Propagation of information in turning flocks of starlings

Asja Jelić

International Centre for Theoretical Physics, Trieste, Italy

In collaboration with:
the group of Andrea Cavagna and Irene Giardina, CNR-ISC and Department of Physics, University of Rome 1 - Sapienza

Flocks of starlings vs Physics

Langevin equation: $\quad \frac{d \vec{v}_{i}}{d t}=-\frac{\partial H}{\partial \vec{v}_{i}}+\vec{\xi}_{i}$

$$
H=-J \sum_{<i j>} \vec{v}_{i}(t) \cdot \vec{v}_{j}(t) \quad \begin{gathered}
\text { Heisenberg } \\
\text { ferromagnet }
\end{gathered}
$$

Flocks of starlings vs Physics

Langevin equation: $\quad \frac{d \vec{v}_{i}}{d t}=-\frac{\partial H}{\partial \vec{v}_{i}}+\vec{\xi}_{i}$
Typical flocking model:

$$
H=-J \sum_{<i j>} \vec{v}_{i}(t) \cdot \vec{v}_{j}(t) \quad \begin{gathered}
\text { Heisenberg } \\
\text { ferromagnet }
\end{gathered}
$$

EmpIrical results ?

The first set of large-scale data on 3D animal aggregations:
Static properties

2008: Rome group up to $\mathbf{2 7 0 0}$ starlings in the field
3D positions $\boldsymbol{r}_{\mathrm{i}}$ and velocities $\boldsymbol{v}_{\mathrm{i}}$ of all birds in a compact flock at one moment of time are obtained using stereoscopy

Dynamics?

Synchronized and rapid changes of direction of the whole group?

$$
\begin{aligned}
& \text { \& }
\end{aligned}
$$

Experiments

- Natural flocks of starlings making turns above a roosting place in Rome
- Experiments are performed using stereo photography with three different view points

Experimental setup

3D trajectories of collective turns

- 12 turning flocks of 50 to 600 starlings above a roosting place in Rome
- 3D trajectories of individual birds for the entire duration of a turning event (>5s)

GReTA - tracking algorithm, IEEE trans. Pattern anal. Mach. Intell. (2015)

Birds ranking

Rank birds according to their mutual turning delays τ_{ij}

rank	delay
1	0 ms
2	35 ms
3	44 ms
4	50 ms
5	52 ms
6	54 ms
7	63 ms
8	64 ms
9	68 ms
10	70 ms
11	71 ms
\ldots	\ldots

Turn starts localized and then it propagates across the flock

Ranking curves

Ranking and propagation in space

 (searching for dispersion law)If the turn starts localized then:

Dispersion law : linear propagation of the turn

$$
x=c_{s} t
$$

$c_{s}=$ speed of propagation of the turn across the flock

Dispersion law : linear propagation of the turn

$$
x=c_{s} t
$$

$c_{s}=$ speed of propagation of the turn across the flock

- Linear (sound-like) propagation of the turn (direction)
- Very weak attenuation of the turning signal (no damping)
- Variability of the speed of propagation $c_{s} \quad\left(20-40 \mathrm{~ms}^{-1}\right)$

Not explained by the standard theory of flocking!!
(predicts diffusive and damped spread of information)

Flock-to-flock variability of c_{s}

Making sense of the variability of $c_{S} \ldots$
attempt \#1:

number of birds in the flock

Standard theory of flocking

$$
\vec{v}_{i}(t+1)=\vec{v}_{i}(t)+J \sum_{k \in i} \vec{v}_{k}(t)+\vec{\xi}_{i} \quad \frac{d \vec{v}_{i}}{d t}=-\frac{\partial H}{\partial \vec{v}_{i}}+\vec{\xi}_{i} \quad H=-J \sum_{<i j>} \vec{v}_{i}(t) \cdot \vec{v}_{j}(t)
$$

typical flocking model

- Planar order parameter:

$$
v_{i}^{x}+i v_{i}^{y}=v e^{i \varphi_{i}}
$$

- High polarization (low T) - spin wave expansion:
$a=$ lattice spacing

$$
\varphi \sim 0 \quad \square \quad H=\frac{1}{2} J \sum_{\langle i j>}\left(\varphi_{i}-\varphi_{j}\right)^{2}=\frac{1}{2 a} J \int d^{3} x[\vec{\nabla} \varphi(x, t)]^{2}
$$

equation for the orientation
angle change during the turn

$$
\frac{\partial \varphi}{\partial t}=-\frac{\delta H}{\delta \varphi}=a^{2} J \nabla^{2} \varphi
$$

$$
x \sim \sqrt{t} \quad \text { diffusive propagation }
$$

$$
\omega=i k^{2} \quad \text { damping }
$$

What is wrong?

