Curvature squared invariants in $6 \mathrm{D} \mathcal{N}=(1,0)$ supergravity

Gabriele Tartaglino-Mazzucchelli

ITF KU Leuven
Cortona 2018
May 23, 2018
Based on:
Butter, Novak \& GTM, JHEP 1705 (2017) 133;
Novak, Ozkan, Pang \& GTM, PRL 119 (2017) no.11, 111602;
Butter, Novak, Ozkan, Pang \& GTM to appear
See also:
Linch, III \& GTM JHEP 1208, 075 (2012);

Why higher-derivatives invariants?

- String theory effective action: modified supergravity (SUGRA) by an infinite series of higher derivative quantum corrections
$L_{\text {string }}^{\text {low }}=L_{S G}+\sum\left[\mathcal{D}^{p} \mathcal{R}_{\ldots}^{q}\right]+$ dilaton + forms + susy completion
SUSY higher-derivatives terms are poorly understood but, e. g.:
- important for (phenomenological) applications in string theory, see compactifications with fluxes; moduli stabilization; dualities [Antoniadis, Becker-Becker, Liu, Minasian, Polchinski, Sethi, Theisen ...]
- important for black-hole physics
indeed for computing higher-order corrections to black-hole entropy microscopic vs macroscopic matching of entropy of SUSY black-holes [Strominger-Vafa, Sen, LopesCardoso-deWit, Murthy, ...]
even the simple SUSY \mathcal{R}^{2} case is not fully understood in general (see for example 6D) but

\mathcal{R}^{2} ?

For instance \mathcal{R}^{2} gravity attracted attention for over 50 years:

- renormalization of QFT in curved spacetime requires counterterms containing \mathcal{R}^{2} [Utiyama \& DeWitt (1962)]
- In 4D, \mathcal{R}^{2} terms govern the structure of QFT conformal anomalies relevant in studying renormalization group flows, see 4D a-theorem [Komargodski and Schwimmer (2011)]
- In 4D, Renormalizable (not unitary) $\alpha\left(\mathcal{C}_{a b c d}\right)^{2}+\beta\left(\mathcal{R}_{a b}\right)^{2}+\gamma \mathcal{R}^{2}$ [Stelle (1977)]
- In 3D ghosts-free higher-derivative theory of (massive) gravity, New-Massive-Gravity (NMG), plus other
Generalized-Massive-Gravity (GMG) theories (TMG+NMG) [Bergshoeff-Hohm-Townsend (2009), …] based on

$$
\simeq \Lambda+\alpha_{1} \mathcal{R}+\alpha_{2} \varepsilon^{a b c} \omega_{a} \mathcal{R}_{a b}+\alpha_{3} \mathcal{R}^{2}+\alpha_{4}\left(\mathcal{R}_{a b}\right)^{2}
$$

toy-model for quantum gravity with finite higher-derivatives series: AdS/CFT, black holes microstates... [Strominger (2008), …]

- $\mathcal{R}+\mathcal{R}^{2}$ Starobinsky model of inflation [Starobinsky (1980)] Interestingly, $\mathcal{R}+\mathcal{R}^{2}$ SUGRA models are promising inflationary candidates for CMB data.

Gauss-Bonnet: $\mathcal{R}_{a b c d} \mathcal{R}^{a b c d}-4 \mathcal{R}_{a b} \mathcal{R}^{a b}+\mathcal{R}^{2}$

An important curvature squared combination is the Gauss-Bonnet one

- In 4D it is a topological term (Euler characteristic) arising as the Type A conformal anomaly.
- In D>4 it is involved in the definition of ghost free Lovelock gravities same spectrum of standard GR and second order EOM
- Governs the first α^{\prime}-corrections in compactified string theory [Zweibach (1985), Deser-Redlich (1986)]......
- In general its structure for any space-time dimensions and amount of susy is not known. In particular, the dependence upon the extra sugra matter fields, see the NSNS b_{2} gauge 2-form
The Gauss-Bonnet was constructed off-shell
4D $\mathcal{N}=1$, [Cecotti-Ferrara-Girardello-Porrati (1985)]; [Theisen (1986)]...
4D $\mathcal{N}=2$, [Butter-deWit-Kuzenko-Lodato (13)]
5D $\mathcal{N}=1$, [Ozkan-Pang (13)]
6D ?
In 6D a full classification of the \mathcal{R}^{2} invariants was missing and in particular the GB invariant has never been fully constructed.
We filled these gaps [Butter-Novak-Ozkan-Pang-GTM $\left.(17)_{8}(18)\right]_{\text {E }}$

how higher-derivatives SUGRA?

