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EMPIRICAL RESULTS ?

Static	properties

Dynamics?
Synchronized	and	rapid	changes
of	direction	of	the	whole	group?

The	first	set	of	large-scale	data	on	3D	animal	aggregations:

2008:	Rome	group	 up	to	2700	starlings	in	the	field

3D	positions	ri and	velocities	vi of	all	birds	in	a	compact	flock
at	one	moment	of	time	are	obtained	using	stereoscopy

Typical	flocking	model:
attraction,	repulsion,	alignment





Experiments

o Natural	flocks	of	starlings	making	turns	above	a	roosting	place	in	Rome	

o Experiments	are	performed	using	stereo	photography	with	three	different	view	points

Experimental	setup



3D	trajectories	of	collective	turns

GReTA	– tracking	algorithm,	IEEE	trans.	Pattern	anal.	Mach.	Intell.	(2015)

o 12	turning	flocks	of		50	to	600	starlings	above	a	roosting	place	in	Rome	

o 3D	trajectories	of	individual birds	for	the	entire duration of	a	turning	event	(>5s)



Birds	ranking
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Turn	starts	localized	and	then	
it	propagates	across	the	flock
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Rank	birds	according	to	their	mutual	turning	delays		τij



Ranking	curves
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rank				= (density	ρ	)	x (distance	traveled	by	the	turn	x)	3

x(t) = rank(t)
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If	the	turn	starts	localized	then:

rank:	1

rank:	2-8

rank:	9-38
€ 

x

Ranking	and	propagation	in	space																																							
(searching	for	dispersion	law)
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Dispersion	law	:	linear	propagation	of	the	turn
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cs

x = cs t

cs =	speed	of	propagation	of	the	
turn	across	the	flock



Dispersion	law	:	linear	propagation	of	the	turn
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€ 

cs

cs =	speed	of	propagation	of	the	
turn	across	the	flock

o Linear	(sound-like)	propagation	of	the	turn	(direction)

o Very	weak	attenuation	of	the	turning	signal	(no	damping)

o Variability	of	the	speed	of	propagation	cS				(20-40	ms-1)

Not	explained	by	the	
standard	theory	of	flocking!!

(	predicts	diffusive	and	damped	
spread	of	information	)

x = cs t



nearest neighbors distance 
( density )

Making	sense	of	the	variability	of	cS …

attempt		#2:

number of birds in the flock
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Flock-to-flock	variability	of	cs



Standard	theory	of	flocking
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o High	polarization	(low	T)	– spin	wave	expansion:
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What	is	wrong?

but	turns	are	smooth!

To	change	direction,	the	bird	has	some	
constraints:	mass,	size,	wings,	etc.

o Standard	theory:	 o Real	bird:

The	force	acts	on	velocity,
birds	can	turn	instantaneously	time	t

time	t+dt ϑ i

€ 

R

time	t

1)			Missing	conservation	law

2)			No	inertia

Rotational	symmetry	of	the	Hamiltonian

Conservation	law	which	affects	the	dynamics	!

vi = ve
iϕi ϕi →ϕi + dϕ

(all	flight	directions	are	equivalent)

(	and	dispersion	law!	)



New		(superfluid)		theory	of	flocking
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=		momentum	conjugated	to															,	i.e.	generator	of	the	rotations	around	z-axis	(SPIN)				

=		generalized	moment	of	inertia

ϕ(x, t) =		parametrizes	rotations	of	velocities
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Predictions	of	the	superfluid	theory
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The	alignment	coupling		J		has	been	related	to	the	polarization

the	speed	of	propagation	of	the	turn	across	the	flock
must	be	larger	in	more	ordered	flocks

And																																	is	experimentally	accessible!

Bialek et	al.	PNAS	(2012)
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Φ
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ω = csk

€ 

x = cs t linear	dispersion	law
no	damping

equation	for	the	orientation	
angle	change	during	the	turn



Experimental	test	of	the	prediction

cs ∝
1
1−Φ

P = 3.1×10−4

R2 = 0.74

Nature	Physics	(2014)



Why	natural	groups	are	so	polarized?

wavefront

The	group	is	fragile	
during	the	decision

fast	information	transfer	keeps	
group’s	decoherence	to	a	minimum

to	achieve	large	speed	of	propagation	of	the	
information,	strong	polarization	is	necessarycs ∝