1) Missing conservation law

Rotational symmetry of the Hamiltonian

$$
v_{i}=v e^{i \varphi_{i}} \quad \varphi_{i} \rightarrow \varphi_{i}+d \varphi
$$

(all flight directions are equivalent)

Conservation law which affects the dynamics! (and dispersion law!)
2) No inertia

- Standard theory:
$\frac{\partial \varphi}{\partial t}=a^{2} J \nabla^{2} \varphi+\xi=-\frac{\delta H}{\delta \varphi}+\xi$

- Real bird:

To change direction, the bird has some constraints: mass, size, wings, etc.

New (superfluid) theory of flocking

$$
H=\int \frac{d^{3} x}{a^{3}}\left\{\frac{1}{2} \rho_{S}[\vec{\nabla} \varphi(x, t)]^{2}+\left(\frac{s_{z}^{2}(x, t)}{2 \chi}\right\}\right)
$$

$$
\rho_{S} \equiv a^{2} J: \underset{c}{\text { coupling }}
$$

$\varphi(x, t)=$ parametrizes rotations of velocities
$s_{z}(x, t)=$ momentum conjugated to $\varphi(x, t)$, i.e. generator of the rotations around z-axis (SPIN)
$\chi=$ generalized moment of inertia

$$
\begin{aligned}
& \vec{v}=v_{x}+i v_{y}=v e^{i \varphi} \\
& \left\{\vec{v}, s_{z}\right\}=\frac{\partial \vec{v}}{\partial \varphi}=i \vec{v}
\end{aligned}
$$

Biological motivation:

$$
\begin{aligned}
R & \approx \text { const. } \\
v & \approx \text { const. }
\end{aligned}
$$

equal radius trajectories

Predictions of the superfluid theory

Equations of motion:

$$
\left\{\begin{array}{l}
\frac{\partial \varphi}{\partial t}=\frac{\delta H}{\delta s_{z}}=\frac{1}{\chi} s_{z} \\
\frac{\partial s_{z}}{\partial t}=-\frac{\delta H}{\delta \varphi}=\rho_{s} \nabla^{2} \varphi
\end{array}\right.
$$

$$
\frac{\partial^{2} \varphi}{\partial t^{2}}-\frac{\rho_{s}}{\chi} \nabla^{2} \varphi=0
$$

equation for the orientation angle change during the turn

$$
\begin{array}{ll}
x=c_{s} t & \text { linear dispersion law } \\
\omega=c_{s} k & \text { no damping }
\end{array}
$$

Speed of propagation: $c_{s}=\sqrt{\frac{a^{2} J}{\chi}}$
The alignment coupling J has been related to the polarization Φ

$$
J \propto \frac{1}{1-\Phi} \quad \text { And } \Phi=\left\|\frac{1}{N} \sum_{i} \frac{\vec{v}_{i}}{\left\|\vec{v}_{i}\right\|}\right\| \text { is experimentally accessible! }
$$

$$
c, \times \frac{1}{\sqrt{1-\phi}}
$$

the speed of propagation of the turn across the flock must be larger in more ordered flocks

Experimental test of the prediction

$$
c_{s} \propto \frac{1}{\sqrt{1-\Phi}}
$$

Why natural groups are so polarized?

The group is fragile during the decision
fast information transfer keeps
 group's decoherence to a minimum

$$
c_{s} \propto \frac{1}{\sqrt{1-\Phi}}
$$

to achieve large speed of propagation of the information, strong polarization is necessary

The link between swift decision-making and large polarization may be the evolutionary drive behind the strong ordering observed in many living groups

The Inertial Spin Model

A new model for self-organized collective motion (from phases to velocities, full 3D rotation)

$$
\begin{aligned}
& \frac{d \vec{v}_{i}}{d t}=\frac{1}{\chi} \vec{s}_{i} \times \vec{v}_{i} ; \quad \frac{d \vec{r}_{i}}{d t}=\vec{v}_{i} \\
& \frac{d \vec{s}_{i}}{d t}=\vec{v}_{i} \times\left[\frac{J}{v_{0}^{2}} \sum_{j} n_{i j} \vec{v}_{j}-\frac{\eta}{v_{0}^{2}} \frac{d \vec{v}_{i}}{d t}+\frac{\vec{\xi}_{i}}{v_{0}}\right]
\end{aligned}
$$

