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Free-energy differences in LGTs

In lattice gauge theories the expectation values of a large set of physical quantities is naturally
related to the computation (via Monte Carlo simulations) of free-energy differences (or,
equivalently, of ratios of partition functions).

I free-energy of interfaces, ’t Hooft loops, magnetic susceptibility, entanglement entropy...

I the pressure (→ the equation of state)

Continuum results with 2 + 1 dynamical quark flavours at physical quark masses with HISQ [HotQCD, 2014]
and stout [Wuppertal-Budapest, 2014] actions
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Free-energy differences in LGTs

In lattice gauge theories the expectation values of a large set of physical quantities is naturally
related to the computation (via Monte Carlo simulations) of free-energy differences (or,
equivalently, of ratios of partition functions).

I free-energy of interfaces, ’t Hooft loops, magnetic susceptibility, entanglement entropy...

I the pressure (→ the equation of state)

In general, the calculation of ∆F is a computationally challenging problem, since it usually
cannot be performed directly.

I “integral method”: computing first the derivative of the free energy with respect to some
parameter, and then integrate

f ∼
∫

dλ
∂ log Z

∂λ

I reweighting

I snake algorithm
Z(λ′)

Z(λ)
=

Z(λ′)

Z(λN )
...

Z(λi+1)

Z(λi )
...

Z(λ1)

Z(λ)

Jarzynski’s equality may provide a more efficient and intuitive method
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The Second Law of Thermodynamics

We start from the Clausius inequality ∫ B

A

dQ

T
≤ ∆S

that for isothermal transformations becomes
Q

T
≤ ∆S

If we use {
Q = ∆E −W (First Law)

F
def
= E − ST

the Second Law becomes
W ≥ ∆F

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that the former relation (valid
for a macroscopic system) becomes

〈W 〉 ≥ ∆F
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Let’s consider a system with Hamiltonian Hλ parametrized by λ. Partition function and free
energy are

Zλ(T ) =

∫
dΓe−βHλ(Γ) Fλ(T ) = −β−1 ln Zλ(T )

The transformation is defined as an evolution of the system driven by a discrete/continuous
variation of λ between the initial and final values

The crucial quantity is the work performed on the system

W =

∫ tf

ti

dtλ̇
∂Hλ

∂λ

(this is not arbitrary: Ḣ = λ̇ ∂H
∂λ

+ Γ̇ ∂H
∂Γ

can be identified with the First Law of Thermodynamics)

This is repeated in order to have an ensemble of realizations of this process: for each of them W
is computed
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Jarzynski’s equality

Now we can precisely state the non-equilibrium equality [Jarzynski, 1997]〈
exp

(
−

W (λi , λf )

T

)〉
= exp

(
−

F (λf )− F (λi )

T

)

I It relates the exponential statistical average of the work done on a system over several realizations of the
(non-equilibrium) transformation with the difference between the initial and the final free energy of the
system.

I In general, the evolution of the system is performed by changing continuously (as in real time
experiments) or discretely (as in MC simulations) a chosen set of one or more parameters

I At the beginning of each transformation the system must be at equilibrium

I In each step of the process the value of λ is changed and the system is driven out of equilibrium

This result can be derived for
I Langevin evolution

I molecular dynamics

I Monte Carlo simulations
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Relation with the Second Law

It is instructive to see how this result is connected with the Second Law of Thermodynamics

Starting from Jarzynski’s equality 〈
exp

(
−

W

T

)〉
= exp

(
−

∆F

T

)

and using Jensen’s inequality
〈exp x〉 ≥ exp〈x〉

(valid for averages on real x) we get

exp

(
−

∆F

T

)
=

〈
exp

(
−

W

T

)〉
≥ exp

(
−
〈W 〉

T

)

from which we have
〈W 〉 ≥ ∆F

In this sense Jarzynski’s relation can be seen as a generalization of the Second Law.
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Jarzynski’s equality in a Monte Carlo simulation

〈
exp

(
−

W (λ0, λN )

T

)〉
= exp

(
−

∆F

T

)
1. the non-equilibrium transformation begins by changing λ with some prescription (e.g. a linear one)

λ0 → λ1 = λ0 + ∆λ

2. we compute the “work”
Hλn+1

[φn]− Hλn [φn]

3. after each change, the system is updated using the new value → driving the system out of equilibrium!

