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Why higher-derivatives invariants?

String theory effective action: modified supergravity (SUGRA) by an
infinite series of higher derivative quantum corrections

Llowstring = LSG +
∑

[DpRq
...] + dilaton + forms + susy completion

SUSY higher-derivatives terms are poorly understood but, e. g.:

important for (phenomenological) applications in string theory, see
compactifications with fluxes; moduli stabilization; dualities ....
[Antoniadis, Becker-Becker, Liu, Minasian, Polchinski, Sethi, Theisen ...]

important for black-hole physics
indeed for computing higher-order corrections to black-hole entropy
microscopic vs macroscopic matching of entropy of SUSY black-holes

[Strominger-Vafa, Sen, LopesCardoso-deWit, Murthy, ...]

even the simple SUSY R2 case is not fully understood in general
(see for example 6D) but



R2?

For instance R2 gravity attracted attention for over 50 years:

renormalization of QFT in curved spacetime requires counterterms
containing R2 [Utiyama & DeWitt (1962)]

In 4D, R2 terms govern the structure of QFT conformal anomalies
relevant in studying renormalization group flows, see 4D a-theorem
[Komargodski and Schwimmer (2011)]

In 4D, Renormalizable (not unitary) α(Cabcd)2 + β(Rab)2 + γR2

[Stelle (1977)]

In 3D ghosts-free higher-derivative theory of (massive) gravity,
New-Massive-Gravity (NMG), plus other
Generalized-Massive-Gravity (GMG) theories (TMG+NMG)
[Bergshoeff-Hohm-Townsend (2009), · · · ] based on

' Λ + α1R+ α2ε
abcωaRab + α3R2 + α4(Rab)2

toy-model for quantum gravity with finite higher-derivatives series:
AdS/CFT, black holes microstates... [Strominger (2008), · · · ]
R+R2 Starobinsky model of inflation [Starobinsky (1980)]

Interestingly, R+R2 SUGRA models are promising inflationary
candidates for CMB data.



Gauss-Bonnet: RabcdRabcd − 4RabRab +R2

An important curvature squared combination is the Gauss-Bonnet one

In 4D it is a topological term (Euler characteristic) arising as the
Type A conformal anomaly.
In D>4 it is involved in the definition of ghost free Lovelock gravities
same spectrum of standard GR and second order EOM

Governs the first α′-corrections in compactified string theory
[Zweibach (1985), Deser-Redlich (1986)]......
In general its structure for any space-time dimensions and amount of
susy is not known. In particular, the dependence upon the extra
sugra matter fields, see the NSNS b2 gauge 2-form

The Gauss-Bonnet was constructed off-shell

4D N = 1, [Cecotti-Ferrara-Girardello-Porrati (1985)]; [Theisen (1986)]...

4D N = 2, [Butter-deWit-Kuzenko-Lodato (13)]

5D N = 1, [Ozkan-Pang (13)]

6D ?

In 6D a full classification of the R2 invariants was missing and in
particular the GB invariant has never been fully constructed.
We filled these gaps [Butter-Novak-Ozkan-Pang-GTM (17),(18)]



how higher-derivatives SUGRA?

If/once convinced about the importance of higher derivative supergravity
invariants the question is: how to efficiently construct them?

A powerful approach would be a formalism guaranteeing manifest
supersymmetry in a model independent way (see e.g. 4D N = 1)

⇓
An off-shell approach to SUGRA, when available, can be used for
general supergravity-matter couplings with model independent susy.
Two possibilities:
− component fields superconformal tensor calculus
See “Supergravity” book by [Freedman & Van Proeyen (2012)]

− superspace approaches See classic books:

[Gates, Grisaru, Roček, Siegel (1983)] [Buchbinder, Kuzenko (1998)]

The two approaches can be used together through conformal superspace

manifestly gauge entire superconformal algebra in superspace
[Kugo-Uehara (1985)] and combine advantages of both approaches
Details first by Butter 4D N = 1 in 2009 and N = 2 in 2011
developed and extended to 3D N − extended and 5D N = 1
SUGRA [Butter-Kuzenko-Novak-GTM (2013)-(2014)]

6D N = (1, 0) [Butter-Kuzenko-Novak-Theisen-GTM (2016)-(2017)]



how higher derivatives off-shell SUGRA? outline

In superspace one can efficiently:

