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Free-energy differences in LGTs

In lattice gauge theories the expectation values of a large set of physical quantities is naturally
related to the computation (via Monte Carlo simulations) of free-energy differences (or,
equivalently, of ratios of partition functions).

> free-energy of interfaces, 't Hooft loops, magnetic susceptibility, entanglement entropy...

> the pressure (— the equation of state)

0
130 170 210 250 290 330 370
Continuum results with 2 + 1 dynamical quark flavours at physical quark masses with HISQ [HotQCD, 2014]
and stout [Wuppertal-Budapest, 2014] actions
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Free-energy differences in LGTs

In lattice gauge theories the expectation values of a large set of physical quantities is naturally
related to the computation (via Monte Carlo simulations) of free-energy differences (or,
equivalently, of ratios of partition functions).

> free-energy of interfaces, 't Hooft loops, magnetic susceptibility, entanglement entropy...

> the pressure (— the equation of state)

In general, the calculation of AF is a computationally challenging problem, since it usually
cannot be performed directly.

> ‘“integral method”: computing first the derivative of the free energy with respect to some

parameter, and then integrate
ol
f ~ / ar2lez
oA

> reweighting

> snake algorithm
Z(V) _ ZQN) Z(in)  Z(M)

Z()  Z(w) T Z(0) Tz

Jarzynski's equality may provide a more efficient and intuitive method
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The Second Law of Thermodynamics

We start from the Clausius inequality

that for isothermal transformations becomes

If we use
Q= AE— W (First Law)
FE E_sT

the Second Law becomes

where the equality holds for reversible processes.
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The Second Law of Thermodynamics

We start from the Clausius inequality

that for isothermal transformations becomes

If we use
Q= AE— W (First Law)
FE E_sT

the Second Law becomes

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that the former relation (valid
for a macroscopic system) becomes

(W) > AF
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Let's consider a system with Hamiltonian H) parametrized by A. Partition function and free
energy are

ZA(T):/dFe_ﬂHA(r) Fa(T) = —=B"1InZ\(T)

The transformation is defined as an evolution of the system driven by a discrete/continuous
variation of A between the initial and final values

The crucial quantity is the work performed on the system

W= / dt,\aHA

tj

(this is not arbitrary: H = )\BA +T —I_ can be identified with the First Law of Thermodynamics)

This is repeated in order to have an ensemble of realizations of this process: for each of them W
is computed
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Jarzynski's equality

Now we can precisely state the non-equilibrium equality [Jarzynski, 1997]

<exp (_ W(A_Ii_, )\f))> — exp (_ F(Xr) ; F(Af))

> It relates the exponential statistical average of the work done on a system over several realizations of the
(non-equilibrium) transformation with the difference between the initial and the final free energy of the

system.

> In general, the evolution of the system is performed by changing continuously (as in real time
experiments) or discretely (as in MC simulations) a chosen set of one or more parameters

> At the beginning of each transformation the system must be at equilibrium
In each step of the process the value of X is changed and the system is driven out of equilibrium

v
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Jarzynski's equality

Now we can precisely state the non-equilibrium equality [Jarzynski, 1997]

<exp (_ W(A_Ii_, )\f))> — exp (_ F(Xr) ; F(Af))

> It relates the exponential statistical average of the work done on a system over several realizations of the
(non-equilibrium) transformation with the difference between the initial and the final free energy of the
system.

> In general, the evolution of the system is performed by changing continuously (as in real time
experiments) or discretely (as in MC simulations) a chosen set of one or more parameters

> At the beginning of each transformation the system must be at equilibrium
In each step of the process the value of X is changed and the system is driven out of equilibrium

This result can be derived for
» Langevin evolution
> molecular dynamics

» Monte Carlo simulations
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Relation with the Second Law

It is instructive to see how this result is connected with the Second Law of Thermodynamics

Starting from Jarzynski's equality

and using Jensen’s inequality
(expx) > exp(x)

(valid for averages on real x) we get
() = (oo (7)) 20 (-F)
exp|—— ) =(exp|—— exp [ ——=
PAUTT PATT )/ =TT

(W) > AF

from which we have

In this sense Jarzynski's relation can be seen as a generalization of the Second Law.
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Jarzynski's equality in a Monte Carlo simulation
(o (20522)) - (-5)
exp T = exp T

1. the non-equilibrium transformation begins by changing A with some prescription (e.g. a linear one)
Ao = A1 = Ao + AA

2. we compute the “work”
H/\nJrl [¢n] - H)\n [¢n]

3. after each change, the system is updated using the new value — driving the system out of equilibrium!