[φn]
λn+1−−−→ [φn+1]

4. the total work W (λ0, λN ) made on the system to change λ using N steps is

W (λ0, λN ) =

N−1∑
n=0

(
Hλn+1

[φn]− Hλn [φn]
)

5. at the end, we create a new initial state φ0 and we repeat this transformation for nr realizations

The 〈...〉 indicates that we have to take the average on all possible realizations of the transformation
→ it must be repeated several times to obtain convergence to the correct answer!

We can check the convergence by looking for discrepancies between the ’direct’ (λi → λf ) and ’reverse’
(λf → λi ) transformations

Alessandro Nada (DESY) The e.o.s. with non-equilibrium methods 23/05/2018



Jarzynski’s equality in a Monte Carlo simulation

〈
exp

(
−

W (λ0, λN )

T

)〉
= exp

(
−

∆F

T

)
1. the non-equilibrium transformation begins by changing λ with some prescription (e.g. a linear one)

λ0 → λ1 = λ0 + ∆λ

2. we compute the “work”
Hλn+1

[φn]− Hλn [φn]

3. after each change, the system is updated using the new value → driving the system out of equilibrium!

[φn]
λn+1−−−→ [φn+1]

4. the total work W (λ0, λN ) made on the system to change λ using N steps is

W (λ0, λN ) =

N−1∑
n=0

(
Hλn+1

[φn]− Hλn [φn]
)

5. at the end, we create a new initial state φ0 and we repeat this transformation for nr realizations

The 〈...〉 indicates that we have to take the average on all possible realizations of the transformation
→ it must be repeated several times to obtain convergence to the correct answer!

We can check the convergence by looking for discrepancies between the ’direct’ (λi → λf ) and ’reverse’
(λf → λi ) transformations

Alessandro Nada (DESY) The e.o.s. with non-equilibrium methods 23/05/2018



Two special cases

Two insightful limits of Jarzynski’s equality:

I the limit of N →∞: now the transformation is infinitely slow and the the system is always
at equilibrium. The switching process is reversible: no energy is dissipated and thus

W = ∆F

→ this is the case of thermodynamic integration → a common way to estimate p on the
lattice is by the “integral method” [Engels et al., 1990]

p(T ) =
1

a4

1

Nt N3
s

∫ βg (T )

0
dβ′g

∂ log Z

∂β′g

where the integrand is calculated from plaquette expectation values.

I the limit of N = 1: now the system is driven instantly to the final state and no updates are
performed on the system after the parameter λ has been changed
→ this is the reweighting technique.
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Pressure on the lattice

The thermal properties of QCD and QCD-like theories are particularly well suited for being
studied on the lattice, due to non-perturbative nature of the deconfinement transition.

The pressure p in the thermodynamic limit equals the opposite of the free energy density

p ' −f =
T

V
log Z(T ,V )

On the lattice, the temperature T is the inverse of the temporal extent,

T =
1

Lt
=

1

a(βg )Nt

and it can be controlled by the inverse coupling βg .

Jarzynski’s relation gives us a direct method to compute the pressure: we can change
temperature T (by controlling βg ) in a non-equilibrium transformation!
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Pressure with Jarzynski’s relation

Jarzynski’s relation gives us a direct method to compute the pressure: we can change
temperature T by controlling the parameter βg in a non-equilibrium transformation!

The difference of pressure between two temperatures T and T0 is

p(T )

T 4
−

p(T0)

T 4
0

=

(
Nt

Ns

)3

log〈e−WSU(Nc ) 〉

with WSU(Nc ) being the “work” made on the system:

WSU(Nc ) =

N−1∑
n=0

[
SW (β

(n+1)
g , Û)− SW (β

(n)
g , Û)

]
;

here SW is the standard Wilson action and Û is a configuration of SU(Nc ) variables on the links
of the lattice.

Trace of the energy-momentum tensor, energy density and entropy density are obtained by

∆

T 4
= T

∂

∂T

( p

T 4

)
ε = ∆ + 3p s =

∆ + 4p

T

Alessandro Nada (DESY) The e.o.s. with non-equilibrium methods 23/05/2018



Pressure with Jarzynski’s relation

Jarzynski’s relation gives us a direct method to compute the pressure: we can change
temperature T by controlling the parameter βg in a non-equilibrium transformation!

