The equation of state with non-equilibrium methods

Alessandro Nada

NIC, DESY Zeuthen

in collaboration with

Michele Caselle and Marco Panero

UniTo INFN, Sezione di Torino

23rd May 2018

New Frontiers in Theoretical Physics — XXXVI Convegno Nazionale di Fisica Teorica 23-26 May 2018, Cortona, Italy

In lattice gauge theories the expectation values of a large set of physical quantities is *naturally* related to the computation (via Monte Carlo simulations) of free-energy differences (or, equivalently, of ratios of partition functions).

- ▶ free-energy of interfaces, 't Hooft loops, magnetic susceptibility, entanglement entropy...
- the **pressure** (\rightarrow the equation of state)

In lattice gauge theories the expectation values of a large set of physical quantities is *naturally* related to the computation (via Monte Carlo simulations) of free-energy differences (or, equivalently, of ratios of partition functions).

- ▶ free-energy of interfaces, 't Hooft loops, magnetic susceptibility, entanglement entropy...
- the **pressure** (\rightarrow the equation of state)

In general, the calculation of ΔF is a **computationally challenging** problem, since it usually cannot be performed directly.

"integral method": computing first the *derivative* of the free energy with respect to some parameter, and then integrate

$$f \sim \int \mathrm{d}\lambda rac{\partial \log Z}{\partial \lambda}$$

- reweighting
- snake algorithm

$$\frac{Z(\lambda')}{Z(\lambda)} = \frac{Z(\lambda')}{Z(\lambda_N)} \dots \frac{Z(\lambda_{i+1})}{Z(\lambda_i)} \dots \frac{Z(\lambda_1)}{Z(\lambda)}$$

Jarzynski's equality may provide a more efficient and intuitive method

The Second Law of Thermodynamics

We start from the Clausius inequality

$$\int_{A}^{B} \frac{\mathrm{d}Q}{T} \leq \Delta S$$

that for isothermal transformations becomes

$$\frac{Q}{T} \leq \Delta S$$

If we use

$$\begin{cases} Q = \Delta E - W & (First Law) \\ F \stackrel{\text{def}}{=} E - ST \end{cases}$$

the Second Law becomes

 $W \ge \Delta F$

where the equality holds for reversible processes.

Moving from thermodynamics to **statistical mechanics** we know that the former relation (valid for a *macroscopic* system) becomes

$$\langle W \rangle \ge \Delta F$$

The Second Law of Thermodynamics

We start from the Clausius inequality

$$\int_{A}^{B} \frac{\mathrm{d}Q}{T} \leq \Delta S$$

that for isothermal transformations becomes

$$\frac{Q}{T} \leq \Delta S$$

If we use

$$\begin{cases} Q = \Delta E - W & (First Law) \\ F \stackrel{\text{def}}{=} E - ST \end{cases}$$

the Second Law becomes

 $W \ge \Delta F$

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that the former relation (valid for a *macroscopic* system) becomes

$$\langle W \rangle \geq \Delta F$$

Let's consider a system with Hamiltonian H_{λ} parametrized by λ . Partition function and free energy are

$$Z_{\lambda}(T) = \int \mathrm{d}\Gamma e^{-eta H_{\lambda}(\Gamma)} \qquad F_{\lambda}(T) = -eta^{-1} \ln Z_{\lambda}(T)$$

The transformation is defined as an evolution of the system driven by a discrete/continuous variation of λ between the initial and final values

The crucial quantity is the work performed on the system

$$W = \int_{t_i}^{t_f} \mathrm{d}t \dot{\lambda} \frac{\partial H_\lambda}{\partial \lambda}$$

(this is not arbitrary: $\dot{H} = \dot{\lambda} \frac{\partial H}{\partial \lambda} + \dot{\Gamma} \frac{\partial H}{\partial \Gamma}$ can be identified with the First Law of Thermodynamics)

This is repeated in order to have an **ensemble** of realizations of this process: for each of them W is computed

Now we can precisely state the non-equilibrium equality [Jarzynski, 1997]

$$\left\langle \exp\left(-\frac{W(\lambda_i,\lambda_f)}{T}\right) \right\rangle = \exp\left(-\frac{F(\lambda_f) - F(\lambda_i)}{T}\right)$$

