AdS $_{5}$ black string in the stu model of Fl-gauged $N=2$ supergravity

Matteo Azzola

Cortona - 23 May 2018

Outline

- The stu model of FI-gauged $N=2, \mathrm{~d}=5$ supergravity
- Dimensional reduction and residual symmetries
- Black string with momentum along ∂z
- Dyonic black string with both momentum and rotation
- Solution with running scalars that generalize the previous of Maldacena-Nunez ${ }^{1}$
${ }^{1}$ J. M. Maldacena and C. Nunez, "Supergravity description of field theories on curved manifolds and a no go theorem," Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018].

The stu model of FI-gauged $N=2, d=5$ supergravity

Bosonic part of the lagrangian in the FI $\mathrm{U}(1)$ gauge, coupled to n_{v} vector multiplets

$$
\begin{gathered}
e^{-1} \mathscr{L}=\frac{1}{2} R-\frac{1}{2} g_{i j} \partial_{\mu} \phi^{i} \partial^{\mu} \phi^{j}-\frac{1}{4} G_{I J} F_{\mu \nu}^{I} F^{J \mu \nu}+\frac{e^{-1}}{48} C_{I J K} \epsilon^{\mu \nu \rho \sigma \lambda} F_{\mu \nu}^{I} F_{\rho \sigma}^{J} A_{\lambda}^{K}-g^{2} V \\
V=\frac{1}{18} g_{I} g_{J}\left(\frac{9}{2} g^{i j} \partial_{i} h^{I} \partial_{j} h^{J}-6 h^{I} h^{J}\right)
\end{gathered}
$$

where $h^{I}=h^{I}\left(\phi^{i}\right)$ are functions of the physical real scalar fields

$$
h^{1}=\exp \left[-\left(\frac{\phi^{1}}{\sqrt{6}}+\frac{\phi^{2}}{\sqrt{2}}\right)\right] \quad h^{2}=\exp \left[\frac{2 \phi^{1}}{\sqrt{6}}\right] \quad h^{3}=\exp \left[-\left(\frac{\phi^{1}}{\sqrt{6}}-\frac{\phi^{2}}{\sqrt{2}}\right)\right]
$$

The susy variations are

$$
\begin{aligned}
& \delta \psi_{\mu}=\left(D_{\mu}+\frac{i}{8} h_{I}\left(\Gamma_{\mu}^{v \rho}-4 \delta_{\mu}^{v} \Gamma^{\rho}\right) F_{\nu \rho}^{I}+\frac{1}{6 \sqrt{2}} \Gamma_{\mu} h^{I} g_{I}\right) \epsilon \\
& \delta \lambda_{i}=\left(\frac{3}{8} \Gamma^{\mu \nu} F_{\mu \nu}^{I} \partial_{i} h_{I}-\frac{i}{2} g_{i j} \Gamma^{\mu} \partial_{\mu} \phi^{j}+\frac{1}{2 \sqrt{2}} g_{I} \partial_{i} h^{I}\right) \epsilon
\end{aligned}
$$

Dimensional reduction: the r-map

Reducing the lagrangian to four dimensions using the r-map

$$
\begin{gathered}
d s_{5}^{2}=e^{\frac{\phi}{\sqrt{3}}} d s_{4}^{2}+e^{-\frac{2}{\sqrt{3}} \phi}\left(d z+K_{\mu} d x^{\mu}\right)^{2} \quad A^{I}=B^{I}\left(d z+K_{\mu} d x^{\mu}\right)+C_{\mu}^{I} d x^{\mu} \\
z^{I}=B^{I}+i e^{-\frac{\phi}{\sqrt{3}}} h^{I} \quad e^{k}=\frac{1}{8} e^{\sqrt{3} \phi} \quad g V_{I}=\frac{g_{I}}{3 \sqrt{2}} \\
g_{I \bar{J}}=\frac{1}{2} e^{\frac{2 \phi}{\sqrt{3}}} G_{I J} \quad F_{\mu \nu}^{\Lambda}=\frac{1}{\sqrt{2}}\left(K_{\mu \nu}, C_{\mu \nu}^{I}\right)
\end{gathered}
$$