The difference of pressure between two temperatures T and T0 is

p(T )

T 4
−

p(T0)

T 4
0

=

(
Nt

Ns

)3

log〈e−WSU(Nc ) 〉

with WSU(Nc ) being the “work” made on the system:

WSU(Nc ) =

N−1∑
n=0

[
SW (β

(n+1)
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Equilibrium thermodynamics in Yang-Mills theories

For YM thermodynamics highly precise determinations are relatively easy and available at high
temperatures

→ precision studies can be performed and compared with other theoretical tools

I low-temperature phase (T < Tc ) → description in terms of a gas of massive, non-interacting hadrons →
HRG model in QCD

even more dramatic for pure Yang-Mills theories - lattice data in the confining region have been compared
in detail with the prediction of a glueball gas with an Hagedorn spectrum [Meyer, 2009; Borsányi et al.,
2012; Caselle et al., 2015, Alba et al., 2016]

I deconfined phase (T < Tc ) → high temperatures are accessible → connection to perturbative regime
(e.g. HTL), approach to Stefan-Boltzmann limit
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The SU(3) equation of state

The equation of state of the SU(3) Yang-Mills theory has been computed in the last few years
using different methods.

The most recent determinations have been obtained

I using a variant of the integral method [Engels et al., 1990] in [Borsànyi et al., 2012]

→ the primary observable is the trace of the energy-momentum tensor, results up to
1000Tc

I using a moving frame [L. Giusti and M. Pepe, 2016]

→ the primary observable is the entropy density (extracted from the off-diagonal
components of the energy-momentum tensor computed with shifted boundary conditions),
results up to 230Tc

I using the gradient flow [Kitazawa et al., 2016]

→ the components of Tµν are directly accessible

An high-precision determination of the SU(3) e.o.s. is an excellent benchmark for any new
technique
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SU(3) pressure across the deconfinement transition, for different values of Nt , with Jarzynski’s equality
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SU(3) pressure - continuum extrapolation
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SU(3) trace anomaly
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SU(3) entropy density
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SU(3) energy density
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SU(3) pressure - confining phase
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Conclusions

Jarzynski’s equality provides a new technique to compute directly the pressure on the lattice with
Monte Carlo simulations.

I efficient: intuitively we are exploiting the autocorrelation, since the average is not taken
across all configurations, but only on the different realizations

I but also flexible: we can not only increase nr , but also N, (i.e. going closer to a reversible
transformation)

Good agreement with former SU(3) e.o.s. determinations (with completely different methods!),
although errors are very small and so some discrepancies are quite severe

I possibly due to a combination of (technical) factors

State of the art computations in full QCD (with staggered quarks) are very precise and already
available for a large range of T , but several challenges remain!

I a determination with physical quark masses using Wilson fermions is still beyond current
capabilities

I new techniques will provide independent checks and may have a central role in improving the
efficiency of lattice calculations
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Thank you for your attention!
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An experimental test

An experimental test of Jarzynski’s equality was performed in 2002 by Liphardt et al. by
mechanically stretching a single molecule of RNA between two conformations.

The irreversible work trajectories (via the non-equilibrium relation) provide the result obtained
with reversible stretching.
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Extended to non-isothermal transformations [Chatelain, 2007] (the temperature takes the role of
λ) 〈

exp

(
−

N−1∑
n=0

{
Hλn+1

[φn]

Tn+1
−

Hλn [φn]

Tn

})〉
=

Z(λN ,TN )

Z(λ0,T0)
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Applications beyond the equation of state

I In principle there are no obstructions to the derivation of numerical methods based on
Jarzynski’s relation for fermionic algorithms, opening the possibility for many potential
applications in full QCD

I the free energy density in QCD with a background magnetic field B, to measure the
magnetic susceptibility of the strongly-interacting matter.

I the entanglement entropy in SU(Nc ) gauge theories

I studies involving the Schrödinger functional: Jarzynski’s relation could be used to compute
changes in the transition amplitude induced by a change in the parameters that specify the
initial and final states on the boundaries.
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Dominant realizations

Picture taken from [Jarzynski (2006)]

The work is statistically distributed on ρ(W ); however the trials that dominate the exponential
average are in the region where g(W ) = ρ(W )e−βW has the peak.

Alessandro Nada (DESY) The e.o.s. with non-equilibrium methods 23/05/2018



Work distributions
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Work distributions
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Pressure renormalization

The pressure is normalized to the value of p(T ) at T = 0 in order to remove the contribution of
the vacuum. Using the ’integral method’ the pressure can be rewritten (relative to its T = 0
vacuum contribution) as

p(T )

T 4
= −Nt

4
∫ β

0
dβ′ [3(Pσ + Pτ )− 6P0]

where Pσ and Pτ are the expectation values of spacelike and timelike plaquettes respectively and
P0 is the expectation value at zero T .

