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Why higher-derivatives invariants?

@ String theory effective action: modified supergravity (SUGRA) by an
infinite series of higher derivative quantum corrections

Lo — lse + Z[DPR."“] + dilaton + forms + susy completion

string

SUSY higher-derivatives terms are poorly understood but, e.g.:

@ important for (phenomenological) applications in string theory, see
compactifications with fluxes; moduli stabilization; dualities ....
[Antoniadis, Becker-Becker, Liu, Minasian, Polchinski, Sethi, Theisen ...]

@ important for black-hole physics
indeed for computing higher-order corrections to black-hole entropy
microscopic vs macroscopic matching of entropy of SUSY black-holes
[Strominger-Vafa, Sen, LopesCardoso-deWit, Murthy, ...]

even the simple SUSY R? case is not fully understood in general
(see for example 6D) but



R??

For instance R? gravity attracted attention for over 50 years:

renormalization of QFT in curved spacetime requires counterterms
containing R? [Utiyama & DeWitt (1962)]

In 4D, R? terms govern the structure of QFT conformal anomalies
relevant in studying renormalization group flows, see 4D a-theorem
[Komargodski and Schwimmer (2011)]

In 4D, Renormalizable (not unitary) a(Caped)® + B(Rab)? + YR?
[Stelle (1977)]

In 3D ghosts-free higher-derivative theory of (massive) gravity,
New-Massive-Gravity (NMG), plus other
Generalized-Massive-Gravity (GMG) theories (TMG+NMG)
[Bergshoeff-Hohm-Townsend (2009), ---] based on

~AN+ a1 R+ Ozzé?abcwaRab —+ a3R2 + Oé4(Rab)2

toy-model for quantum gravity with finite higher-derivatives series:
AdS/CFT, black holes microstates... [Strominger (2008), - - -]

R + R? Starobinsky model of inflation [Starobinsky (1980)]
Interestingly, R + R? SUGRA models are promising inflationary
candidates for CMB data.



Gauss-Bonnet: R.pcgR2PY — 4R ,R?P + R?

An important curvature squared combination is the Gauss-Bonnet one

@ In 4D it is a topological term (Euler characteristic) arising as the
Type A conformal anomaly.

@ In D>4 it is involved in the definition of ghost free Lovelock gravities
same spectrum of standard GR and second order EOM

@ Governs the first o/-corrections in compactified string theory
[Zweibach (1985), Deser-Redlich (1986)]......

@ In general its structure for any space-time dimensions and amount of
susy is not known. In particular, the dependence upon the extra
sugra matter fields, see the NSNS b, gauge 2-form

The Gauss-Bonnet was constructed off-shell

4D N = 1, [Cecotti-Ferrara-Girardello-Porrati (1985)]; [Theisen (1986)]...
4D N = 2, [Butter-deWit-Kuzenko-Lodato (13)]

5D N =1, [Ozkan-Pang (13)]

6D ?

In 6D a full classification of the R? invariants was missing and in
particular the GB invariant has never been fully constructed.
We filled these gaps [Butter-Novak-Ozkan-Pang-GTM (17),(18)]



how higher-derivatives SUGRA?

If/once convinced about the importance of higher derivative supergravity
invariants the question is: how to efficiently construct them?
@ A powerful approach would be a formalism guaranteeing manifest
supersymmetry in a model independent way (see e.g. 4D N = 1)
4
An off-shell approach to SUGRA, when available, can be used for
general supergravity-matter couplings with model independent susy.
@ Two possibilities:
— component fields superconformal tensor calculus
See "Supergravity” book by [Freedman & Van Proeyen (2012)]
— superspace approaches See classic books:
[Gates, Grisaru, Rotek, Siegel (1983)] [Buchbinder, Kuzenko (1998)]
The two approaches can be used together through conformal superspace
e manifestly gauge entire superconformal algebra in superspace
[Kugo-Uehara (1985)] and combine advantages of both approaches
@ Details first by Butter 4D N =1 in 2009 and A/ = 2 in 2011
@ developed and extended to 3D A — extended and 5D N =1
SUGRA [Butter-Kuzenko-Novak-GTM (2013)-(2014)]
@ 6D N = (1,0) [Butter-Kuzenko-Novak-Theisen-GTM (2016)-(2017)]



how higher derivatives off-shell SUGRA? outline

In superspace one can efficiently:
@ Describe geometrically off-shell supermultiplets: SUGRA, matter
@ Provide manifestly supersymmetric off-shell action principles

@ Use powerful cohomological approach based on superforms to
construct supersymmetric invariants.
Rheonomic approach [Castellani-D’Auria-Fré (book-1991)];
4D N =1 [Hasler (1996)];
“Ectoplasm” [Gates(1996); Gates-Grisaru-Knutt—Wehlau-Siegel (1997)];
Integral Forms [Castellani-Catenacci-Grassi (2014)]

@ Reduce to components and derive superconformal tensor calculus

With these techniques, one can in principle have a systematic approach
to study higher derivative invariants off-shell

Examples:
e 6D NV = (1,0) (four-derivatives) curvature squared terms



An interlude: Conformal gravity and Curvature
squared terms in Poincaré gravity (GR)

Lre o aCP9Copeq + bRPIR Jpeq + ¢ R

o Weyl tensor: Cade = Rade - 5[a[CRb]d] + %5[‘3[‘-51)}‘1]7@
with R,,°? component Riemann tensor

@ Ricci tensor: R,2 == R.q?