one ends up with the four-dimensional $N=2$ FI-gauged supergravity with the cubic prepotential and the symplectic vector of FI parameters

$$
F=-\frac{X^{1} X^{2} X^{3}}{X^{0}} \quad G=\left(g^{\Lambda}, g_{\Lambda}\right)^{t}=\left(0,0,0,0,0, g_{1,}, g_{2}, g_{3}\right)^{t}
$$

This 4 d theory has a residual symmetry that involves the stabilization of the symplectic vector of gauge couplings (FI parameters) under the action of the U-duality of the ungauged theory.

Residual Symmetry²

- The $4 d$ gauged theory has a residual symmetry group U that comes from the ungauged U-duality symmetry group, i.e. the isometries of the non-linear sigma model
- The stabilizer of G must be considered in order to stay in the same theory

$$
S_{G}=\{g \in U \mid g G=G\}
$$

- Another configuration can be constructed acting with $S \in S_{G}$ on a given solution $\left(\Omega, G, F_{\mu \nu}\right)$ via the map

$$
\left(\Omega, G, F_{\mu \nu}\right) \rightarrow\left(\Omega^{\prime}, G^{\prime}, F_{\mu \nu}^{\prime}\right):=\left(S \Omega, S G, S F_{\mu \nu}\right)=\left(S \Omega, G, S F_{\mu \nu}\right)
$$

- Given a model (or the prepotential) and the gaugings, the stabilizer algebra is fixed. Then from a given solution the "rotated-dual" solution is unique.
${ }^{2}$ S.L.Cacciatori, D. Klemm and M. Rabbiosi, "Duality invariance in Fayet-lliopoulos gauged supergravity," JHEP 1609 (2016) 088 [arXiv:1606.05160 [hep-th]].

AdS $_{4}$ Cacciatori-Klemm black hole ${ }^{3}$

The starting point is one of the CK black hole solution in $N=2, \mathrm{~d}=4$ FI-gauged supergravity

$$
F=-\frac{X^{1} X^{2} X^{3}}{X^{0}} \quad d s^{2}=-4 b^{2} d t^{2}+\frac{1}{b^{2}} \frac{y d y^{2}}{c y+2 g p}+\frac{y^{3}}{b^{2}}\left(d \theta^{2}+\sinh ^{2} \theta d \phi^{2}\right)
$$

where

$$
b^{4}=\frac{8 g_{1} g_{2} g_{3} y^{9 / 2}}{H^{0}(c y+2 g p)^{3 / 2}} \quad H^{0}=\frac{2 q_{0}}{3 g^{2} p^{2} y^{3 / 2}}(c y+2 g p)^{1 / 2}(c y-g p)+h^{0}
$$

with field strengths and scalars

$$
\begin{gathered}
F^{0}=4 d t \wedge d\left(H^{0}\right)^{-1} \quad F^{I}=\frac{p^{I}}{2} \sinh \theta d \theta \wedge d \phi \\
z^{I}=i \frac{\sqrt{g_{1} g_{2} g_{3}}}{\sqrt{2} g_{I}} \frac{\sqrt{H^{0}} y^{3 / 4}}{(c y+2 g p)^{1 / 4}}
\end{gathered}
$$

The solution interpolates between $\mathrm{AdS}_{2} \times \mathrm{H}^{2}$ near the horizon and a curved domain wall for $y \rightarrow \infty$.
${ }^{3}$ S. L. Cacciatori and D. Klemm, "Supersymmetric AdS4 black holes and attractors," JHEP 1001 (2010) 085 [arXiv:0911.4926 [hep-th]].