Using Jarzynski’s relation one has to perform another transformation βi → βf but on a symmetric
lattice, i.e. with lattice size Ñ4

s instead of Nt × N3
s . The finite temperature result is then

normalized by removing the T = 0 contribution calculated this way.

p(T )

T 4
=

p(T0)

T 4
0

+

(
Nt

Ns

)3

ln

〈
exp

[
−WSU(Nc )(β

(0)
g , βg )Nt×N3

s

]〉
〈

exp
[
−WSU(Nc )(β

(0)
g , βg )

Ñ4

]〉γ
with γ =

(
N3

s × N0

)
/Ñ4.
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A few more observations:

I we can always verify the convergence of the method to the correct result by performing
transformations in reverse and comparing the results

I with these checks we can look for systematic errors → especially useful close to the transition

I suitable choices of N and nr provide high-precision results while keeping the expected
discrepancies under control

I even with a limited amount of configurations it is possible to extract precise results
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The integral method

The pressure p in the thermodynamic limit equals the opposite of the free energy density

p ' −f =
T

V
log Z(T ,V )

A widely used technique to estimate it on the lattice is the “integral method” [Engels et al., 1990]

p(T ) =
1

a4

1

Nt N3
s

∫ βg (T )

0
dβ′g

∂ log Z

∂β′g

where the integrand is calculated from plaquette expectation values.

An additive renormalization in the form of a subtraction of T = 0 plaquette expectation values is
required for each β

p(T )

T 4
−

p(T0)

T 4
0

= 6Nt
4
∫ β(T )

β(T0)
dβ′ (〈Up〉T − 〈Up〉0)

and so the primary observable is the trace of the energy momentum tensor ∆ = Tµµ

∆(T )

T 4
= −N4

t
∂β

∂ log a
[6 (〈Up〉T − 〈Up〉0)]
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Thermodynamics from the gradient flow

Yang-Mills gradient flow [Luscher, 2010], [Naranayan and Neuberger,2006]

Small-t expansion relates non-zero t observables with the renormalized observables of the original
theory [Luscher and Weisz,2011]

Õ(t, x) −→
t→0

∑
i

ci (t)OR
i (x)

In the case of the energy-momentum tensor (see also [Del Debbio,Patella and Rago,2017]), one can
build [Suzuki, 2013]

Tµν(x , t) =
1

αŨ (t)
Ũµν(t, x) +

δµν

4αẼ (t)

(
Ẽ(t, x)− 〈Ẽ(t, x)〉0

)
where Ẽ(t, x) and Ũµν(t, x) are dimension-4 gauge invariant operators.
From the t → 0 extrapolation

T R
µν = lim

t→0
Tµν(x , t)

one can extract, for example

ε = −〈T R
00(x)〉 p =

1

3

3∑
i=1

〈T R
ii (x)〉

Double extrapolation (in a and t) is required.
First study with Wilson fermions available [Taniguchi et al.,2017]
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Thermodynamics in a moving frame

Main idea: in relativistic thermal theories the entropy is proportional to the total momentum of
the system as measured by a moving reference system

I shifted boundary conditions are imposed:

Uµ(Lt ,~x) = Uµ(0,~x − Lt
~ξ )

I the temperature of the system is now given by

T =
1

Lt

√
1 + ~ξ2

I in this context new Ward identities can be derived (see also work on the renormalization of the
energy-momentum tensor [Giusti and Pepe,2015])

In particular one can extract the entropy density s(T ) [Giusti and Meyer,2013]

s(T ) = −
Lt (1 + ~ξ2)

3
2

ξk
〈T0k 〉~ξ ZT

where ZT is a renormalization constant that has to be computed separately

ZT (g2
0 ) = −

∆f

∆ξk

1

〈T0k 〉~ξ

opening the possibility for a study of the e.o.s. [Giusti and Pepe, 2014]

An implementation to fermionic degrees of freedom is ongoing [Dalla Brida et al., 2017].
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SU(3) pressure
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SU(3) - continuum, using Jarzynski's relation

SU(3) - continuum, using integral method [JHEP 07 (2012) 056]

SU(3) - continuum, using moving frame [Phys. Lett. B769 (2017) 385–390]
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