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BPS Wilson loops 

BPS Wilson Loops in Supersymmetric Gauge Theories: invariant non–local operators 
that preserve some global supercharges  

The prototype example in 4D N = 4 SYM  
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It includes couplings with the six scalars (matter fields).[Maldacena, PRL80 (1998) 
4859, Soo-Jong Rey, Jung-Tay Yee (1998)] [Drukker, Gross, Ooguri, PRD60 (1999) 
125006] 

The number of preserved supercharges depends on Γ and θI 



They are in general non–protected operators and their expectation values ︎︎︎︎  

 undergo a non–trivial behavior. 

Weak coupling     Ordinary perturbation theory  

Strong coupling        Holographic methods: Dual description in terms of fundamental 
strings or M2–branes. The expectation value at strong coupling is given by the 
exponential of a minimal area surface ending on the WL contour.  

Finite coupling      Localization techniques (lower dimensional QFT/Matrix Model) 

  

The Matrix Model provides an exact interpolating function to check the AdS/CFT 
correspondence  
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undergo a non–trivial RG flow.

Weak couplings =) Ordinary perturbation theory

Strong couplings =) Holographic methods: Dual description in
terms of fundamental strings or M2–branes. The expectation value at
strong coupling is given by the exponential of a minimal area surface
ending on the WL contour.

Finite couplings =) Localization techniques (Matrix Model)

The matrix model provides an exact interpolating function to check the
AdS/CFT correspondence

Silvia Penati Leuven, 02/05/2018



 They are related to physical quantities like Bremsstrahlung function and Cusp   
anomalous dimension. Therefore, they are also related to  

  

INTEGRABILITY IN AdS/CFT  

 Parametric WL are related to correlation functions of the 1D defect CFT on 
the WL contour.  



BPS Wilson loops in ABJ(M) theory

N = 6 ABJ(M): Chern–Simons–matter theory with gauge group U (N1)k × U (N2 )−k  
[Aharony, Bergman, Jafferis, Maldacena, 0806.1218; Aharony, Bergman, Jafferis, 0807.4924] 

Field content 

U (N1)k × U (N2 )−k  CS-gauge vectors Aµ, Aµ minimally coupled to 

SU(4) complex scalars CI, CI and fermions ψI, ψ
I, I = 1,...,4, in the (anti-)bifundamental 

representation of the gauge group. They also interact through a non-trivial potential (φ6) and 
Yukawa-like interaction (φ2ψ2) 

^
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mat
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Dual to  M–theory on AdS4×S
7/Zk for N≫k, N≫k5 (N1=N2=N). The CFT describes the low energy 

dynamics of N M2–branes in M–theory probing a C4/Zk singularity  

Dual toType II A on AdS4×CP3 for k≪N≪k5  

For N1 >N2 a two–form flux B=N1-N2 is turned on in the internal  space  

The CFT describes the low energy dynamics of N2 M2–branes probing a C4/Zk singularity, plus  (N1 
− N2) fractional branes sit at the singularity  



Why BPS Wilson loops in SCSM in D=3?

We would like to test the AdS4/CFT3 version of the correspondence of course!.  

BPS WL in 3D SCSM theories exhibit a richer spectrum of interesting  properties 
compared to the 4D case. Among them: 

Due to dimensional reasons scalar (M1/2) and fermions (M1) can enter the 
definition of BPS WL. In general they increase the number of SUSY charges 
preserved by WL. 

Topological phases (framing factors) generally appear as overall complex 
phases in ⟨WL⟩. Choice of a SUSY preserving regularization scheme!

Cohomological equivalence: different loops are actually equivalent (if SUSY preserved) 

Non-trivial relation with integrability: h(λ) 



Prototype examples of WLs in ABJ(M)

WB(⌫) = TrP exp
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|ẋ|MI
J
(⌫)CJ

¯

C

I
)

�

ˆ

WB(⌫) = TrP exp


�i

Z

�
d⌧(

ˆ

Aµẋ
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Bosonic Wilson loops: 1/6 BPS (4 Supercharges)  ν =1

[Drukker, Plefka, Young, JHEP 0811 (2008) 019; Chen, Wu, NPB 825 (2010) 38; 
 Rey, Suyama, Yamaguchi, JHEP 0903 (2009)] 

� = (cos ⌧, sin ⌧, 0)

M = M̂ = diag(1, 1,�1,�1)

The circuit is the usual circle .The matrices governing the coupling

with scalars are equal  and they are diagonal

—SU(2)XSU(2) local symmetry: not dual of the fundamental string



Fermionic Wilson loops: 1/2 BPS (12 Supercharges)

It is the holonomy of a super-connection living in the superalgebra  u(N1|N2)  and built out 
of the fundamental fields, i.e.

with
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k |ẋ|MI
J
CJ C̄

I �i

q
2⇡
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The circuit is the usual circle:                                  . The fermionic couplings are given by 
� = (cos ⌧, sin ⌧, 0)

The matrices governing the coupling with scalars are equal  
and they are diagonal M = M̂ = diag(1, 1,�1,�1)

—SU(3)XU(1) local symmetry: dual of the fundamental string

[Drukker, Trancanelli, JHEP 02 (2010) 058]  



N=2 Super-CS Theory on S3

We are primarily interested in supersymmetric theories for which localization can 
be used.  It has been shown (Kapustin, Willett, Yaakov, JHEP 1003 (2010) 089) that 
the Wilson loop

hW
SCS
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R
� d⌧(ẋµ

Aµ(x)�i|ẋ|�)i
along a maximal circle of S3 can be computed through localization.  In absence of 
matter  (N=2 Super CS=Pure CS) we obtain the known result for pure CS, but at 
framing 𝟀=1.