Black String with momentum along ∂z

The r-map can be used to uplift the CK solution to get a black string in $d=5$

$$
d s^{2}=2\left(H^{0} b\right)^{-2 / 3}\left(\frac{1}{b^{2}} \frac{4 r^{4} d r^{2}}{c r^{2}+2 g p}+\frac{r^{6}}{b^{2}}\left(d \theta^{2}+\sinh ^{2} \theta d \phi^{2}\right)\right)+\frac{1}{4}\left(H^{0} b\right)^{4 / 3}\left(d z^{2}-\frac{8 \sqrt{2}}{H^{0}} d t d z\right)
$$

where

$$
b^{4}=\frac{8 g_{1} g_{2} g_{3} r^{9}}{H^{0}\left(c r^{2}+2 g p\right)^{3 / 2}} \quad H^{0}=\frac{2 q_{0}}{3 g^{2} p^{2} r^{3}}\left(c r^{2}+2 g p\right)^{1 / 2}\left(c r^{2}-g p\right)+h^{0}
$$

with field strengths and scalars

$$
F^{I}=\frac{p^{I}}{\sqrt{2}} \sinh \theta d \theta \wedge d \phi \quad h^{I}=\frac{\left(g_{1} g_{2} g_{3}\right)^{1 / 3}}{g_{I}}
$$

The configuration satisfies the BPS equations with Killing spinor $\epsilon=Y(r)\left(1+i \Gamma^{32}\right)\left(1-\Gamma^{1}\right) \epsilon_{0}$ so it is $1 / 4 \mathrm{BPS}$.

Horizon in $r=0$, the spacetime is $\mathrm{AdS}_{3} \times \mathrm{H}^{2}$. Asymptotically approaches AdS_{5}.

Dyonic black String with momentum and rotation

- Start from the lifted solution

Dyonic black String with momentum and rotation

- Start from the lifted solution
- KK reduction along angular direction ϕ

Dyonic black String with momentum and rotation

- Start from the lifted solution
- KK reduction along angular direction ϕ
- Duality transformation with the stabilizer

Dyonic black String with momentum and rotation

- Start from the lifted solution
- KK reduction along angular direction ϕ
- Duality transformation with the stabilizer
- Uplift to 5 dimensions

Dyonic black String with momentum and rotation

$$
\begin{aligned}
& \begin{aligned}
d s^{2}= & \frac{2 d r^{2}}{g^{2} r^{2}}
\end{aligned}+\frac{c r^{2}+2 g p}{2 g^{2}} d \Omega_{H^{2}}^{2}+\frac{2 \sqrt{2} g r^{3}}{\left(c r^{2}+2 g p\right)^{1 / 2}}\left(\frac{H^{0}}{4 \sqrt{2}} d z-d t\right) d z \\
&+4 \sqrt{2} \omega \frac{c r^{2}+2 g p}{g^{2} H^{0}} \sinh ^{2} \theta\left(d \phi+\frac{2 \sqrt{2} \omega}{H^{0}} d t\right) d t
\end{aligned}
$$

Near-horizon limit $r \rightarrow 0$ is a deformation of $\mathrm{AdS}_{3} \times \mathrm{H}^{2}$
For $r \rightarrow \infty$ approaches to a magnetic AdS_{5}

Dyonic black String with momentum and rotation

$$
\begin{aligned}
& \begin{aligned}
d s^{2}= & \frac{2 d r^{2}}{g^{2} r^{2}}
\end{aligned}+\frac{c r^{2}+2 g p}{2 g^{2}} d \Omega_{H^{2}}^{2}+\frac{2 \sqrt{2} g r^{3}}{\left(c r^{2}+2 g p\right)^{1 / 2}}\left(\frac{H^{0}}{4 \sqrt{2}} d z-d t\right) d z \\
&+4 \sqrt{2} \omega \frac{c r^{2}+2 g p}{g^{2} H^{0}} \sinh ^{2} \theta\left(d \phi+\frac{2 \sqrt{2} \omega}{H^{0}} d t\right) d t
\end{aligned}
$$

Near-horizon limit $r \rightarrow 0$ is a deformation of $\mathrm{AdS}_{3} \times \mathrm{H}^{2}$
For $r \rightarrow \infty$ approaches to a magnetic AdS_{5}

Is this solution still BPS?