1
1−Φ

The	link	between	swift	decision-making	and	large	polarization	may	be	the	evolutionary	
drive	behind	the	strong	ordering	observed	in	many	living	groups



The	Inertial	Spin	Model
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noise

rotational	
dissipation

si

vi vj
sj

Model	G

Connection	between	inertial	terms	and	symmetry	is	automatically	implemented
giving	correct	information	propagation

A	new	model	for	self-organized	collective	motion
(from	phases	to	velocities,	full	3D	rotation)

inertial	term
centripetal	

term

dissipation
social	force

noise

Vicsek	model



Inertial	Spin	Model	- simulations

Overdamped	regimeUnderdamped	regime

correct	information	propagation Vicsek	model



Why	and	how	did	the	turn	start?

As	a	response	to	an	external	alarm	cue?				Not	necessarily

² locusts - in	the	lab	and	in	the	field																																					Buhl	et	al.	Science	(2006)

² fish schools - collective	evasion	maneuvers	(lab)												Rosenthal	et	al.	PNAS	(2015)

² starlings	aerial display - flocks	keep	changing	their	direction	of	motion																																																						
even	in	the	absence	of	predators	or	obstacles

Collective	directional	switching	can	be	triggered	spontaneously
without	changes	in	the	external	environment

² Where	it	starts?																		
individuals	close	to	the	border

² What	triggers	the	turn?			
internal	behavioural fluctuations

Roy.	Soc.	Interface	(2015)



What	triggers	spontaneous	turns?
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There	is	a	correlation	between	the	location	of	an	
individual	in	the	flock	and	how	persistently	it	deviates

Roy.	Soc.	Interface	(2015)



What	triggers	spontaneous	turns?
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Why	turns	occur	spontaneously	and	often?

Standard	Heisenberg	model	on	a	lattice: the	system	changes	global	state	
on	large	scales

What	is	different	in	flocks?

the	network	is	random	
interactions	are	NOT	symmetric

peripheral	clusters	are	more	sensitive	to	noise
leading	to	collective	changes	to	state

Phys.	Rev.	Lett.	(2017)



Spontaneous	turns	determined	by	interaction	network

Dynamics	on	a	random	Euclidean	network?
- points	drawn	uniformly	in	Euclidean	space	instead	on	a	regular	lattice
- place	the	birds/spins	and	let	them	interact	with	their	nc nearest	neighbours

turns	start	at	the	
boundary	where	both	ci

and	u0i are	large

clustering	
coefficient	ci

eigenvalue	
centrality	u0i

ranking

turn	
propagation

² fish:		large	ci	 of	initiators	of	collective	evasion	waves	in	fish	schools																 Rosenthal	et	al.	PNAS	(2015)

² starlings:			turns	start	from	the	tips;																																																									Attanasi et	al.	Roy.	Soc.	Interface	(2015)	
initiators	exhibit	systematic	fluctuations	

Experimental	confirmation:	

Phys.	Rev.	Lett.	(2017)

When interactions are nonsymmetric, detailed balance is
not obeyed and we can expect off-equilibrium features
[16,33]. Besides, nij is now a random matrix belonging to
the class of non-Hermitian Euclidean random matrices
[34,35], with nontrivial spectral properties. The NERH
model might therefore lead to novel dynamical behavior.
Let us now use Eqs. (2) and (3) to investigate the

relaxation properties of the model. Contrary to the sym-
metric case, both nij and Λij have right and left eigenvec-
tors that behave differently. In particular, u0 is not a
constant vector and depends on the specific network
considered. Different networks have different u0, different
D, and, consequently, different relaxation properties. To
explore Eqs. (2) and (3) we have therefore generated many
samples of NERH networks of size N. Each network was
obtained by drawing at randomN points in a 3d sphere, and
building the asymmetric spin-spin interaction graph as
discussed above. For each network, we computed numeri-
cally u0 (see Supplemental Material [21]), and evaluated
the diffusion coefficient as defined in Eq. (2). Then, given a
network, we performed a numerical simulation of its
dynamical evolution (Eq. (1) and Supplemental Material
[21]). We considered the system in the low temperature
region (M ∼ 0.98) and evaluated the relaxation time τ as the
time where hjδ ~M⊥ðtÞj2i ∼Oð1Þ [see Fig. 1(a)]. In Fig. 1(b)
we plot the relaxation time (computed from the dynamics)
as a function of the diffusion coefficient (computed from
the network) for networks with N ¼ 1000. This figure
shows that the relaxation time indeed scales inversely with
the diffusion coefficient, independently of the dissipative or
reversible character of the dynamics, as predicted by
Eqs. (2) and (3) (with larger error bars in the overdamped
case, see Supplemental Material [21]).
The relaxation time of the system thus crucially depends