Antl
[$a] =5 [$ni1]
4. the total work W(Xo, Ay) made on the system to change A using N steps is

N—1

W, A) = 3 (Ha,y (90l = Ha,[é0])

n=0

5. at the end, we create a new initial state ¢o and we repeat this transformation for n, realizations
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Jarzynski's equality in a Monte Carlo simulation
(o (20522)) - (-5)
exp T = exp T

1. the non-equilibrium transformation begins by changing A with some prescription (e.g. a linear one)
Ao = A1 = Ao + AA

2. we compute the “work”
H/\nJrl [¢n] - H)\n [¢n]

3. after each change, the system is updated using the new value — driving the system out of equilibrium!

Ant1
[én] = [$n1]
4. the total work W(Xo, Ay) made on the system to change A using N steps is

N—1

W, A) = 3 (Ha,y (90l = Ha,[é0])

n=0

5. at the end, we create a new initial state ¢o and we repeat this transformation for n, realizations

The (...) indicates that we have to take the average on all possible realizations of the transformation
— it must be repeated several times to obtain convergence to the correct answer!

We can check the convergence by looking for discrepancies between the 'direct’ (Aj — Af) and 'reverse’
(Af — i) transformations
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Two special cases

Two insightful limits of Jarzynski's equality:

> the limit of N — oco: now the transformation is infinitely slow and the the system is always
at equilibrium. The switching process is reversible: no energy is dissipated and thus

W = AF

— this is the case of thermodynamic integration — a common way to estimate p on the
lattice is by the “integral method” [Engels et al., 1990]

p(T) =

11 /55(T)d,8logz
a* Ne N3 Jo & apy

where the integrand is calculated from plaquette expectation values.
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Two special cases

Two insightful limits of Jarzynski's equality:

> the limit of N — oco: now the transformation is infinitely slow and the the system is always
at equilibrium. The switching process is reversible: no energy is dissipated and thus

W = AF

— this is the case of thermodynamic integration — a common way to estimate p on the
lattice is by the “integral method” [Engels et al., 1990]

1 1 Bg(T) log Z
p(T) = / ap, 2108
0

a* Ne N3 & apy
where the integrand is calculated from plaquette expectation values.
> the limit of N = 1: now the system is driven instantly to the final state and no updates are

performed on the system after the parameter A\ has been changed
— this is the reweighting technique.
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Pressure on the lattice

The thermal properties of QCD and QCD-like theories are particularly well suited for being
studied on the lattice, due to non-perturbative nature of the deconfinement transition.

The pressure p in the thermodynamic limit equals the opposite of the free energy density
T
p~—f= v log Z(T, V)

On the lattice, the temperature T is the inverse of the temporal extent,

s t__1
Le  a(Bg)N:

and it can be controlled by the inverse coupling ;.

Jarzynski’s relation gives us a direct method to compute the pressure: we can change
temperature T (by controlling 8;) in a non-equilibrium transformation!
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Pressure with Jarzynski's relation

Jarzynski's relation gives us a direct method to compute the pressure: we can change
temperature T by controlling the parameter 3¢ in a non-equilibrium transformation!

The difference of pressure between two temperatures T and Ty is

3
@ _ L-,;O) — (&) |0g<e_WSU(NC)>
T4 TO Ns

with Wgy(p,) being the “work” made on the system:
N—1 )
Wsumnv) = D [Sw(ﬂé"+ )0y - sw(B", U)] ;
n=0

here Sy is the standard Wilson action and U is a configuration of SU(N.) variables on the links
of the lattice.
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Pressure with Jarzynski's relation

Jarzynski's relation gives us a direct method to compute the pressure: we can change
temperature T by controlling the parameter 3¢ in a non-equilibrium transformation!

The difference of pressure between two temperatures T and Ty is

3
@ _ L-,;O) — (&) |0g<e_WSU(NC)>
T4 TO Ns

with Wgy(p,) being the “work” made on the system:
N—1 )
Wsumnv) = D [Sw(ﬂé"+ )0y - sw(B", U)] ;
n=0

here Sy is the standard Wilson action and U is a configuration of SU(N.) variables on the links
of the lattice.

Trace of the energy-momentum tensor, energy density and entropy density are obtained by

A 0 p _ _A+i4p
7= 57 (%) c=A+3p  s= T
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Equilibrium thermodynamics in Yang-Mills theories

For YM thermodynamics highly precise determinations are relatively easy and available at high
temperatures

— precision studies can be performed and compared with other theoretical tools

> low-temperature phase (T < T.) — description in terms of a gas of massive, non-interacting hadrons —
HRG model in QCD
even more dramatic for pure Yang-Mills theories - lattice data in the confining region have been compared
in detail with the prediction of a glueball gas with an Hagedorn spectrum [Meyer, 2009; Borsanyi et al.,
2012; Caselle et al., 2015, Alba et al., 2016]
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Equilibrium thermodynamics in Yang-Mills theories

For YM thermodynamics highly precise determinations are relatively easy and available at high
temperatures

— precision studies can be performed and compared with other theoretical tools

> low-temperature phase (T < T.) — description in terms of a gas of massive, non-interacting hadrons —
HRG model in QCD
even more dramatic for pure Yang-Mills theories - lattice data in the confining region have been compared
in detail with the prediction of a glueball gas with an Hagedorn spectrum [Meyer, 2009; Borsanyi et al.,
2012; Caselle et al., 2015, Alba et al., 2016]

> deconfined phase (T < T.) — high temperatures are accessible — connection to perturbative regime
(e.g. HTL), approach to Stefan-Boltzmann limit
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The SU(3) equation of state

The equation of state of the SU(3) Yang-Mills theory has been computed in the last few years
using different methods.