- It relates the exponential statistical average of the work done on a system over several realizations of the (non-equilibrium) transformation with the difference between the initial and the final free energy of the system.
- In general, the evolution of the system is performed by changing continuously (as in real time experiments) or discretely (as in MC simulations) a chosen set of one or more parameters
- At the beginning of each transformation the system must be at equilibrium
- In each step of the process the value of λ is changed and the system is driven out of equilibrium

This result can be derived for

- Langevin evolution
- molecular dynamics
- Monte Carlo simulations

Now we can precisely state the non-equilibrium equality [Jarzynski, 1997]

$$\left\langle \exp\left(-\frac{W(\lambda_i,\lambda_f)}{T}\right) \right\rangle = \exp\left(-\frac{F(\lambda_f) - F(\lambda_i)}{T}\right)$$

- It relates the exponential statistical average of the work done on a system over several realizations of the (non-equilibrium) transformation with the difference between the initial and the final free energy of the system.
- In general, the evolution of the system is performed by changing continuously (as in real time experiments) or discretely (as in MC simulations) a chosen set of one or more parameters
- At the beginning of each transformation the system must be at equilibrium
- In each step of the process the value of λ is changed and the system is driven out of equilibrium

This result can be derived for

- Langevin evolution
- molecular dynamics
- Monte Carlo simulations

It is instructive to see how this result is connected with the Second Law of Thermodynamics

Starting from Jarzynski's equality

$$\left\langle \exp\left(-\frac{W}{T}\right)\right\rangle = \exp\left(-\frac{\Delta F}{T}\right)$$

and using Jensen's inequality

 $\langle \exp x\rangle \geq \exp \langle x\rangle$

(valid for averages on real x) we get

$$\exp\left(-\frac{\Delta F}{T}\right) = \left\langle \exp\left(-\frac{W}{T}\right) \right\rangle \ge \exp\left(-\frac{\langle W \rangle}{T}\right)$$

from which we have

$$\langle W \rangle \geq \Delta F$$

In this sense Jarzynski's relation can be seen as a generalization of the Second Law.

Jarzynski's equality in a Monte Carlo simulation

$$\left\langle \exp\left(-\frac{W(\lambda_0,\lambda_N)}{T}\right) \right\rangle = \exp\left(-\frac{\Delta F}{T}\right)$$

1. the non-equilibrium transformation begins by changing λ with some prescription (e.g. a linear one)

$$\lambda_0
ightarrow \lambda_1 = \lambda_0 + \Delta \lambda$$

2. we compute the "work"

$$H_{\lambda_{n+1}}[\phi_n] - H_{\lambda_n}[\phi_n]$$

3. after each change, the system is updated using the new value \rightarrow driving the system out of equilibrium!

$$[\phi_n] \xrightarrow{\lambda_{n+1}} [\phi_{n+1}]$$

4. the total work $W(\lambda_0, \lambda_N)$ made on the system to change λ using N steps is

$$W(\lambda_0, \lambda_N) = \sum_{n=0}^{N-1} \left(H_{\lambda_{n+1}}[\phi_n] - H_{\lambda_n}[\phi_n] \right)$$

5. at the end, we create a new initial state ϕ_0 and we repeat this transformation for n_r realizations

The $\langle ... \rangle$ indicates that we have to take the **average on all possible realizations** of the transformation \rightarrow it must be repeated several times to obtain **convergence** to the correct answer!

We can check the convergence by looking for discrepancies between the <u>'direct'</u> $(\lambda_i \rightarrow \lambda_f)$ and <u>'reverse'</u> $(\lambda_f \rightarrow \lambda_i)$ transformations

Jarzynski's equality in a Monte Carlo simulation

$$\left\langle \exp\left(-\frac{W(\lambda_0,\lambda_N)}{T}\right) \right\rangle = \exp\left(-\frac{\Delta F}{T}\right)$$

1. the non-equilibrium transformation begins by changing λ with some prescription (e.g. a linear one)

$$\lambda_0
ightarrow \lambda_1 = \lambda_0 + \Delta \lambda$$

2. we compute the "work"

$$H_{\lambda_{n+1}}[\phi_n] - H_{\lambda_n}[\phi_n]$$

3. after each change, the system is updated using the new value \rightarrow driving the system out of equilibrium!

$$[\phi_n] \xrightarrow{\lambda_{n+1}} [\phi_{n+1}]$$

4. the total work $W(\lambda_0, \lambda_N)$ made on the system to change λ using N steps is

$$W(\lambda_0, \lambda_N) = \sum_{n=0}^{N-1} \left(H_{\lambda_{n+1}}[\phi_n] - H_{\lambda_n}[\phi_n] \right)$$

5. at the end, we create a new initial state ϕ_0 and we repeat this transformation for n_r realizations

The $\langle ... \rangle$ indicates that we have to take the average on all possible realizations of the transformation \rightarrow it must be repeated several times to obtain convergence to the correct answer!