If/once convinced about the importance of higher derivative supergravity invariants the question is: how to efficiently construct them?

- A powerful approach would be a formalism guaranteeing manifest supersymmetry in a model independent way (see e.g. $4 D \mathcal{N}=1$) \Downarrow
An off-shell approach to SUGRA, when available, can be used for general supergravity-matter couplings with model independent susy.
- Two possibilities:
- component fields superconformal tensor calculus

See "Supergravity" book by [Freedman \& Van Proeyen (2012)]

- superspace approaches See classic books:
[Gates, Grisaru, Roček, Siegel (1983)] [Buchbinder, Kuzenko (1998)]
The two approaches can be used together through conformal superspace
- manifestly gauge entire superconformal algebra in superspace [Kugo-Uehara (1985)] and combine advantages of both approaches
- Details first by Butter 4D $\mathcal{N}=1$ in 2009 and $\mathcal{N}=2$ in 2011
- developed and extended to 3D \mathcal{N} - extended and 5D $\mathcal{N}=1$ SUGRA [Butter-Kuzenko-Novak-GTM (2013)-(2014)]
- $6 \mathrm{D} \mathcal{N}=(1,0)$ [Butter-Kuzenko-Novak-Theisen-GTM (2016)-(2017)]

how higher derivatives off-shell SUGRA? outline

In superspace one can efficiently:

- Describe geometrically off-shell supermultiplets: SUGRA, matter
- Provide manifestly supersymmetric off-shell action principles
- Use powerful cohomological approach based on superforms to construct supersymmetric invariants. Rheonomic approach [Castellani-D'Auria-Fré (book-1991)]; 4D $\mathcal{N}=1$ [Hasler (1996)];
"Ectoplasm" [Gates(1996); Gates-Grisaru-Knutt-Wehlau-Siegel (1997)]; Integral Forms [Castellani-Catenacci-Grassi (2014)]
- Reduce to components and derive superconformal tensor calculus

With these techniques, one can in principle have a systematic approach to study higher derivative invariants off-shell

Examples:

- $6 \mathrm{D} \mathcal{N}=(1,0)$ (four-derivatives) curvature squared terms

An interlude: Conformal gravity and Curvature squared terms in Poincaré gravity (GR)

$$
\mathcal{L}_{R^{2}} \propto a C^{a b c d} C_{a b c d}+b \mathcal{R}^{a b c d} \mathcal{R}_{a b c d}+c \mathcal{R}^{2}
$$

- Weyl tensor: $C_{a b}{ }^{c d}=\mathcal{R}_{a b}{ }^{c d}-\delta_{[a}{ }^{[c} \mathcal{R}_{b]}{ }^{d]}+\frac{1}{10} \delta_{[a}{ }^{[c} \delta_{b]}{ }^{d]} \mathcal{R}$ with $\mathcal{R}_{a b}{ }^{\text {cd }}$ component Riemann tensor
- Ricci tensor: $\mathcal{R}_{a}{ }^{b}:=\mathcal{R}_{a d}{ }^{b d}$
- Ricci scalar: $\mathcal{R}:=\mathcal{R}_{a}{ }^{a}$

A kinematic interlude: Conformal gravity

- Conformal gravity in six dimensions may be viewed as being based on gauging the entire conformal group $\mathrm{SO}(6,2), X_{\tilde{a}}=\left\{P_{a}, M_{a b}, \mathbb{D}, K^{a}\right\}$
- Vielbein $e_{m}{ }^{a}$, and its inverse $e_{a}{ }^{m}$, associated with gauging P_{a} (diff.=local-translations) gauge connections are associated with the other generators which can be used to construct covariant derivatives

$$
\nabla_{a}=e_{a}^{m} \partial_{m}-\frac{1}{2} \omega_{a}^{b c} M_{b c}-b_{a} \mathbb{D}-f_{a}^{b} K_{b}
$$