The most recent determinations have been obtained

> using a variant of the integral method [Engels et al., 1990] in [Borsanyi et al., 2012]

— the primary observable is the trace of the energy-momentum tensor, results up to
10007,

> using a moving frame [L. Giusti and M. Pepe, 2016]

— the primary observable is the entropy density (extracted from the off-diagonal
components of the energy-momentum tensor computed with shifted boundary conditions),
results up to 2307,

> using the gradient flow [Kitazawa et al., 2016]

— the components of T, are directly accessible

An high-precision determination of the SU(3) e.o.s. is an excellent benchmark for any new
technique
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SU(3) pressure across the deconfinement transition, for different values of N, with Jarzynski's equality
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SU(3) pressure - continuum extrapolation
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SU(3) trace anomaly
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SU(3) entropy density
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SU(3) energy density
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H>4 SU(3) - continuum, using integral method [JHEP 07 (2012) 056]
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SU(3) pressure - confining phase
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Conclusions

Jarzynski's equality provides a new technique to compute directly the pressure on the lattice with
Monte Carlo simulations.

» efficient: intuitively we are exploiting the autocorrelation, since the average is not taken
across all configurations, but only on the different realizations

> but also flexible: we can not only increase n,, but also N, (i.e. going closer to a reversible
transformation)
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Conclusions

Jarzynski's equality provides a new technique to compute directly the pressure on the lattice with
Monte Carlo simulations.

» efficient: intuitively we are exploiting the autocorrelation, since the average is not taken
across all configurations, but only on the different realizations

> but also flexible: we can not only increase n,, but also N, (i.e. going closer to a reversible
transformation)

Good agreement with former SU(3) e.o.s. determinations (with completely different methods!),
although errors are very small and so some discrepancies are quite severe

> possibly due to a combination of (technical) factors
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Conclusions

Jarzynski's equality provides a new technique to compute directly the pressure on the lattice with
Monte Carlo simulations.

» efficient: intuitively we are exploiting the autocorrelation, since the average is not taken
across all configurations, but only on the different realizations

> but also flexible: we can not only increase n,, but also N, (i.e. going closer to a reversible
transformation)

Good agreement with former SU(3) e.o.s. determinations (with completely different methods!),
although errors are very small and so some discrepancies are quite severe

> possibly due to a combination of (technical) factors

State of the art computations in full QCD (with staggered quarks) are very precise and already
available for a large range of T, but several challenges remain!
> a determination with physical quark masses using Wilson fermions is still beyond current
capabilities
> new techniques will provide independent checks and may have a central role in improving the
efficiency of lattice calculations
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Thank you for your attention!
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An experimental test

An experimental test of Jarzynski's equality was performed in 2002 by Liphardt et al. by
mechanically stretching a single molecule of RNA between two conformations.

The irreversible work trajectories (via the non-equilibrium relation) provide the result obtained
with reversible stretching.

Trap < Trap bead
Laser
trap Handle
RNA
/ molecule
®
Actuator
bead

Actuator

g
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Extended to non-isothermal transformations [Chatelain, 2007] (the temperature takes the role of

)
W (Hay (0] Hy, [60] Z(\w, Tw)
<eXP < 2 { To1  Ta }>> " Z(%, To)

n=0
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Applications beyond the equation of state

> In principle there are no obstructions to the derivation of numerical methods based on
Jarzynski's relation for fermionic algorithms, opening the possibility for many potential
applications in full QCD

> the free energy density in QCD with a background magnetic field B, to measure the
magnetic susceptibility of the strongly-interacting matter.

> the entanglement entropy in SU(N.) gauge theories

> studies involving the Schrédinger functional: Jarzynski's relation could be used to compute
changes in the transition amplitude induced by a change in the parameters that specify the
initial and final states on the boundaries.
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Dominant realizations

p(W)

wh w w

Picture taken from [Jarzynski (2006)]

The work is statistically distributed on p(W); however the trials that dominate the exponential
average are in the region where g(W) = p(W)e=8W has the peak.
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Work distributions

723 -1000 steps

18
direct (60 exp)
16 + reverse (60 exp) mmmmm
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w

Total work W distributions for realizations of the transformation: 8 = 2.4158 «» 2.4208.