@ Ricci scalar: R :=R,?



A kinematic interlude: Conformal gravity

@ Conformal gravity in six dimensions may be viewed as being based on
gauging the entire conformal group SO(6,2), X5 = {P,, M, D, K2}
@ Vielbein e;,?, and its inverse e,”, associated with gauging P,
(diff.=local-translations)
gauge connections are associated with the other generators which
can be used to construct covariant derivatives

1
Va - eamam - Ewabchc - baD - fabe

@ The covariant derivative algebra is constrained to be expressed
entirely in terms of a tensor Cpcq

[vaa Vb] — —Iagp — *%CadeMcd - %vdcabchC
where C,peq is the Weyl tensor a primary field of dimension 2

KfCabcd =0 5 Dcabcd = 2Cabcd
Cabed = Clabjled] s 17 Cabed =05 Clabejg = 0



A dynamical interlude: Poincaré gravity

@ Poincaré gravity: conformal gravity coupled to a conformal primary
K% = 0 dimension 2 Do = 20 compensator scalar field o # 0

e Kinematic: choose a gauge in which b, =0 and 0 = 1, left:
Poincaré gravity invariant only under diffeomorphisms and Lorentz.

@ Dynamics: for example, the Einstein-Hilbert term (e := deten?):

I:/dﬁxeavavaa, if ba=00=1 = IEHoc/dsxeR

@ Dynamics: for example, curvature squared terms:

/:/<16xea—1(vavaa)2 , ifby=0,0=1 = I o</d6xeR2
I = /dﬁxea*%(vava)%?’, if by=0,0=1= Ig o /dﬁxeRabRab
| = / AxeoC?Copeg, ifby=0,0=1 = lypp x / d®x e C**Copeq

Analogously, general off-shell Poincaré SUGRA: off-shell conformal
SUGRA coupled to compensators see: superconformal tensor calculus



The standard Weyl multiplet of (1,0) conformal SUGRA

The minimal supersymmetric extension of conformal gravity
with Q!, and 5 supersymmetry generators, that are chiral fermions
N = (1,0), eight real supercharges each, the analogue of 4D A/ =2

Multiplet of local off-shell gauging of OSp(6,2|1), the N" = (1,0)
superconformal group in 6D. [Bergshoeff-Sezgin-VanProeyen (1986)]
40 + 40 off-shell physical multiplet composed by independent gauge fields

P, gauge connection: vielbein e;,?;

Q-susy gauge connection: the gravitino ¢,%;
SU(2)r gauge field: V,,,7;

dilatation gauge field: b, (pure gauge);

and a set of covariant “auxiliary/matter” fields
o real anti-self-dual tensor T, ;
@ a chiral fermion X“i;
@ a real scalar field D.
fields necessary to close SUSY algebra off-shell (not unique set, see later)

Lorentz (w,®¢), K2 (fac), S-susy (c;bafy) connections are composite fields

How is this described in superspace?



6D conformal supergravity in conformal superspace

[Butter-Kuzenko-Novak-Theisen (2016)]
Take a N = (1,0) curved superspace M©OI8 parametrised by coordinates

M=(x"0¢), m=012345, p=1234, i=12
Choose the structure group X with generators X; = (Mg, Jjj, D, S%, K?)

to contain SO(5,1) + SUg(2)+(Dilatations)+(S—susy) + (K —boosts).
The superspace covariant derivatives V4 = (V,, V/) are

1 ..
Va=EsMom —walXy, = EAMom — 5QA""’MQI, — &, J; — BaD — FagK®

- E4M(z) supervielbein associated with P4 = (P, QL), om = 08/0z",

- Qa%(z) Lorentz connection, associated with M.,

- ®47(z) SU(2)g-connection, associated with J;

- Ba(z) dilatation connection, associated with D

- Fas(z) special superconformal connection, associated with K* = (K?, Sf)
@ local covariant conformal SUGRA gauge transformations:

K = AV 4+ A2X, = £V 4 + %/\“Mbc AT gy 47D 4 AKA
0kcVa=1[K,Va], andon a tensor superfield U: U = KU
Should think of Va4 >~ Pa: V, ~ P, and V/ ~ Q]