Describe geometrically off-shell supermultiplets: SUGRA, matter

Provide manifestly supersymmetric off-shell action principles

Use powerful cohomological approach based on superforms to
construct supersymmetric invariants.
Rheonomic approach [Castellani-D’Auria-Fré (book-1991)];
4D N = 1 [Hasler (1996)];
“Ectoplasm” [Gates(1996); Gates-Grisaru-Knutt–Wehlau-Siegel (1997)];

Integral Forms [Castellani-Catenacci-Grassi (2014)]

Reduce to components and derive superconformal tensor calculus

With these techniques, one can in principle have a systematic approach
to study higher derivative invariants off-shell

Examples:

6D N = (1, 0) (four-derivatives) curvature squared terms



An interlude: Conformal gravity and Curvature
squared terms in Poincaré gravity (GR)

LR2 ∝ a C abcdCabcd + bRabcdRabcd + cR2

Weyl tensor: Cab
cd = Rab

cd − δ[a
[cRb]

d ] + 1
10δ[a

[cδb]
d ]R

with Rab
cd component Riemann tensor

Ricci tensor: Ra
b := Rad

bd

Ricci scalar: R := Ra
a



A kinematic interlude: Conformal gravity

Conformal gravity in six dimensions may be viewed as being based on
gauging the entire conformal group SO(6,2), Xã = {Pa,Mab,D,K a}
Vielbein em

a, and its inverse ea
m, associated with gauging Pa

(diff.=local-translations)

gauge connections are associated with the other generators which
can be used to construct covariant derivatives

∇a = ea
m∂m −

1

2
ωa

bcMbc − baD− fa
bKb

The covariant derivative algebra is constrained to be expressed
entirely in terms of a tensor Cabcd

[∇a,∇b] = −Fab = − 1
2Cab

cdMcd − 1
6∇

dCabcdK
c

where Cabcd is the Weyl tensor a primary field of dimension 2

Kf Cabcd = 0 , DCabcd = 2Cabcd

Cabcd = C[ab][cd ] , η
acCabcd = 0 , C[abc]d = 0



A dynamical interlude: Poincaré gravity

Poincaré gravity: conformal gravity coupled to a conformal primary
K aσ = 0 dimension 2 Dσ = 2σ compensator scalar field σ 6= 0
Kinematic: choose a gauge in which ba = 0 and σ = 1, left:
Poincaré gravity invariant only under diffeomorphisms and Lorentz.
Dynamics: for example, the Einstein-Hilbert term (e := det em

a):

I =

∫
d6x e σ∇a∇aσ , if ba = 0, σ = 1 =⇒ IEH ∝

∫
d6x eR

Dynamics: for example, curvature squared terms:

I =

∫
d6x e σ−1(∇a∇aσ)2 , if ba = 0, σ = 1 =⇒ IR2 ∝

∫
d6x eR2

I =

∫
d6x e σ−

1
2 (∇a∇a)2σ3 , if ba = 0, σ = 1 =⇒ IR2

ab
∝
∫

d6x eRabRab

I =

∫
d6x e σC abcdCabcd , if ba = 0, σ = 1 =⇒ IWeyl2 ∝

∫
d6x e CabcdCabcd

Analogously, general off-shell Poincaré SUGRA: off-shell conformal
SUGRA coupled to compensators see: superconformal tensor calculus



The standard Weyl multiplet of (1,0) conformal SUGRA

The minimal supersymmetric extension of conformal gravity
with Q i

α and Sαi supersymmetry generators, that are chiral fermions
N = (1, 0), eight real supercharges each, the analogue of 4D N = 2

Multiplet of local off-shell gauging of OSp(6, 2|1), the N = (1, 0)
superconformal group in 6D. [Bergshoeff-Sezgin-VanProeyen (1986)]

40 + 40 off-shell physical multiplet composed by independent gauge fields

Pa gauge connection: vielbein em
a;

Q-susy gauge connection: the gravitino ψm
α
i ;

SU(2)R gauge field: Vmij ;

dilatation gauge field: bm (pure gauge);

and a set of covariant “auxiliary/matter” fields

real anti-self-dual tensor T−abc ;

a chiral fermion χαi ;

a real scalar field D.

fields necessary to close SUSY algebra off-shell (not unique set, see later)

Lorentz (ωa
bc), K a (fa c), S-susy (φa

k
γ) connections are composite fields

How is this described in superspace?