This follows from requiring consistency between contour–splitting regularization 
and supersymmetry used to localize: The only point-splitting compatible with susy is 
the one where the contour and its frame wrap two different Hopf fibers of S3.


Localisation is sensible to framing !



Adding Matter: the case of ABJM
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1/6 BPS circular Wilson loops:

In ordinary perturbation theory (framing = 0) there is no contributions at odd 
orders (Rey, Suyama, Yamaguchi, JHEP 0903 (2009)). Thus the additional term 
does not appear

Matter contributes to framing.  Exponentiation still works, so we can write (λi ≡ Ni/k)

Perturbative Framing function: �B = �1 �
⇡2

2
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Computed perturbatively at non-trivial framing [M. Bianchi, L. G., A. Mauri, S. 
Penati, D.Seminara (2016, 2018)]
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The perturbative analysis agrees with the localization result encoded in the non-
gaussian matrix model: 

[Kapustin, Willett, Yaakov, JHEP 1003; Drukker, Marino, Putrov, (2011);  

Klemm, Marino, Schiereck, Soroush, (2013) ] 



Cohomological Equivalence

The classical analysis of the supercharges shared by the 1/6 and 1/2 BPS circle allows 
us to show

The charge Q can be used to localize in the approach of Kapustin Yaakov and Willett. 
We find  

namely, at the quantum level, the cohomological equivalence holds at framing one.

WF =

N1WB +N2
ˆWB

N1 +N2
+Q(something)

hWF i1 =
N1hWBi1 +N2hŴBi1

N1 +N2



Supersymmetric Latitude in ABJ(M) [V. Cardinali, L.G., G. Martelloni, D. Seminara. 2012]

[M. Bianchi, L.G., M. Leoni, S. Penati, D. Seminara. 2014]

!

It is possible to construct both Bosonic and Fermionic latitudes, depending on 
a real parameter 

⌫ = sin 2↵ cos ✓ ⌫ 2 [0, 1]

θ measures the distance of the latitude from the equator. 
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The contour can be parameterized by

α is the azimuthal  angle on a S2 in the internal (R-symmetry) space.  

It controls the bosonic couplings MIJ  and the fermionic ones ηI  ηI



Bosonic BPS Latitude

WB(⌫) = TrP exp
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Locally it is invariant under SU(2) X SU(2) ⊆ SU(4) (not dual to the fundamental string) 

It preserves two of the 24 superconformal charges (1/12 BPS) 

The usual 1/6 BPS circle  is recovered for ν =1. 



Fermionic BPS Latitude:
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k |ẋ| I ⌘̄

I(⌫) Âµẋ
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         is a super-connection living in the super-Lie-algebra of U(N|M), built out of the fundamental 
fields of theory:
L(⌫, ⌧)

where

   is actually a super-trace combined with a twisting matrix T which takes into account that the 
fermionic couplings are not periodic along the contour: 

“Tr”
“Tr”(·) ⌘STr(T ·)

Locally it is invariant under SU(3) X U(1) ⊆ SU(4) (dual to the fundamental string) 

It preserves 4 of the 24 superconformal charges (1/6 BPS) 

The usual 1/2 BPS circle  is recovered for ν=1. 



Cohomological Equivalence: Fermionic vs Bosonic Latitude

There exists a common supercharge Q(ν) between fermionic and bosonic latitude such that
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If we were able to localize the path-integral by means of  Q(ν), we would get 
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The cohomological equivalence at quantum level is realized at  non-integer framing ν.  Τhe possibility of 
non-integer framing is a characteristic of these Wilson loops. This relation was checked by explicit 
perturbative computations up to three loops



Matrix Model for the  Latitude
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In order to preserve cohomological equivalence and to obtain an exact expression for the latitude, we 
should perform the localization procedure with the supercharge Q(ν). We expect a ν-dependent Matrix 
Model.
We cannot directly apply the standard approach of Kapustin, Yaakov and Willett: Q(ν) is not chiral and 
it cannot be embedded into the N=2 superspace formalism.  It is not easy to localize

We have a non-trivial proposal (M.Bianchi, L.G., A.Mauri, S.Penati, D.Seminara, arXiv:1802.07742)

This Matrix Model can be solved in certain regimes and passes non-trivial tests both a weak and a 
strong coupling

http://arxiv.org/abs/arXiv:1802.07742


Properties of the Matrix Model

One of the simplest deformation of the well-known matrix model of Kapustin, Willett and Yaakov 
[2010]. We recover it for ν=1. 