on the properties of u0, the left eigenvector. In particular,

u0i—also known as the eigenvalue centrality of node
i [36]—can vary from node to node determining different
contributions to the global fluctuations. If u0 is extended
(similarly to what happens in a regular lattice) then
centrality is homogeneously distributed through the net-
work, D ∼ 1=N and the relaxation time is proportional to
the size N of the system. If, however, u0 is localized on a
finite subset of nodes, the diffusion coefficient could be
substantially larger leading to much shorter relaxation
times. The distribution of D in the network ensemble for
N ¼ 1000, nc ¼ 6 is plotted in Fig. 1(c). This distribution
has a large main peak centered on the value D ∼ 1=N
indicating that most of the networks behave in a homo-
geneous manner and have a small diffusion coefficient, as
in the Heisenberg model on a regular lattice. There are,
however, a few networks with a substantially larger
diffusion coefficient, corresponding to the secondary peak
of the distribution. The homogenous networks with smallD
have long relaxation times, while the few ones with largeD
relax on much quicker scales.
We therefore find a bimodality in the distribution of the

diffusion coefficient and, consequently, of the relaxation
time. To understand the relevance of this result we need to
understand how the distribution PðDÞ changes with the
system size. To this aim, we have generated ensembles of
NERH networks for different values ofN ranging fromN ¼
128 to N ¼ 65536. For each ensemble of size N, we
computed the distribution PðDÞ. The resulting curves are
plotted in Fig. 2(a). What we see is that (i) the primary peak
is centered on a value of D that decreases with system size
(see inset) as would happen for symmetric networks, and
(ii) the secondary peak is instead always peaked on the same
finite value D ∼ ðd − 1ÞT=nc and its height increases with
the size N of the network. We also computed the global
probability of finding a network with finite D, defined as
the integral over the secondary peak. As can be seen from
Fig. 2(b), this probability increases with N: the occurrence
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FIG. 1. (a) Perpendicular fluctuation of the magnetization as a
function of time, for three networks with different diffusion
coefficients (underdamped dynamics). The relaxation time is the
time where hjδ ~M⊥ðtÞj2i ¼ 0.3 (black dotted line). (b) Relaxation
time vs diffusion coefficient; networks are binned in 1=D, and τ is
then averaged inside each bin (error bars are standard deviations).
(c) Probability distribution of the diffusion coefficient; we plot
the distribution of logðDÞ to better visualize the secondary peak.
NERH ensemble with N ¼ 1000 and nc ¼ 6. The parameters of
the dynamics are: J ¼ 1.2, T ¼ 0.024, χ ¼ 0.83, η ¼ 15, 30, 60
(overdamped dynamics), η ¼ 0.3 (underdamped dynamics).
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Conclusions

o Turns	start	localized,	then	spread	through	the	flock	fast	and	accurate	

o New	superfluid	theory	for	turns

o High	order	in	the	group	grants	a	more	efficient	propagation	of	information

o Non-symmetric	random	interaction	network	and	inertial	dynamics	can	
produce	spontaneous	changes of	collective	state	on	short	scales

² linear	propagation of	orientational	information,	no	damping

² why	natural	groups	are	so	polarized?

² symmetries and	conservation	laws ideas	work	in	biology	too



² GReTA -- a	novel	Global	and	Recursive	Tracking	
Algorithm	in	three	dimensions

² Flocking	and	turning:	a	new	model	for	self-
organized	collective	motion

Nature	Physics, 2014

² Information	transfer	and	behavioural	inertia	in			
starling	flocks	

Based	on

IEEE	Trans.	Pattern
Anal.	Mach.	Intell.,	2015

J.	Stat.	Phys, 2015

² Emergence	of	collective	changes	in	travel	direction	of
starling	flocks	from	individual	birds’ fluctuations

Phys.Rev.Lett.,	2015

Roy.Soc.	Interface, 2015

² Silent	flocks:	:	Constraints	on	Signal	Propagation	Across		
Biological	Groups

Phys.Rev.Lett.,	2017

² Nonsymmetric Interactions	Trigger	Collective	Swings	in								
Globally	Ordered	Systems
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