6D conformal supergravity in conformal superspace

[Butter-Kuzenko-Novak-Theisen (2016)]

Take a N = (1, 0) curved superspace M6|8 parametrised by coordinates

zM = (xm, θµi ) , m = 0, 1, 2, 3, 4, 5 , µ = 1, 2, 3, 4 , i = 1, 2

Choose the structure group X with generators Xa = (Mcd , Jij ,D,Sαi ,K a)
to contain SO(5, 1) + SUR(2)+(Dilatations)+(S−susy) + (K−boosts).
The superspace covariant derivatives ∇A = (∇a,∇i

α) are

∇A = EA
M∂M −ωA

bXb = EA
M∂M −

1

2
ΩA

abMab−ΦA
ijJij −BAD−FABK

B

- EA
M(z) supervielbein associated with PA = (Pa,Q

i
α), ∂M = ∂/∂zM ,

- ΩA
cd(z) Lorentz connection, associated with Mcd

- ΦA
ij(z) SU(2)R -connection, associated with Jij

- BA(z) dilatation connection, associated with D
- FAB(z) special superconformal connection, associated with KA = (K a, Sα

i )

local covariant conformal SUGRA gauge transformations:

K := ξA∇A + ΛaXa = ξA∇A +
1

2
ΛbcMbc + ΛijJij + τD + ΛAK

A

δK∇A = [K,∇A] , and on a tensor superfield U: δKU = KU

Should think of ∇A ' PA: ∇a ' Pa and ∇i
α ' Q i

α



6D conformal supergravity in conformal superspace

One constrains the algebra:

[∇A,∇B} = −TAB
C∇C −

1

2
R(M)AB

cdMcd − R(N)AB
klJkl

− R(D)ABD− R(S)AB
k
γS

γ
k − R(K)ABcK

c

to be completely determined in terms of the super-Weyl tensor:

W αβ = (γ̃abc)αβWabc [Linch-GTM (12)]

describing in superspace the 6D N = (1, 0) Weyl multiplet

W αβ is a dimension-1 primary superfield

KAW βγ = 0 , DW αβ = W αβ

Jacobi/Bianchi Identities: differential constraints on W αβ

The standard Weyl multiplet of 6D N = (1, 0) conformal
supergravity is encoded in the superspace geometry.
The component fields can be readily identified as θ = 0 projections
of the superspace one-forms and descendants of W αβ

T−abc := −2Wabc |θ=0 , χαi := −3i

4
∇i

βW
αβ |θ=0 , D := − 3i

16
∇k

α∇βkW
αβ |θ=0

Other descendants of Wabc are composite superconformal
curvatures: ex. Cabcd ∝ (γab)α

β(γcd)γ
δ∇k

β∇δkW
αγ



The tensor multiplet and dilaton-Weyl multiplet

So far we have considered only the standard Weyl multiplet which
possesses the covariant component fields: T−abc , χαi and D

A variant description of the off-shell conformal supergravity multiplet:

Dilaton-Weyl multiplet: obtained by coupling the standard Weyl
multiplet to a (on-shell) tensor multiplet with scalar superfield Φ
Φ is described by a gauge (NSNS) two-form B2 in superspace. Its
field strength is the closed super 3-form

H3 = dB2= 1
3!
dzP ∧ dzN ∧ dzMHMNP(z), dH3 = 0

H i
α
j
β
k
γ = 0 , Ha

i
α
j
β = 2iεij(γa)αβΦ ,

Hab
i
α = (γab)α

βψi
β , ψi

α := ∇i
αΦ ,

Habc = − i

8
(γ̃abc)γδ∇k

γψδk − 4WabcΦ ,

where Φ is primary (KAΦ = 0), DΦ = 2Φ, satisfying ∇(i
α∇j)

βΦ = 0

Assuming Φ 6= 0 one can express the standard super-Weyl multiplet Wabc

in terms of the tensor multiplet:

Wabc = − 1

4Φ
Habc −

i

32Φ
(γ̃abc)γδ∇k

γ∇δkΦ



The tensor multiplet and dilaton-Weyl multiplet

In components:

define σ := Φ| 6= 0 the conformal compensator

the covariant component fields of the standard Weyl multiplet are:

