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Role of CPN−1 in non-perturbative QCD

The 2d CPN−1 models share many fundamental properties with
QCD: confinement, asymptotic freedom, topologically-stable
instantons, θ-vacua...

These theories admit an analytic solution in the large-N limit.
They have been employed as a theoretical laboratory for the
study of non-perturbative features of QCD (e. g. Witten, 1979).

The CPN−1 have been also extensively studied numerically
through Monte Carlo simulations:

lattice CPN−1 simulations need low numerical effort,
CPN−1 models are ideal test-bed for new algorithms to
solve LQCD non-trivial computational problems,
possibility of a comparison between numerical and analytic
large-N results.
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Topology and θ-dependence

In the CPN−1 models one can introduce a topological charge Q
and a corresponding θ-term in the action.

This work focuses on the study of the θ-dependence of the
vacuum energy (density):

f(θ) ≡ − 1

V
logZ(θ) =

1

2
χθ2

(
1 +

∞∑
n=1

b2nθ
2n

)
.

The coefficients of the expansion are related to the cumulants
km of the probability distribution of Q:

dmf

dθm
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θ-dependence and phenomenology

The study of f(θ) is of particular relevance in QCD and in
SU(N) gauge theories:

θ-dependence of pure Yang-Mills enters η′ physics,
fQCD(θ) enters axion phenomenology and, thus, the
resolution of the strong-CP problem.

In QCD and Yang-Mills, χ and b2n cannot be computed
analytically from first principles. Besides, θ-dependence is a
non-perturbative feature.
=⇒ Numerical MC simulations on the lattice have become one
of the most reliable tools to study this issue.

This constitutes a strong motivation to perform a similar
numerical study for the lattice CPN−1 models.
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Goals

Currently, the topological susceptibility of the CPN−1 models
and its large-N asymptotic behaviour have been checked
numerically quite well.

The goals of this work are:

extension of the lattice measure of the vacuum energy f(θ)
to higher orders in θ;
extension of the study of the large-N limit of f(θ) and
comparison with analytic predictions.
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Action and sign problem

The total action is:

S = S0 + Stopo = βE − iθQ (β ≡ 1/g).

S ∈ C =⇒ P ∝ exp{−S} is not a proper probability
distribution when θ 6= 0.

To measure χ and b2n, related to the derivatives of f in θ = 0,
one can limit to make simulations at θ = 0.

The non-topological action S0 is linear in the fields, therefore, it
is easy to implement a local algorithm to sample P . We adopted
the standard over-heat-bath update algorithm.
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Computational problems

This set-up suffers from two computational problems:

Critical Slowing Down (CSD) of topological modes,
difficulties in measuring high-order cumulants of Q.

1) When approaching the continuum limit (ξL →∞), the
machine time needed to change the topological charge of a field
configuration exponentially grows with ξL and with N .

This is due to the impossibility of changing the winding number
of a configuration with a continuum deformation.

2) The measure of high-order cumulants of Q becomes very
noisy for large lattice sizes.

This happens because the Gaussian behaviour is dominant in
the thermodynamic limit for the central limit theorem.
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Numerical strategies

To obtain a precise measure of f(θ) we need to adopt numerical
strategies to improve the efficiency of local MC simulations.

In this work we applied:

imaginary-θ method to avoid the sign problem and improve
measure accuracy of cumulants; (Panagopoulos and Vicari,
2011)
simulated tempering algorithm to dampen the CSD of
topological modes. (Marinari and Parisi, 1992; Vicari, 1993)
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Analytic continuation

Being the θ-dependence of the theory analytic around θ = 0, one
can continue the path integral for imaginary angles:

θ ≡ −iθI =⇒ Stop = −iθQ = −θIQ ∈ R.

Now P ∝ exp{−S} is a proper probability distribution.

The vacuum energy can be continued too:

f(θI) = f(θ = −iθI) = −1

2
χθ2I

(
1 +

∞∑
n=1

(−1)nb2nθ
2n
I

)
.

=⇒ the measure of χ and of the b2n coefficients can be
extracted from f(θI).