Vertical lines indicate the value of AF obtained from these trials.
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Work distributions

723 -500 steps

25
direct (100 exp) mmmmm
reverse (100 exp)
20 +
g 15
C
[
3
g
F 10 o
5 -
0 + T T
42618 42620 42622 42624 42626 42628 42630 42632 42634

W

Total work W distributions for realizations of the transformation: 8 = 2.4158 «» 2.4208.

Vertical lines indicate the value of AF obtained from these trials.
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Work distributions

723 - 250 steps
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direct (250 exp)
35 reverse (250 exp) mmmmm
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Total work W distributions for realizations of the transformation: 8 = 2.4158 «» 2.4208.

Vertical lines indicate the value of AF obtained from these trials.
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Work distributions
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Total work W distributions for realizations of the transformation: 8 = 2.4158 «» 2.4208.

Vertical lines indicate the value of AF obtained from these trials.
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Pressure renormalization

The pressure is normalized to the value of p(T) at T = 0 in order to remove the contribution of
the vacuum. Using the 'integral method’ the pressure can be rewritten (relative to its T =0
vacuum contribution) as

p(T) _
Tt

B
—Nt“/o dB’ [3(Ps + Pr) — 6P0]

where P, and P; are the expectation values of spacelike and timelike plaquettes respectively and
Py is the expectation value at zero T.

Using Jarzynski's relation one has to perform another transformation 5; — 3¢ but on a symmetric
lattice, i.e. with lattice size N? instead of Ny x N3. The finite temperature result is then
normalized by removing the T = 0 contribution calculated this way.

p(T) _ p(To) n (&)3 n <e><p [—WsU(NC)(ﬁéo)aﬁg)Nthg]>
™ T3 Ns <eXP [— WSU(NC)(IBéO):,Bg)K,4i|>W

with v = (N3 x No) /N*.
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A few more observations:

>

we can always verify the convergence of the method to the correct result by performing
transformations in reverse and comparing the results

with these checks we can look for systematic errors — especially useful close to the transition

suitable choices of N and n, provide high-precision results while keeping the expected
discrepancies under control

even with a limited amount of configurations it is possible to extract precise results
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The integral method

The pressure p in the thermodynamic limit equals the opposite of the free energy density

T
p~—f= VlogZ(T, V)

A widely used technique to estimate it on the lattice is the “integral method” [Engels et al., 1990]

p(T) =

1 1 /Bg(T) , Olog Z
a* Ne N3 Jo € 0By
where the integrand is calculated from plaquette expectation values.

An additive renormalization in the form of a subtraction of T = 0 plaquette expectation values is
required for each 8

B(T)
P(T) @ = 6Nt44 ' ds’ ((Up) 1 — (Us)o)

(To)

and so the primary observable is the trace of the energy momentum tensor A = T,

A(T) _ 08

T4 t dloga (6 ((Us) T — (Up)o)]
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Thermodynamics from the gradient flow

Yang-Mills gradient flow [Luscher, 2010], [Naranayan and Neuberger,2006]

Small-t expansion relates non-zero t observables with the renormalized observables of the original
theory [Luscher and Weisz,2011]

0(t.x) =3 > ai(1)OF ()

In the case of the energy-momentum tensor (see also [Del Debbio,Patella and Rago,2017]), one can
build [Suzuki, 2013]

Oy (20 + 722 (E(t,x) — (E(t,x))o)

1
Tow(x, t) = ———
w (1) af dag(t)

o(t)

where E(t,x) and U, (t, x) are dimension-4 gauge invariant operators.
From the t — 0 extrapolation
R .
T = tlm) Tuv(x,t)

one can extract, for example

= (TR p=3 I (THG)

Double extrapolation (in a and t) is required.
First study with Wilson fermions available [Taniguchi et al.,2017]
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Thermodynamics in a moving frame

Main idea: in relativistic thermal theories the entropy is proportional to the total momentum of
the system as measured by a moving reference system

> shifted boundary conditions are imposed:
Up(Le, %) = Un(0,% = Le€)
> the temperature of the system is now given by
1

Ley/1+ €2

> in this context new Ward identities can be derived (see also work on the renormalization of the
energy-momentum tensor [Giusti and Pepe,2015])

T=

In particular one can extract the entropy density s(7) [Giusti and Meyer,2013]

L1+ @)

s(T) = (To) g ZT
&k ¢
where Z7 is a renormalization constant that has to be computed separately
Af 1
Zr(gg) =

A& (Tow)g

opening the possibility for a study of the e.o.s. [Giusti and Pepe, 2014]

An implementation to fermionic degrees of freedom is ongoing [Dalla Brida et al., 2017].
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SU(3) pressure
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