T−abc =
1

2σ
H−abc

χi = −15i

8σ
/∇ψi − 5i

32σ
T−abc γ̃

abcψi

D =
15

4σ

(
∇a∇aσ +

1

3
T−abcHabc

)
+ fermion terms

This means that in the dilaton-Weyl multiplet
T−abc , χαi and D
are exchanged with the component fields of the tensor multiplet:
σ, ψi

α| and bmn := Bmn| (Habc ' 3∇[abbc])



6D N = (1, 0) curvature squared invariants?

[Novak-Ozkan-Pang-GTM (17)]

[Butter-Novak-Ozkan-Pang-GTM (18)]

supersymmetric extensions of general curvature squared Lagrangian?

LR2 ∝ a C abcdCabcd + bRabcdRabcd + cR2

+ SUSY completing terms

Weyl tensor: Cab
cd = Rab

cd − δ[a
[cRb]

d ] + 1
10δ[a

[cδb]
d ]R

with Rab
cd component Riemann tensor

Ricci tensor: Ra
b := Rad

bd

Ricci scalar: R := Ra
a

Here I will focus on the construction of the Gauss-Bonnet invariant



A new B2 ∧ H4 action principle

It turns out that we can construct all R2 invariants by using an action
corresponding to the supersymmetrization of a B2 ∧ H4 term:

gauge 2-form B2 of tensor multiplet, H3 = dB2, hence dilaton-Weyl

H4 is a closed super 4-form dH4 = 0 based on Ba
ij(z) = Ba

(ij)(z) a
dimension-3 primary superfield satisfying the Bianchi identities

∇(i
αB

βγjk) = −
2

3
δ

[β
α ∇

(i
δB

γ]jk) , [∇(i
α,∇βk ]Bαβj)k = −8i∇αβB

αβij

By using the superform approach to construct SUSY invariants
=⇒ locally superconformal invariant action principle:

SB2∧H4
=

∫
d6x e

{
εabcdef babhcdef −

1

4
σC + fermions

}
habcd =

i

48
εabcdef (γ̃e)αβ∇αk∇βlB

f kl |θ=0 , ∇[ahbcde] ' 0

C :=
i

12
(γ̃a)αβ∇αk∇βlBa

kl |θ=0

Ba
ij plays the role of a Lagrangian superfield



Riemann2

It was first constructed by [Bergshoeff-Rakowski (1987)].
We can reproduce it by using the B2 ∧ H4 action principle with

Bαβij = − i

2
Λα(i

γ
δΛβj)δ

γ

with a primary dimension 3/2

Λαi
β
γ = X i

β
αγ −

1

3
δαβX

γi +
1

12
δγβX

αi +
i

4
Φ−1ψi

βW
αγ +

i

12
Φ−1δαβW

γδψi
δ

−
i

12
Φ−1δγβW

αδψi
δ +

i

12
εαγδρΦ−1∇δ(ρψ

i
β) −

i

8
εαγδρΦ−2(∇δ(ρΦ)ψi

β)

+
i

32
εαγδρΦ−2Hρβψ

i
δ −

1

16
εαγδρΦ−3ψi

δψ
k
(ρψβ)k

where

Xαi := − i
10
∇i

βW
αβ , X k

γ
αβ = − i

4
∇k

γW
αβ − δ(α

γ Xβ)k

ψi
α = ∇i

αΦ , ∇i
αψ

j
β = − i

2
εij (γabc )αβH

+
abc − iεij (γa)αβ∇aΦ

Λαiβ
γ is a vector multiplet taking value in Lorentz algebra



Riemann2

Then, in the gauge σ = 1, bm = 0 reduced to components

e−1LRiem2 = Rabcd(ω−)Rab cd(ω−)− 4Rab
ijRab

ij

− 1
4ε

abcdef babRcd
gh(ω−)Ref gh(ω−) + fermions

It is only a functional of the Weyl and tensor (dilaton-Weyl) multiplets
Dependence on Habc is in the torsionful Lorentz curvature Rab

cd(ω−)

ω±m
cd := ωm

cd ± 1
2em

aHa
cd

such that

Rab
cd(ω±) = Rab

cd ±D[aHb]
cd − 1

2He[a
[cHb]

d ]e .