Claudio Bonanno New Frontiers in Theoretical Physics - Cortona 2018 8 / 15



Imaginary-θ fit

The θI -dependence of the cumulants of Q is related to f(θI):

dmf(θI)

dθmI
= − 1

V
km(θI),

A global fit of the θI -dependence of the cumulants, which can be
measured on the lattice, leads to an improved measure of χ and
the b2n:

k1(θI)

V
= χθI

[
1− 2b2θ

2
I + 3b4θ

4
I +O(θ5I )

]
,

k2(θI)

V
= χ

[
1− 6b2θ

2
I + 15b4θ

4
I +O(θ5I )

]
,

k3(θI)

V
= χ

[
− 12b2θI + 60b4θ

3
I +O(θ4I )

]
...

On the lattice: θI = ZθθL.
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Imaginary-θ fit results

O(β = 0.66, N = 21) Standard method Imaginary-θ Gain
χ · 104 4.401(11) 4.3908(58) ∼ 2
b2 · 103 −5.36(40) −4.958(76) ∼ 5
b4 · 105 −11± 21 −1.27(20) ∼ 100
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Continuum limit
Linear corrections in the lattice spacing (∼ ξ−1L ) are killed by
the adoption of the O(a) improved lattice action.
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Large-N limit of topological susceptibility

(Nξ2χ)theo ' 0.1592− 0.0606/N +O(1/N2),

(Nξ2χ)MC = 0.1600(8) + e2/N + e3/N
2,

Best fit: |e2| . 10−1, e3 = O(1).
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Large-N limit of b2

Corrections to large-N pre-
dicted behaviour (cf. Del Debbio
et al., 2006; Bonati et al., 2016) are
stille large in this range of N .

(N2b2)theo = −5.4 +O(1/N)
(N2b2)MC = −2.4(5) +O(1/N)
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Results for b4
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Summary and future perspective

Summarizing, this work consists in:

application of imaginary-θ method and of simulated
tempering algorithm to lattice CPN−1 models to improve
measure accuracy of topological observables,
lattice determination of χ, b2 and b4 for N ∈ [9, 31],
numerical study of the large-N limit of χ and b2 and
comparison with analytic predictions.

In the next future we plan to:

improve the study of the large-N limit of χ and b2
including larger Ns and improving measure accuracy,
try other proposed algorithm to improve this analysis.
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Thank you for your attention!



Used definitions

Continuum Euclidean action:

S0 = Nβ

∫
d2x D̄µz̄Dµz,

where Dµ = ∂µ + iAµ.

Continuum Euclidean charge:

Q =
1

4π

∫
d2x εµνFµν
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Lattice action

O(a) Symanzik-improved action:

S
(L)
0 = −8

3
NβL

∑
x,µ

<[Ūµ(x)z̄(x+ µ̂)z(x)]

+
1

6
NβL

∑
x,µ

<[Ūµ(x+ µ̂)Ūµ(x)z̄(x+ 2µ̂)z(x)].

Possible discretizations of Q:

QL =
1

2π

∑
x

=
{

Π12(x)
}
, (Non-geometric)

Qgeo =
1

2π

∑
x

=
[
log

(
Π12(x)

)]
, (Geometric)

(
Πµν(x) ≡ Uµ(x)Uν(x+ µ̂)Ūµ(x+ ν̂)Ūν(x)

)
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Cooling
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Topological Charge Freezing
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Determination of the free energy

An estimation of the free energy is needed to avoid
non-ergodicity:

P → P ′ ∝ e−βE+θIQL+F (β,θI)

To estimate F (β, θI) one can use these two relations:

∂F

∂β
= 〈E〉

∂F

∂θI
= −〈QL〉

Both 〈E〉 and 〈QL〉 can be easily measured in a MC simulation.
Then, with a numerical integration, one can obtain F .
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Simulated tempering set-up

To get an efficient set-up, the β interval has to be chosen
accurately.

βmin → local
algorithm
decorrelates fast,
βmax → how close
one wants to get to
the continuum limit,
δβ → reasonable
acceptance of change
of β.

The correct choice of δβ is obtained when there is a reasonable
overlap between the probability distributions of the energy at
different temperatures.
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Evolution of Q: local vs simulated tempering
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The simulated tempering algorithm

The simulated tempering
consists in promoting the

temperature T as a
dynamical variable.

The system heats up during its evolution and can escape from
the local minima in which it is trapped.

In the case of the CPN−1 models, one can promote both β and
θI to dynamical variables:

P ∝ exp{−S} = exp{−βE + θIQ}.

When β decreases, the algorithm changes Q more easily.

When θI increases, higher-charge configurations are more
probable to realize.
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