needed.
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Perturbative computation: approach

Goals

(A) Verify the factorization

〈W(C) On〉 = 1
(2π‖x‖C )

n An(g,N);

(B) prove the equality:

A(g,N)
∣∣∣
S4

= A(g,N)
∣∣∣
R4

Issues
Diagrammatic evaluation of
〈W(C)On(x)〉 quite complicated
(several diagrams, path-ordered
integrals).

O~n(x)

W(C)

Figure: Tree level: On(x) connected
to W(C) by n scalar propagators.

Tools

N = 1 superspace formalism: efficient way to implement
Feynman rules with susy invariance.

Diagrammatic difference (N = 2) − (N = 4).
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Diagrammatic difference (N = 2) − (N = 4)

N = 2: [vector]: VN=2 = (ϕ, λ
(1,2)
α ,Aµ)

[hyper]: Q = (q(1,2), ψ
(1,2)
α )

N = 4: [vector] VN=4 = (ϕ(1,2,3), λ
(1,2,3,4)
α ,Aµ)

= VN=2 + H

where H = (ϕ(2,3), λ
(3,4)
α ) is an adjoint hypermultiplet.

If we split the actions as:

•S(Nf )
N=2 = Sgauge

N=2 + SQ ,

•SN=4 = Sgauge
N=2 + SH ⇒ Sgauge

N=2 = SN=4 − SH

we write the full N = 2 action as:

S(Nf )
N=2 = SN=4 + SQ − SH .

Then the amplitudes: AN=2
n − AN=4

n = An,Q − An,H .

In the difference we only consider diagrams with Q or H.
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Tree level and one loop

Tree level
Only ϕ − ϕ̄ propagators→ it does not contribute to the difference.
One loop
Two possibilities:

Q − H
ab

Figure: In the 1-loop correction to
scalar propagator Q and H fields run,
but its colour factor is ∝ (Nf − 2N)δab

, ,

,

Figure: Only gluon/scalar exchanges,
all these vanish in the difference

In full agreement with the matrix model result:

An

∣∣∣∣N=2

tree,1−loop
= An

∣∣∣∣N=4

tree,1−loop
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Two loops

• At g4 order again several diagrams vanish due to colour factors
or in the difference with N = 4.
• Efficient procedure: we are left with just 2 diagrams

Q − H

b a

Figure: 2-loops propagator

b1 a1

b2 a2

Q − H

Figure: 2-loops effective vertex

• Goal (A): Superdiagrams computations confirm 〈W(C)On〉 ∝
1

(2π‖x‖C )n .
• Goal (B): The 2-loops result for the gauge dependence:

δA~n

∣∣∣∣
2−loop

= −g4 3 ζ(3)
(8π2)2

[
gn

N 2
n
2

R b1 ...bn
~n

tr
(
Ta1 . . .Tan

)]
×

[
n (N2+1)δb1a1 . . . δbnan −2

∑
p∈Sn−1

C
b1b2ap(1)ap(2)

4 δb3ap(3) . . . δbn−1ap(n−1)δbnan

]
.

which matches the (much simpler) matrix model computation.
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Conclusions

In the present work:

We discussed the implementation of extra symmetries in a field
theory computation of the 1-point function of a chiral operator in
presence of a line defect 〈W(C) On(x)〉.

We exploited the residual conformal symmetry to fix the
space-time dependence for any values of g.

We verified up to 2-loops order that SUSY invariance allows the
gauge dependent part An(g,N) to be captured by the matrix
model on a 4-sphere.

We developed some tools:
• To handle matrix model computations.
• To simplify perturbative analysis.
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Future developments

Different operators insertion→ Other observables.
For example:
〈W(C) Tµν(x)〉 related to energy emitted by the heavy particle
(Bremsstrahlung function).

Pestun localization formula on S4 is still valid in non-conformal
case.
• Correspondence with field theory is less immediate

(renormalization, anomalous dimensions, . . . ).
• Can the matrix model still predict something?

We have finite-N results→ possible investigation on the
holographic dual for large-N limit in AdS/CFT context.
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