We can check the convergence by looking for discrepancies between the <u>'direct'</u> $(\lambda_i \rightarrow \lambda_f)$ and <u>'reverse'</u> $(\lambda_f \rightarrow \lambda_i)$ transformations

Two insightful limits of Jarzynski's equality:

▶ the limit of $N \rightarrow \infty$: now the transformation is infinitely *slow* and the the system is always at equilibrium. The switching process is reversible: no energy is dissipated and thus

$$W = \Delta F$$

 \rightarrow this is the case of thermodynamic integration \rightarrow a common way to estimate p on the lattice is by the "integral method" [Engels et al., 1990]

$$p(T) = \frac{1}{a^4} \frac{1}{N_t N_s^3} \int_0^{\beta_g(T)} d\beta'_g \frac{\partial \log Z}{\partial \beta'_g}$$

where the integrand is calculated from plaquette expectation values.

b the limit of N = 1: now the system is driven *instantly* to the final state and no updates are performed on the system after the parameter λ has been changed → this is the reweighting technique.

Two insightful limits of Jarzynski's equality:

▶ the limit of $N \rightarrow \infty$: now the transformation is infinitely *slow* and the the system is always at equilibrium. The switching process is reversible: no energy is dissipated and thus

$$W = \Delta F$$

 \rightarrow this is the case of thermodynamic integration \rightarrow a common way to estimate p on the lattice is by the "integral method" [Engels et al., 1990]

$$p(T) = \frac{1}{a^4} \frac{1}{N_t N_s^3} \int_0^{\beta_g(T)} d\beta'_g \frac{\partial \log Z}{\partial \beta'_g}$$

where the integrand is calculated from plaquette expectation values.

the limit of N = 1: now the system is driven *instantly* to the final state and no updates are performed on the system after the parameter λ has been changed → this is the reweighting technique.

The equation of state with non-equilibrium methods

The thermal properties of QCD and QCD-like theories are particularly well suited for being studied on the lattice, due to *non-perturbative* nature of the deconfinement transition.

The **pressure** p in the thermodynamic limit equals the opposite of the free energy density

$$p\simeq -f=rac{T}{V}\log Z(T,V)$$

On the lattice, the temperature T is the inverse of the temporal extent,

$$T = \frac{1}{L_t} = \frac{1}{a(\beta_g)N_t}$$

and it can be controlled by the inverse coupling β_g .

Jarzynski's relation gives us a <u>direct</u> method to compute the pressure: we can change temperature T (by controlling β_g) in a non-equilibrium transformation!

Jarzynski's relation gives us a <u>direct</u> method to compute the pressure: we can change temperature T by controlling the parameter β_g in a non-equilibrium transformation!

The difference of pressure between two temperatures T and T_0 is

$$\frac{p(T)}{T^4} - \frac{p(T_0)}{T_0^4} = \left(\frac{N_t}{N_s}\right)^3 \log\langle e^{-W_{\rm SU}(N_c)} \rangle$$

with $W_{SU(N_c)}$ being the "work" made on the system:

$$W_{SU(N_c)} = \sum_{n=0}^{N-1} \left[S_W(\beta_g^{(n+1)}, \hat{U}) - S_W(\beta_g^{(n)}, \hat{U}) \right];$$

here S_W is the standard Wilson action and \hat{U} is a configuration of $\mathrm{SU}(N_c)$ variables on the links of the lattice.

Trace of the energy-momentum tensor, energy density and entropy density are obtained by

$$\frac{\Delta}{T^4} = T \frac{\partial}{\partial T} \left(\frac{p}{T^4} \right) \qquad \qquad \epsilon = \Delta + 3p \qquad \qquad s = \frac{\Delta + 4p}{T}$$

Jarzynski's relation gives us a <u>direct</u> method to compute the pressure: we can change temperature T by controlling the parameter β_g in a non-equilibrium transformation!