Consistency check on the partition function:
For N1=N2 (ABJM) the partition function computed with the MM is independent of the 
parameter ν  

For N1≠N2 (ABJ) the dependence is just a simple phase depending on N1-N2

exp

✓
⇡i

12k

✓
⌫ +

1

⌫

◆
((N1 �N2)
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ν-dependent framing anomaly.

This matrix model resembles the one computing (P,Q) torus knot invariants in ordinary Chern-Simons 
theory for the supergroup U(N1|N2)

P e Q coprime integers 
ν=P/Q
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Large N-limit (Planar) limit

For N1=N2 (ABJM) we can investigate the matrix model by reformulating the problem in terms of a 
one--dimensional ideal (non--interacting) quantum gas of particles with Fermi statistics [Fermi Gas]. 

the coupling constant k plays the role of the Planck constant ℏ 

the number of colors N corresponds to the number of particles.
Large N is equivalent to the thermodynamic limit of the gas, whereas the  ℏ expansion encoding 

quantum corrections corresponds to an expansion at small k.

Fermi gas approach is suitable for studying the latitude expectation value N➔∞ and k fixed. [M—
theory regime]. We can easily extract the usual strong-coupling (large N) limit.

Bosonic Latitude:

Fermionic Latitude:



The minimal string surface corresponding to the fermionic ABJM latitude was investigated in [Correa, 
Aguilera-Damia, Silvia 2014]. It yields the following leading strong coupling behavior: it’s OK! 
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The sub-leading behaviour in 𝛌=Ν/k (one-loop fluctuations for the sigma-model) for small θ have been 
recently investigated in [Aguilera-Damia, Faraggi, Pando Zayas, Rathee, Silva, arXiv:1805.00859]. 
There is again perfect agreement with our Matrix Model and its Fermi Gas expansion! 

The weak coupling expansion of the matrix models matches a genuine perturbative computation 
performed at framing f=ν up to three loops:
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http://arxiv.org/abs/arXiv:1805.00859


The function B(λ) is related to the amount of power radiated by a slowly moving probe (highly 
massive) charge.  
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The Bremsstrahlung function B(𝞴)

 𝒊𝞿  (Boost angle)Q
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L= IR cut-off

𝞮= UV cut-off

We shall illustrate how the latitude WL can be used to compute the Bremsstrahlung function B(𝞴).  

This function can be determined by computing a cusped Wilson loop

[Correa, Henn, Maldacena, Sever, 2012]



The Bremsstrahlung function B(𝞴) in ABJM
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BPS point: θ2=φ2

Can we relate the different Bremsstrahlung functions defined above to quantities exactly 
computable via localization ? 
First attempt:  1/6 BPS circle with winding number m

[Lewkowycz, Maldacena, 2014]B✓
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It can be argued that the above Bremsstrahlung functions can be written as derivative of the 
latitude: 
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Perturbative tests: The relation for B1/2 was checked up to three loops [M. Bianchi, L. G., A. Mauri, M. 
Preti, S. Penati,  D. Seminara (2017); M. Bianchi, L. G., A. Mauri, S. Penati, D. Seminara (2018)]. 

The relation for Bθ1/6 was checked up to four loops [M. Bianchi, A. Mauri (2017)]. The perturbative 
analysis shows that 
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2
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Strong coupling tests: The relation for B1/2 was checked at leading order [Correa, Aguilera-Damia, 
Silva  (2014)].
Proof of the different relations: Using supersymmetric Ward identities on the two–point 
correlation functions in 1d defect CFT 

The relation for B1/2:   [L. Bianchi, L.G., M. Preti, D. Seminara (2017)] 

The relation for Bθ1/6:  [Correa, Aguilera-Damia, Silva  (2014)]. 

The relation between  Bθ1/6   and  Bφ1/6 was proven in [L. Bianchi, M. Preti, E. Vescovi (2017)] 



Conclusions and Perspectives:

 Matrix Model  

1. We have constructed a Matrix Model which should determine the expectation value of the  
latitude WLs in ABJ(M).  A solution for this Matrix Model in the limit N➔∞ and k fixed has 
been constructed.  

2. We found consistency both at weak and strong coupling: localization? 

3. This result provides a new set of interpolating function that allows to test AdS4/CFT3 in 
different limits.  

Bremsstrahlung functions  

1. We have provided an exact prescription for computing the Bremsstrahlung functions in terms of 
latitude WL, which can be calculated at all orders.   

2. If the exact B were also computed by a system of TBA equations exploiting integrability, as 
done in N = 4 SYM [Correa-Maldacena-Sever (2012)],  this  would be crucial tool for proving the 
conjectured form for interpolating function h(λ) of ABJM [Gromov, Sizov  (2014)] 

3. Generalizing the relation Bremsstrahlung/latitude WL to the N1≠ N2 case, we have an exact 
prediction for B1/2 in the ABJ theory, which calls for some perturbative checks 