Does the technique based on the stabilizer algebra preserves supersymmetry?

Running Scalars

- In [4] the problem of finding $1 / 4$ BPS strings with running scalars is reduced to solve a system of three first-order differential equations.

Running Scalars

- In [4] the problem of finding $1 / 4$ BPS strings with running scalars is reduced to solve a system of three first-order differential equations.
- Ansatz for the metric and for the magnetic fluxes

$$
d s^{2}=e^{2 V}\left(-d t^{2}+d z^{2}\right)+e^{2 W}\left(d u^{2}+d \Omega_{k}^{2}\right) \quad F_{\theta \phi}^{I}=k q^{I} F_{k}(\theta) \quad F_{k}(\theta)=\left\{\begin{array}{c}
\sin (\theta), k=1 \\
\sinh (\theta), k=-1
\end{array}\right.
$$

- The warp factors are written in therms of the scalars $x^{I}(u)$

$$
e^{2 V}=\left(x^{1} x^{2} x^{3}\right)^{-\frac{1}{3}} e^{-g \int\left(x^{1}+x^{2}+x^{3}\right) d u} \quad e^{2 W}=\left(x^{1} x^{2} x^{3}\right)^{\frac{2}{3}}
$$

${ }^{4}$ S.L. Cacciatori, D. Klemm and W. A. Sabra, "Supersymmetric domain walls and strings in $d=5$ gauged supergravity coupled to vector multiplets," JHEP 0303 (2003) 023 [hep-th/0302218].

Running Scalars

- In [4] the problem of finding $1 / 4$ BPS strings with running scalars is reduced to solve a system of three first-order differential equations.
- Ansatz for the metric and for the magnetic fluxes

$$
d s^{2}=e^{2 V}\left(-d t^{2}+d z^{2}\right)+e^{2 W}\left(d u^{2}+d \Omega_{k}^{2}\right) \quad F_{\theta \phi}^{I}=k q^{I} F_{k}(\theta) \quad F_{k}(\theta)=\left\{\begin{array}{c}
\sin (\theta), k=1 \\
\sinh (\theta), k=-1
\end{array}\right.
$$

- The warp factors are written in therms of the scalars $x^{I}(u)$

$$
e^{2 V}=\left(x^{1} x^{2} x^{3}\right)^{-\frac{1}{3}} e^{-g \int\left(x^{1}+x^{2}+x^{3}\right) d u} \quad e^{2 W}=\left(x^{1} x^{2} x^{3}\right)^{\frac{2}{3}}
$$

- The supersymmetric flow equations for the scalars are

$$
\begin{aligned}
y^{1 \prime} & =g y^{2} y^{3}+Q^{1} \\
y^{2 \prime} & =g y^{1} y^{3}+Q^{2} \quad \text { Non-homogeneous version of the } \operatorname{SU}(2) \text { Nahm equations } \\
y^{3 \prime} & =g y^{1} y^{2}+Q^{3} \\
\frac{d T^{I}}{d u} & =\epsilon^{I J K}\left[T^{J}, T^{K}\right]+S^{I} \quad T^{I}=y^{I} \sigma^{I} \quad S^{I}=Q^{I} \sigma^{I}
\end{aligned}
$$

${ }^{4}$ S.L. Cacciatori, D. Klemm and W. A. Sabra, "Supersymmetric domain walls and strings in $d=5$ gauged supergravity coupled to vector multiplets," JHEP 0303 (2003) 023 [hep-th/0302218].