The difference of pressure between two temperatures T and T_0 is

$$\frac{p(T)}{T^4} - \frac{p(T_0)}{T_0^4} = \left(\frac{N_t}{N_s}\right)^3 \log\langle e^{-W_{\rm SU}(N_c)} \rangle$$

with $W_{SU(N_c)}$ being the "work" made on the system:

$$W_{\rm SU(N_c)} = \sum_{n=0}^{N-1} \left[S_W(\beta_g^{(n+1)}, \hat{U}) - S_W(\beta_g^{(n)}, \hat{U}) \right];$$

here S_W is the standard Wilson action and \hat{U} is a configuration of $\mathrm{SU}(N_c)$ variables on the links of the lattice.

Trace of the energy-momentum tensor, energy density and entropy density are obtained by

$$\frac{\Delta}{T^4} = T \frac{\partial}{\partial T} \left(\frac{p}{T^4} \right) \qquad \qquad \epsilon = \Delta + 3p \qquad \qquad s = \frac{\Delta + 4p}{T}$$

For YM thermodynamics highly precise determinations are relatively easy and available at high temperatures

ightarrow precision studies can be performed and compared with other theoretical tools

• *low-temperature phase* ($T < T_c$) \rightarrow description in terms of a gas of massive, non-interacting hadrons \rightarrow HRG model in QCD

even more dramatic for pure Yang-Mills theories - lattice data in the confining region have been compared in detail with the prediction of a glueball gas with an Hagedorn spectrum [Meyer, 2009; Borsányi et al., 2012; Caselle et al., 2015, Alba et al., 2016]

deconfined phase (T < T_c) → high temperatures are accessible → connection to perturbative regime (e.g. HTL), approach to Stefan-Boltzmann limit

For YM thermodynamics highly precise determinations are relatively easy and available at high temperatures

ightarrow precision studies can be performed and compared with other theoretical tools

• *low-temperature phase* ($T < T_c$) \rightarrow description in terms of a gas of massive, non-interacting hadrons \rightarrow HRG model in QCD

even more dramatic for pure Yang-Mills theories - lattice data in the confining region have been compared in detail with the prediction of a glueball gas with an Hagedorn spectrum [Meyer, 2009; Borsányi et al., 2012; Caselle et al., 2015, Alba et al., 2016]

▶ deconfined phase $(T < T_c)$ → high temperatures are accessible → connection to perturbative regime (e.g. HTL), approach to Stefan-Boltzmann limit

The equation of state of the SU(3) Yang-Mills theory has been computed in the last few years using different methods.

The most recent determinations have been obtained

▶ using a variant of the integral method [Engels et al., 1990] in [Borsànyi et al., 2012]

 \rightarrow the primary observable is the trace of the energy-momentum tensor, results up to $1000\,T_c$

using a moving frame [L. Giusti and M. Pepe, 2016]

 \rightarrow the primary observable is the entropy density (extracted from the off-diagonal components of the energy-momentum tensor computed with shifted boundary conditions), results up to 230 T_c

using the gradient flow [Kitazawa et al., 2016]

 \rightarrow the components of $T_{\mu\nu}$ are directly accessible

An high-precision determination of the $\mathop{\rm SU}(3)$ e.o.s. is an excellent benchmark for any new technique

SU(3) pressure - continuum extrapolation

SU(3) trace anomaly

${ m SU}(3)$ entropy density

SU(3) energy density

SU(3) pressure - confining phase

Jarzynski's equality provides a new technique to compute **directly** the pressure on the lattice with Monte Carlo simulations.

- efficient: intuitively we are exploiting the autocorrelation, since the average is not taken across all configurations, but only on the different realizations
- but also flexible: we can not only increase n_r , but also N, (i.e. going closer to a reversible transformation)

Good agreement with former SU(3) e.o.s. determinations (with completely different methods!), although errors are very small and so some **discrepancies** are quite severe

possibly due to a combination of (technical) factors

State of the art computations in **full QCD** (with *staggered* quarks) are very precise and already available for a large range of T, but several challenges remain!

- a determination with physical quark masses using Wilson fermions is still beyond current capabilities
- new techniques will provide independent checks and may have a central role in improving the efficiency of lattice calculations

Jarzynski's equality provides a new technique to compute **directly** the pressure on the lattice with Monte Carlo simulations.

- efficient: intuitively we are exploiting the autocorrelation, since the average is not taken across all configurations, but only on the different realizations
- but also flexible: we can not only increase n_r , but also N, (i.e. going closer to a reversible transformation)

Good agreement with former SU(3) e.o.s. determinations (with completely different methods!), although errors are very small and so some discrepancies are quite severe

possibly due to a combination of (technical) factors

State of the art computations in **full QCD** (with *staggered* quarks) are very precise and already available for a large range of T, but several challenges remain!

