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● The stu model of FI-gauged N = 2, d = 5 supergravity

● Black string with momentum along ∂z

● Solution with running scalars that generalize the previous of Maldacena-Nunez1

1J. M. Maldacena and C. Nunez, “Supergravity description of field theories on curved manifolds and a no go 
theorem,” Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018].

● Dyonic black string with both momentum and rotation 

● Dimensional reduction and residual symmetries



  

The stu model of FI-gauged N = 2, d = 5 supergravity
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The susy variations are
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Dimensional reduction: the r-map

Reducing the lagrangian to four dimensions using the r-map
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one ends up with the four-dimensional N = 2 FI-gauged supergravity with the cubic 
prepotential and the symplectic vector of FI parameters

F=−
X 1 X2 X 3

X 0
G=(gΛ , gΛ)

t
=(0,0,0,0,0, g1, g2 , g3)

t

This 4d theory has a residual symmetry that involves the stabilization of the symplectic 
vector of gauge couplings (FI parameters) under the action of the U-duality of the 
ungauged theory.
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Residual Symmetry2

2S.L.Cacciatori, D. Klemm and M. Rabbiosi, “Duality invariance in Fayet-Iliopoulos gauged supergravity,” 
JHEP 1609 (2016) 088 [arXiv:1606.05160 [hep-th]].

● The 4d gauged theory has a residual symmetry group U that comes from the ungauged 
U-duality symmetry group, i.e. the isometries of the non-linear sigma model

● The stabilizer of G must be considered in order to stay in the same theory

SG={g∈U|gG=G }

(Ω ,G ,Fμ ν)(Ω ' ,G ' , F 'μ ν)≔(SΩ , SG ,S Fμ ν)=(SΩ ,G , S Fμ ν)

● Another configuration can be constructed acting with           on a given solution
via the map 

S∈SG (Ω ,G ,Fμ ν)

● Given a model (or the prepotential) and the gaugings, the stabilizer algebra is fixed. 
Then from a given solution the “rotated-dual” solution is unique. 
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AdS
4
 Cacciatori-Klemm black hole3

The starting point is one of the CK black hole solution in N = 2, d = 4 FI-gauged supergravity

3S. L. Cacciatori and D. Klemm, “Supersymmetric AdS4 black holes and attractors,” JHEP 1001 (2010) 085 
[arXiv:0911.4926 [hep-th]].

ds2=−4b2dt2+
1

b2

ydy2

cy+2gp
+
y3

b2
(d θ2+sinh2θdϕ2)F=−

X 1 X2 X 3

X 0

b4=
8 g1g2g3 y

9 /2

H 0 (cy+2 gp)3/2
H 0=

2q0

3 g2 p2 y3/2
(cy+2 gp)1 /2(cy−gp)+h0

where

with field strengths and scalars

F 0
=4 dt∧d(H 0

)
−1 F I=

p I

2
sinhθd θ∧dϕ

The solution interpolates between AdS
2
×H2 near the horizon and a curved domain 

wall for           .

z I=i
√g1g2g3

√2 g I

√H 0 y3/ 4

(cy+2gp)1/4

y

5/11



  

Black String with momentum along ∂z 
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The r-map can be used to uplift the CK solution to get a black string in d = 5 

The configuration satisfies the BPS equations with Killing spinor
so it is ¼ BPS.
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Horizon in r = 0, the spacetime is AdS
3 
x H2. Asymptotically approaches AdS

5
.

6/11



  

Dyonic black String with momentum and rotation 

● Start from the lifted solution
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Dyonic black String with momentum and rotation 

● Start from the lifted solution

● KK reduction along angular direction ф
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Dyonic black String with momentum and rotation 

● Start from the lifted solution

● KK reduction along angular direction ф

● Duality transformation with the stabilizer

7/11



  

Dyonic black String with momentum and rotation 

● Start from the lifted solution

● KK reduction along angular direction ф

● Duality transformation with the stabilizer

● Uplift to 5 dimensions
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Dyonic black String with momentum and rotation 
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Near-horizon limit           is a deformation of AdS
3 
x H2 r0

rFor            approaches to a magnetic AdS
5
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Dyonic black String with momentum and rotation 
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Near-horizon limit           is a deformation of AdS
3 
x H2 r0

rFor            approaches to a magnetic AdS
5

Is this solution still BPS? Does the technique based on the stabilizer 
algebra preserves supersymmetry?
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Running Scalars
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● In [4] the problem of finding ¼ BPS strings with running scalars is reduced to solve a 
system of three first-order differential equations. 

4S.L. Cacciatori, D. Klemm and W. A. Sabra, “Supersymmetric domain walls and strings in d = 5 gauged 
supergravity coupled to vector multiplets,” JHEP 0303 (2003) 023 [hep-th/0302218].



  

Running Scalars
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● Ansatz for the metric and for the magnetic fluxes

● The warp factors are written in therms of the scalars
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● In [4] the problem of finding ¼ BPS strings with running scalars is reduced to solve a 
system of three first-order differential equations. 

4S.L. Cacciatori, D. Klemm and W. A. Sabra, “Supersymmetric domain walls and strings in d = 5 gauged 
supergravity coupled to vector multiplets,” JHEP 0303 (2003) 023 [hep-th/0302218].

x I
(u)



  

Running Scalars
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● Ansatz for the metric and for the magnetic fluxes

● The warp factors are written in therms of the scalars

● The supersymmetric flow equations for the scalars are
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y2 '=g y1 y3
+Q2

y3 '=g y1 y2
+Q3
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Non-homogeneous version of the SU(2) Nahm equations

● In [4] the problem of finding ¼ BPS strings with running scalars is reduced to solve a 
system of three first-order differential equations. 

4S.L. Cacciatori, D. Klemm and W. A. Sabra, “Supersymmetric domain walls and strings in d = 5 gauged 
supergravity coupled to vector multiplets,” JHEP 0303 (2003) 023 [hep-th/0302218].
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Generalizing Maldacena-Nunez

● A new solution can be found taking Q1 = Q2 = 0
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● The solution of the Nahm 

system gives the scalar fields 



  

Generalizing Maldacena-Nunez

● A new solution can be found taking Q1 = Q2 = 0
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● This solution is an interpolation flow between AdS
5 
and AdS

3 
x H2 , for y that goes  

from infinity to the horizon y=a

● The value k
1
 = 0 corresponds to the limit in which x1 = x3, i.e. the physical scalar 

field          . This truncation is the MN solution.
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CFT dual picture
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● Calculated on the conformal boundary of AdS

● The physical scalar fields are

2
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● In the dual SCFT these are an expectation value of an operator and an insertion of 
dimension 2.

● The central charge of the 2d SCFT dual to the horizon configuration AdS
3 
x H2 is
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6π(ℊ−1)

4G5

=3N2(ℊ−1) ℊwhere     is the genus of the Riemann surface H2

● Again, the truncation k
1 
= 0 corresponds to the MN value.



  

Conclusion
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● We have seen a very brief introduction to the N=2 d=5 supergravity model

● Two ways to find solutions have been presented

➢ Using the residual symmetry of N=2 d=4 FI supergravity

● New solutions that describe flows across dimensions have been found. One 
of these generalizes that of MN with two non zero running scalar fields.

➢ Solving the spinning top equations

● Open problem:

➢ Does the technique based on the stabilizer algebra preserves supersymmetry?

➢ Does the Nahm equations can be fully solved for all the            ?Q I
≠0
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