Model G

$$
\text { noise } \quad\left\langle\vec{\xi}_{i}(t) \cdot \vec{\xi}_{j}\left(t^{\prime}\right)\right\rangle=2 d \eta T \delta_{i j} \delta\left(t-t^{\prime}\right)
$$

Connection between inertial terms and symmetry is automatically implemented giving correct information propagation

$$
\chi \frac{d^{2} \overrightarrow{v_{i}}}{d t^{2}}+\chi \frac{\overrightarrow{v_{i}}}{v_{0}^{2}}\left(\frac{d \overrightarrow{v_{i}}}{d t}\right)^{2}+\eta \frac{d \overrightarrow{v_{i}}}{d t}=J\left(\sum_{j} n_{i j} \overrightarrow{v_{j}}\right)^{\perp}+v_{0} \vec{\xi}_{i}^{\perp} \xrightarrow[\text { limit }]{\text { overdamped }} \quad \text { Vicsek model }
$$

Inertial Spin Model - simulations

Underdamped regime

correct information propagation

Overdamped regime

Vicsek model

Why and how did the turn start?

As a response to an external alarm cue? Not necessarily
$\triangleleft \quad$ locusts - in the lab and in the field
\diamond fish schools - collective evasion maneuvers (lab)

Buhl et al. Science (2006)
Rosenthal et al. PNAS (2015)
$\diamond \quad$ starlings aerial display - flocks keep changing their direction of motion even in the absence of predators or obstacles

Collective directional switching can be triggered spontaneously without changes in the external environment

\& Where it starts? individuals close to the border
$\diamond \quad$ What triggers the turn?
internal behavioural fluctuations

What triggers spontaneous turns?

Individual deviations from the global flock's direction of motion prior to the turn:

There is a correlation between the location of an individual in the flock and how persistently it deviates

What triggers spontaneous turns?

Individual deviations from the global flock's direction of motion prior to the turn:

Why turns occur spontaneously and often?

Standard Heisenberg model on a lattice:
$\tau^{r e l} \sim L^{d-2}$ the system changes global state on large scales

What is different in flocks?
the network is random interactions are NOT symmetric
peripheral clusters are more sensitive to noise leading to collective changes to state

Spontaneous turns determined by interaction network

Dynamics on a random Euclidean network?
Phys. Rev. Lett. (2017)

- points drawn uniformly in Euclidean space instead on a regular lattice
- place the birds/spins and let them interact with their n_{c} nearest neighbours

ranking

clustering coefficient c_{i}

eigenvalue centrality $u^{0}{ }_{i}$
turns start at the boundary where both c_{i} and $\mathrm{u}^{0}{ }_{\mathrm{i}}$ are large

Experimental confirmation:

\diamond fish: large c_{i} of initiators of collective evasion waves in fish schools
\checkmark starlings: turns start from the tips;

Conclusions

- Turns start localized, then spread through the flock fast and accurate
\& linear propagation of orientational information, no damping
- New superfluid theory for turns
\star symmetries and conservation laws ideas work in biology too
- High order in the group grants a more efficient propagation of information
$\star \quad$ why natural groups are so polarized?
- Non-symmetric random interaction network and inertial dynamics can produce spontaneous changes of collective state on short scales

Based on

\triangleleft Information transfer and behavioural inertia in starling flocks

Nature Physics, 2014
\diamond GReTA -- a novel Global and Recursive Tracking Algorithm in three dimensions

IEEE Trans. Pattern
Anal. Mach. Intell., 2015
\diamond Flocking and turning: a new model for selforganized collective motion
J. Stat. Phys, 2015
\triangleleft Silent flocks: : Constraints on Signal Propagation Across Biological Groups

Phys.Rev.Lett., 2015
\diamond Emergence of collective changes in travel direction of starling flocks from individual birds' fluctuations

Roy.Soc. Interface, 2015
\triangleleft Nonsymmetric Interactions Trigger Collective Swings in Globally Ordered Systems

nature wnumaxumex physics

> Phenomenal flocking

ARthincim spanct quantuminformation topolocical surenconouctoes

In collaboration with

Theory:

Andrea Cavagna Irene Giardina

Tomas Grigera

Thierry Mora
Aleksandra Walczak

Dov Levin

Sriram Ramaswamy

Rome, Italy

La Plata, Argentina

Paris, France

New York, USA \& Haifa, Israel

Hyderabad, India

Alessandro Attanasi
Lorenzo Del Castello
Stefania Melillo
Leonardo Parisi
Oliver Pohl
Ed Shen
Edmondo Silvestri
Massimiliano Viale