6D conformal supergravity in conformal superspace

One constrains the algebra:
1
[Va, Vel =—-TasVc — *R(M)ABCndd — R(N)ag" Ju
— R(D)asD — R(S)as%S] — R(K)agcK*
to be completely determined in terms of the super-Weyl tensor:
WebB = (530€) B W, p, [Linch-GTM (12)]
describing in superspace the 6D N = (1,0) Weyl multiplet
o WP is a dimension-1 primary superfield
KW =0, Dw* =w’
Jacobi/Bianchi Identities: differential constraints on W”
@ The standard Weyl multiplet of 6D N = (1,0) conformal
supergravity is encoded in the superspace geometry.

The component fields can be readily identified as # = 0 projections
of the superspace one-forms and descendants of W8

T=

abc

ai 31 i o 31 o
= —2Waclomo ,  x* == VW loco ;D= =L VaVaW oo

Other descendants of W,,. are composite superconformal
curvatures: ex. Cabed X (Vab)a' (Yed )y’ Vi Ve W7



The tensor multiplet and dilaton-Weyl multiplet

So far we have considered only the standard Weyl multiplet which
possesses the covariant component fields: 7_, , x*' and D

abc!
A variant description of the off-shell conformal supergravity multiplet:
@ Dilaton-Weyl multiplet: obtained by coupling the standard Weyl
multiplet to a (on-shell) tensor multiplet with scalar superfield ®
@ & is described by a gauge (NSNS) two-form B, in superspace. lts
field strength is the closed super 3-form

H3 = dBQ: leP N dZN N dZMHM/\/P(Z) dH3 =0
H(')/ﬁf/ = 0, HaaB = 2ig¥ ('ya)a/gtb
Haba = ('Yab)oc ¢'5 ) woc = voc(b 3
Habc = _é(ﬁ/abc)'yévswék - 4|/Vabc<I> 3

where ® is primary (KA® = 0), D® = 20, satisfying VSVQCD =0
Assuming ® £ 0 one can express the standard super-Weyl multiplet W,
in terms of the tensor multiplet:

1
Wabc = T

40 Habc -

m o (Fabe) VAV 50



The tensor multiplet and dilaton-

In components:
o define o := ®| # 0 the conformal compensator
@ the covariant component fields of the standard Weyl multiplet are:

1
The = = Hy
abc 20 abc
i 15i i 5i — w~abc i
= —_— - T
X 8o W¢ 320 abc”Y ¢
15 a 1 —abc 3
D = s (V Vao + 3 T Habc) + fermion terms
o

@ This means that in the dilaton-Weyl multiplet
Tper X' and D
are exchanged with the component fields of the tensor multiplet:

g, ¢1'1| and bmn = an| (Habc =~ 3v[abbc])



,0) curvature squared invariants?

[Novak-Ozkan-Pang-GTM (17)]
[Butter-Novak-Ozkan-Pang-GTM (18)]
supersymmetric extensions of general curvature squared Lagrangian?

Lr o a Cabed Cabed + bRade'Rabcd + cR?
+ SUSY completing terms

] Weyl tensor: Cade = Rade — 5[a[cRb]d] + %5[3[(:5[,]‘1]7?,
with R,,°? component Riemann tensor

@ Ricci tensor: R,? := R4

@ Ricci scalar: R :=R,?

Here | will focus on the construction of the Gauss-Bonnet invariant



A new B, A H, action principle

It turns out that we can construct all R? invariants by using an action
corresponding to the supersymmetrization of a By A Hy term:

@ gauge 2-form B, of tensor multiplet, H; = dB,, hence dilaton-Weyl

@ Hy is a closed super 4-form dH,; = 0 based on B,7(z) = B,(1)(z) a
dimension-3 primary superfield satisfying the Bianchi identities

vl gBvik) — _ggllfvggvbk) 7 [vg,vﬂk]gam)k = —8iV,5BP0

@ By using the superform approach to construct SUSY invariants
— locally superconformal invariant action principle:

1
SeoaH, = /d6X e {Eadeefbabhcdef — XUC + ferrnions}
i -
habed = ﬁgabcdef(’\/e)aﬁvakvﬁ/B”d|9:0 ) v[ahb::de] ~0
i,
c = E('Ya)aﬁvakv[i/BakI‘G:O

B, plays the role of a Lagrangian superfield



Riemann?