- a determination with physical quark masses using Wilson fermions is still beyond current capabilities
- new techniques will provide independent checks and may have a central role in improving the efficiency of lattice calculations

Jarzynski's equality provides a new technique to compute **directly** the pressure on the lattice with Monte Carlo simulations.

- efficient: intuitively we are exploiting the autocorrelation, since the average is not taken across all configurations, but only on the different realizations
- but also flexible: we can not only increase n_r , but also N, (i.e. going closer to a reversible transformation)

Good agreement with former SU(3) e.o.s. determinations (with completely different methods!), although errors are very small and so some discrepancies are quite severe

possibly due to a combination of (technical) factors

State of the art computations in full QCD (with *staggered* quarks) are very precise and already available for a large range of T, but several challenges remain!

- a determination with physical quark masses using Wilson fermions is still beyond current capabilities
- new techniques will provide independent checks and may have a central role in improving the efficiency of lattice calculations

Thank you for your attention!

An experimental test

An experimental test of Jarzynski's equality was performed in 2002 by Liphardt *et al.* by mechanically stretching a single molecule of RNA between two conformations.

The irreversible work trajectories (via the non-equilibrium relation) provide the result obtained with reversible stretching.

Extended to non-isothermal transformations [Chatelain, 2007] (the temperature takes the role of $\lambda)$

$$\left\langle \exp\left(-\sum_{n=0}^{N-1}\left\{\frac{H_{\lambda_{n+1}}\left[\phi_{n}\right]}{T_{n+1}}-\frac{H_{\lambda_{n}}\left[\phi_{n}\right]}{T_{n}}\right\}\right)\right\rangle = \frac{Z(\lambda_{N},T_{N})}{Z(\lambda_{0},T_{0})}$$

- In principle there are no obstructions to the derivation of numerical methods based on Jarzynski's relation for fermionic algorithms, opening the possibility for many potential applications in full QCD
- the free energy density in QCD with a background magnetic field B, to measure the magnetic susceptibility of the strongly-interacting matter.
- the entanglement entropy in $SU(N_c)$ gauge theories
- studies involving the Schrödinger functional: Jarzynski's relation could be used to compute changes in the transition amplitude induced by a change in the parameters that specify the initial and final states on the boundaries.

Picture taken from [Jarzynski (2006)]

The work is statistically distributed on $\rho(W)$; however the trials that dominate the exponential average are in the region where $g(W) = \rho(W)e^{-\beta W}$ has the peak.

Total work W distributions for realizations of the transformation: $\beta = 2.4158 \leftrightarrow 2.4208$.

Total work W distributions for realizations of the transformation: $\beta = 2.4158 \leftrightarrow 2.4208$.

72³ - 250 steps

Total work W distributions for realizations of the transformation: $\beta = 2.4158 \leftrightarrow 2.4208$.

Total work W distributions for realizations of the transformation: $\beta = 2.4158 \leftrightarrow 2.4208$.

The pressure is normalized to the value of p(T) at T = 0 in order to remove the contribution of the vacuum. Using the 'integral method' the pressure can be rewritten (relative to its T = 0 vacuum contribution) as

$$\frac{p(T)}{T^4} = -N_t^4 \int_0^\beta d\beta' \left[3(P_\sigma + P_\tau) - 6P_0\right]$$

where P_{σ} and P_{τ} are the expectation values of spacelike and timelike plaquettes respectively and P_0 is the expectation value at zero T.

Using Jarzynski's relation one has to perform another transformation $\beta_i \rightarrow \beta_f$ but on a symmetric lattice, i.e. with lattice size \tilde{N}_s^4 instead of $N_t \times N_s^3$. The finite temperature result is then normalized by removing the T = 0 contribution calculated this way.

$$\frac{p(T)}{T^4} = \frac{p(T_0)}{T_0^4} + \left(\frac{N_t}{N_s}\right)^3 \ln \frac{\left\langle \exp\left[-W_{\mathrm{SU}(N_c)}(\beta_{\mathcal{E}}^{(0)}, \beta_{\mathcal{B}})_{N_t \times N_s^3}\right] \right\rangle}{\left\langle \exp\left[-W_{\mathrm{SU}(N_c)}(\beta_{\mathcal{E}}^{(0)}, \beta_{\mathcal{B}})_{\widetilde{N}^4}\right] \right\rangle^{\gamma}}$$

with $\gamma = \left(N_s^3 \times N_0\right) / \widetilde{N}^4$.