Generalizing Maldacena-Nunez

- A new solution can be found taking $\mathrm{Q}^{1}=\mathrm{Q}^{2}=0$

$$
\begin{aligned}
& d s^{2}=\left(x^{1} x^{2} x^{3}\right)^{-\frac{1}{3}} e^{g \int \frac{\left(x^{1}+x^{2}+x^{3}\right)}{y} d u}\left(-d t^{2}+d z^{2}\right)+\left(x^{1} x^{2} x^{3}\right)^{\frac{2}{3}}\left(\frac{1}{\left(y^{3}\right)^{2}} d y^{2}+d \Omega_{k}^{2}\right) \\
& x^{1}=\frac{1}{4}\left\{k_{1} e^{-g y}+k_{2} e^{g y}+\sqrt{k_{1}^{2} e^{-2 g y}+k_{2}^{2} e^{2 g y}+\frac{8 k y}{g}}\right\}
\end{aligned}
$$

- The solution of the Nahm system gives the scalar fields

$$
\begin{aligned}
& x^{2}=\frac{1}{2} k_{2} e^{g y} \\
& x^{3}=\frac{1}{4}\left\{-k_{1} e^{-g y}+k_{2} e^{g y}+\sqrt{k_{1}^{2} e^{-2 g y}+k_{2}^{2} e^{2 g y}+\frac{8 k y}{g}}\right\}
\end{aligned}
$$

Generalizing Maldacena-Nunez

- A new solution can be found taking $\mathrm{Q}^{1}=\mathrm{Q}^{2}=0$

$$
d s^{2}=\left(x^{1} x^{2} x^{3}\right)^{-\frac{1}{3}} e^{g \int \frac{\left(x^{1}+x^{2}+x^{3}\right)}{y} d u}\left(-d t^{2}+d z^{2}\right)+\left(x^{1} x^{2} x^{3}\right)^{\frac{2}{3}}\left(\frac{1}{\left(y^{3}\right)^{2}} d y^{2}+d \Omega_{k}^{2}\right)
$$

- This solution is an interpolation flow between AdS_{5} and $\mathrm{AdS}_{3} \times \mathrm{H}^{2}$, for y that goes from infinity to the horizon $y=a$

- The value $\mathrm{k}_{1}=0$ corresponds to the limit in which $\mathrm{x}^{1}=\mathrm{x}^{3}$, i.e. the physical scalar field $\phi_{2}=0$. This truncation is the MN solution.

CFT dual picture

- The physical scalar fields are

$$
\frac{2}{\sqrt{6}} \phi_{1}=\log \left(\frac{x^{2}}{\left(x^{1} x^{2} x^{3}\right)^{\frac{1}{3}}}\right) \quad \sqrt{2} \phi_{2}=\log \left(\frac{x^{3}}{x^{1}}\right)
$$

- Calculated on the conformal boundary of AdS

$$
\frac{2}{\sqrt{6}} \phi_{1} \sim 2 Q y e^{-2 g y} \quad \sqrt{2} \phi_{2} \sim-\frac{k_{1}}{k_{2}} e^{-2 g y}
$$

- In the dual SCFT these are an expectation value of an operator and an insertion of dimension 2.
- The central charge of the 2 d SCFT dual to the horizon configuration $\mathrm{AdS}_{3} \times \mathrm{H}^{2}$ is

$$
c=\frac{6 \pi(g-1)}{4 G_{5}}=3 N^{2}(g-1) \quad \text { where } g \text { is the genus of the Riemann surface } \mathrm{H}^{2}
$$

- Again, the truncation $\mathrm{k}_{1}=0$ corresponds to the MN value.

Conclusion

- We have seen a very brief introduction to the $\mathrm{N}=2 \mathrm{~d}=5$ supergravity model
- Two ways to find solutions have been presented
- Using the residual symmetry of N=2 d=4 FI supergravity
- Solving the spinning top equations
- New solutions that describe flows across dimensions have been found. One of these generalizes that of MN with two non zero running scalar fields.
- Open problem:
- Does the technique based on the stabilizer algebra preserves supersymmetry?
- Does the Nahm equations can be fully solved for all the $Q^{I} \neq 0$?