It was first constructed by [Bergshoeff-Rakowski (1987)].
We can reproduce it by using the B, A Hy action principle with

BB _i/\a(ff/\ﬁj)év
2

with a primary dimension 3/2
N7 = XET — %angf + leagxaf + %quw;; WY 4+ évlég WSk
—%quag Wyl + li—zaawquvg(pwg) - éaw‘%*(vé(pm%
b - L ety
where
Xol = — Eviwesd | xkeB = _Iykwes — 5lF XAk
Wi = Vihe Vil = —1ei(y) 05 Hy —i(77)ap Vad

A% 57 is a vector multiplet taking value in Lorentz algebra



Riemann?

Then, in the gauge 0 = 1, b,, = 0 reduced to components

e_l‘E’Rich = Rabcd(w7 )Rab cd(wf) - 4,R/abij,R/abij

- %eab‘:def bap Rcdgh(w, YRef gh(w—) + fermions

It is only a functional of the Weyl and tensor (dilaton-Weyl) multiplets
Dependence on H,p is in the torsionful Lorentz curvature Rab“’(w,)

wimCd — med + %emaHacd
such that

Rade(w:I:) = Rade + D[aHb]Cd - % e[a[CHb]d]e~



A new curvature squared invariant

A new curvature squared invariant by using the B> A Hy action and the
superfield [Butter-Kuzenko-Novak-Theisen (16)] (Ya#¥ = —5/2v{ x8)

Baﬁff _ 74w’Y[0¢ y’yﬁ]if — 32§ X-yws(iX5BW) +10i Xoé(fxﬁj)

this leads to a new independent off-shell R? invariant
[Novak-Ozkan-Pang-GTM (17)]

1 . 4 _
Swew = 35 /dsx e {0 Cap™ Ceg™ + 30RpTR?  + 50D BT VLV
8
+40(VeT2P)VIT,,  + 40T b7 dT< T — EHabc T—bp

4
72Habc Cabde T—cde + 4Habc TJ abve T—cde _ g Habc T—dea T—bcf T(;f
1 p
— Zgadeef bap (Ccdgh Cefg[-, — REdURef,'j) } + fermions

In the gauge 0 =1 ,b, =0

1 1
Shew = e /dGX e {RabcdRade — RabRab + ZRZ 4+ .- }



Application: Gauss-Bonnet N = (1,0) invariant

Constructed the new curvature squared invariant, we can describe an
off-shell extension of the Gauss-Bonnet combination in six dimensions:

Sa = _35Riem2 + 128S,ew
In the gauge o =1 ,b6,=0
e 'Los = RapedRPY —4RpR™ + R
+%RadeHabeHcde _RabH§b+ IRH2 + m(,_I2) %(Hazb)z + %H4
— Ll by R g€ (Wi ) Regh(wy) + €% by R g Rer jj + fermions

where
2 b 2 d 4 f bd
H® = abcHa < 5 Hab = Hac Hbcd 5 H" = abeHcdeHaC H

Advantages to know the off-shell (1,0) Gauss-Bonnet invariant:
@ off-shell supersymmetry transformations completely under control
(same as two derivative actions)

@ complete off-shell descriptions of NSNS b,-form
which cannot be all recast in R, (wy )
as tried in [Bergshoeff-Salam-Sezgin (1986-87)]

@ possible to add the invariant to general sugra-matter couplings



Application: Einstein-Gauss-Bonnet supergravity

With Lgy the 6D N = (1,0) off-shell Poincaré SUGRA constructed in
[Bergshoeff-Sezgin-VanProeyen (1986)]

We can now consider the combination

1
LreB = Leu + RQ/EGB

off-shell extension of first order o/-corrected string theory effective action

@ matches with on-shell string theory derivation of [Liu-Minasian (2013)]
o’-corrected Type IlA reduced on K3, dual to Heterotic on T4.

@ Action possesses an AdS; x S3 solution analogue of the AdSs x S°
solution in 1B string theory.

@ By using the off-shel action, computed the o/-corrected KK
spectrum of fluctuations around AdSs x S* organized in short and
long multiplets of isometry SU(1, 1|2) x SL(2, R) x SU(2).
see [de Boer (1999)]

Hints on dynamics of strings in AdS3x S®x K3(T*) backgrounds.
[Novak-Ozkan-Pang-GTM (2017)]



Conclusion and Outlook

@ We have constructed all off-shell 6D A/ = (1,0) curvature-squared
supergravity invariants
[Novak-Ozkan-Pang-GTM (17)]
[Butter-Novak-Ozkan-Pang-GTM (18)]

@ The new 6D curvature-squared invariant complete an element
missing since the 80s, see the Gauss-Bonnet

e Of importance in studying low energy String Theory and
o/-corrected AdS/CFT ...

@ Study properties of o/-corrections for solutions of GB and general
curvature squared actions, e.g. Dyonic strings, ... (in progress)

e Extensions of /' = (1,0) curvature squared?
general matter couplings and...
How about N = (1,1) (arising from Type II1A/Heterotic)?
and NV = (2,0) (arising from Type 11B)?
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