A few more observations:

- we can always verify the convergence of the method to the correct result by performing transformations in reverse and comparing the results
- \blacktriangleright with these checks we can look for systematic errors ightarrow especially useful close to the transition
- suitable choices of N and n_r provide high-precision results while keeping the expected discrepancies under control
- even with a limited amount of configurations it is possible to extract precise results

The pressure p in the thermodynamic limit equals the opposite of the free energy density

$$p\simeq -f=rac{T}{V}\log Z(T,V)$$

A widely used technique to estimate it on the lattice is the "integral method" [Engels et al., 1990]

$$p(T) = \frac{1}{a^4} \frac{1}{N_t N_s^3} \int_0^{\beta_g(T)} d\beta'_g \frac{\partial \log Z}{\partial \beta'_g}$$

where the integrand is calculated from plaquette expectation values.

An additive renormalization in the form of a subtraction of T=0 plaquette expectation values is required for each β

$$\frac{p(T)}{T^4} - \frac{p(T_0)}{T_0^4} = 6N_t^4 \int_{\beta(T_0)}^{\beta(T)} \mathrm{d}\beta' \; (\langle U_{\mathsf{P}} \rangle_T - \langle U_{\mathsf{P}} \rangle_0)$$

and so the primary observable is the trace of the energy momentum tensor $\Delta = T_{\mu\mu}$

$$\frac{\Delta(T)}{T^4} = -N_t^4 \frac{\partial\beta}{\partial \log a} \left[6 \left(\langle U_{\rm p} \rangle_T - \langle U_{\rm p} \rangle_0 \right) \right]$$

Thermodynamics from the gradient flow

Yang-Mills gradient flow [Luscher, 2010], [Naranayan and Neuberger, 2006]

Small-t expansion relates non-zero t observables with the renormalized observables of the original theory [Luscher and Weisz,2011]

$$ilde{O}(t,x) \underset{t \to 0}{\longrightarrow} \sum_{i} c_i(t) O_i^R(x)$$

In the case of the energy-momentum tensor (see also [Del Debbio,Patella and Rago,2017]), one can build [Suzuki, 2013]

$$\mathcal{T}_{\mu
u}(x,t) = rac{1}{lpha_{ ilde{U}}(t)} ilde{U}_{\mu
u}(t,x) + rac{\delta_{\mu
u}}{4lpha_{ ilde{E}}(t)} \left(ilde{E}(t,x) - \langle ilde{E}(t,x)
angle_0
ight)$$

where $\tilde{E}(t,x)$ and $\tilde{U}_{\mu\nu}(t,x)$ are dimension-4 gauge invariant operators. From the $t \rightarrow 0$ extrapolation

$$T^R_{\mu
u} = \lim_{t
ightarrow 0} T_{\mu
u}(x,t)$$

one can extract, for example

$$\epsilon = -\langle T^R_{00}(x) \rangle \qquad p = rac{1}{3} \sum_{i=1}^3 \langle T^R_{ii}(x)
angle$$

Double extrapolation (in a and t) is required. First study with Wilson fermions available [Taniguchi et al.,2017]

Thermodynamics in a moving frame

Main idea: in relativistic thermal theories the entropy is proportional to the total momentum of the system as measured by a moving reference system

shifted boundary conditions are imposed:

$$U_{\mu}(L_t,\vec{x}) = U_{\mu}(0,\vec{x} - L_t\vec{\xi})$$

the temperature of the system is now given by

$$T = \frac{1}{L_t \sqrt{1 + \vec{\xi^2}}}$$

 in this context new Ward identities can be derived (see also work on the renormalization of the energy-momentum tensor [Giusti and Pepe,2015])

In particular one can extract the entropy density s(T) [Giusti and Meyer,2013]

$$s(T) = -\frac{L_t(1+\vec{\xi}^2)^{\frac{3}{2}}}{\xi_k} \langle T_{0k} \rangle_{\vec{\xi}} Z_T$$

where Z_T is a renormalization constant that has to be computed separately

$$Z_T(g_0^2) = -rac{\Delta f}{\Delta \xi_k} rac{1}{\langle T_{0k}
angle_{ec{\xi}}}$$

opening the possibility for a study of the e.o.s. [Giusti and Pepe, 2014] An implementation to fermionic degrees of freedom is ongoing [Dalla Brida et al., 2017].

SU(3) pressure