A new curvature squared invariant

A new curvature squared invariant by using the B2 ∧ H4 action and the
superfield [Butter-Kuzenko-Novak-Theisen (16)] (Yα

βij = −5/2∇(i
αX

βj))

Bαβ ij = −4W γ[αYγ
β]ij − 32iXγ

αδ(iXδ
βγj) + 10iXα(iXβj)

this leads to a new independent off-shell R2 invariant
[Novak-Ozkan-Pang-GTM (17)]

Snew =
1

32

∫
d6x e

{
σCab

cdCcd
ab + 3σRab

ijRab
ij +

4

15
σD2 − 8σT−dab∇d∇cT−abc

+4σ(∇cT
−abc )∇dT−abd + 4σT−abcT−ab

dT−ef
cT
−
efd −

8

45
HabcT

−abcD

−2HabcC
ab

deT
−cde + 4HabcT

−
d

ab∇eT
−cde −

4

3
HabcT

−deaT−bcf T−def

−
1

4
εabcdef bab

(
Ccd

ghCefgh −Rcd
ijRef ij

)}
+ fermions

In the gauge σ = 1 , ba = 0

Snew =
1

32

∫
d6x e

{
RabcdRabcd −RabRab +

1

4
R2 + · · ·

}



Application: Gauss-Bonnet N = (1, 0) invariant

Constructed the new curvature squared invariant, we can describe an
off-shell extension of the Gauss-Bonnet combination in six dimensions:

SGB = −3SRiem2 + 128Snew

In the gauge σ = 1 , ba = 0

e−1LGB = RabcdRabcd − 4RabRab +R2

+ 1
2
RabcdH

abeHcd
e −RabH2

ab + 1
6
RH2 + 1

144
(H2)2 − 1

8
(H2

ab)2 + 5
24
H4

− 1
4
εabcdef babRcd

gh(ω+)Ref gh(ω+) + εabcdef babRcd
ijRef ij + fermions

where

H2 := HabcH
abc , H2

ab := Ha
cdHbcd , H4 := HabeHcd

eHacfHbd
f

Advantages to know the off-shell (1,0) Gauss-Bonnet invariant:

off-shell supersymmetry transformations completely under control
(same as two derivative actions)

complete off-shell descriptions of NSNS b2-form
which cannot be all recast in Rab

cd(ω+)

as tried in [Bergshoeff-Salam-Sezgin (1986-87)]

possible to add the invariant to general sugra-matter couplings



Application: Einstein-Gauss-Bonnet supergravity

With LEH the 6D N = (1, 0) off-shell Poincaré SUGRA constructed in
[Bergshoeff-Sezgin-VanProeyen (1986)]

We can now consider the combination

LEGB = LEH +
1

16
α′LGB

off-shell extension of first order α′-corrected string theory effective action

matches with on-shell string theory derivation of [Liu-Minasian (2013)]

α′-corrected Type IIA reduced on K3, dual to Heterotic on T4.

Action possesses an AdS3 × S3 solution analogue of the AdS5 × S5

solution in IIB string theory.

By using the off-shel action, computed the α′-corrected KK
spectrum of fluctuations around AdS3 × S3 organized in short and
long multiplets of isometry SU(1, 1|2)× SL(2,R)× SU(2).
see [de Boer (1999)]

Hints on dynamics of strings in AdS3× S3× K3(T4) backgrounds.
[Novak-Ozkan-Pang-GTM (2017)]



Conclusion and Outlook

We have constructed all off-shell 6D N = (1, 0) curvature-squared
supergravity invariants
[Novak-Ozkan-Pang-GTM (17)]

[Butter-Novak-Ozkan-Pang-GTM (18)]

The new 6D curvature-squared invariant complete an element
missing since the 80s, see the Gauss-Bonnet

Of importance in studying low energy String Theory and
α′-corrected AdS/CFT ...

Study properties of α′-corrections for solutions of GB and general
curvature squared actions, e.g. Dyonic strings, ... (in progress)

Extensions of N = (1, 0) curvature squared?
general matter couplings and...
How about N = (1, 1) (arising from Type IIA/Heterotic)?
and N = (2, 0) (arising from Type IIB)?
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