- The covariant derivative algebra is constrained to be expressed entirely in terms of a tensor $C_{\text {abcd }}$

$$
\left[\nabla_{a}, \nabla_{b}\right]=-F_{a b}=-\frac{1}{2} C_{a b}{ }^{c d} M_{c d}-\frac{1}{6} \nabla^{d} C_{a b c d} K^{c}
$$

where $C_{\text {abcd }}$ is the Weyl tensor a primary field of dimension 2

$$
\begin{gathered}
K_{f} C_{a b c d}=0, \mathbb{D} C_{a b c d}=2 C_{a b c d} \\
C_{a b c d}=C_{[a b][c d]}, \eta^{a c} C_{a b c d}=0, C_{[a b c] d}=0
\end{gathered}
$$

A dynamical interlude: Poincaré gravity

- Poincaré gravity: conformal gravity coupled to a conformal primary $K^{a} \sigma=0$ dimension $2 \mathbb{D} \sigma=2 \sigma$ compensator scalar field $\sigma \neq 0$
- Kinematic: choose a gauge in which $b_{a}=0$ and $\sigma=1$, left: Poincaré gravity invariant only under diffeomorphisms and Lorentz.
- Dynamics: for example, the Einstein-Hilbert term ($\left.e:=\operatorname{det} e_{m}{ }^{a}\right)$:

$$
I=\int \mathrm{d}^{6} \times e \sigma \nabla^{a} \nabla_{\mathrm{a}} \sigma, \quad \text { if } b_{a}=0, \sigma=1 \Longrightarrow \quad I_{E H} \propto \int \mathrm{~d}^{6} \times e \mathcal{R}
$$

- Dynamics: for example, curvature squared terms:

$$
\begin{aligned}
& I=\int \mathrm{d}^{6} \times e \sigma^{-1}\left(\nabla^{a} \nabla_{a} \sigma\right)^{2}, \quad \text { if } b_{a}=0, \sigma=1 \Longrightarrow I_{\mathcal{R}^{2}} \propto \int \mathrm{~d}^{6} \times e \mathcal{R}^{2} \\
& I=\int \mathrm{d}^{6} \times e \sigma^{-\frac{1}{2}}\left(\nabla^{a} \nabla_{a}\right)^{2} \sigma^{3}, \text { if } b_{a}=0, \sigma=1 \Longrightarrow I_{\mathcal{R}_{a b}^{2}} \propto \int \mathrm{~d}^{6} \times e \mathcal{R}^{a b} \mathcal{R}_{a b} \\
& I=\int \mathrm{d}^{6} \times e \sigma C^{a b c d} C_{a b c d}, \text { if } b_{a}=0, \sigma=1 \Longrightarrow I_{\text {Wey }\left.\right|^{2}} \propto \int \mathrm{~d}^{6} \times e \mathcal{C}^{a b c d} \mathcal{C}_{a b c d}
\end{aligned}
$$

Analogously, general off-shell Poincaré SUGRA: off-shell conformal SUGRA coupled to compensators see: superconformal tensor calculus

The standard Weyl multiplet of $(1,0)$ conformal SUGRA

The minimal supersymmetric extension of conformal gravity with Q_{α}^{i} and S_{i}^{α} supersymmetry generators, that are chiral fermions $\mathcal{N}=(1,0)$, eight real supercharges each, the analogue of $4 \mathrm{D} \mathcal{N}=2$

Multiplet of local off-shell gauging of $\operatorname{OSp}(6,2 \mid 1)$, the $\mathcal{N}=(1,0)$ superconformal group in 6D. [Bergshoeff-Sezgin-VanProeyen (1986)]
$40+40$ off-shell physical multiplet composed by independent gauge fields

- P_{a} gauge connection: vielbein $e_{m}{ }^{a}$;
- Q-susy gauge connection: the gravitino $\psi_{m}{ }_{i}^{\alpha}$;
- $\operatorname{SU}(2)_{R}$ gauge field: $\mathcal{V}_{m}{ }^{i j}$;
- dilatation gauge field: b_{m} (pure gauge); and a set of covariant "auxiliary/matter" fields
- real anti-self-dual tensor $T_{a b c}^{-}$;
- a chiral fermion $\chi^{\alpha i}$;
- a real scalar field D.
fields necessary to close SUSY algebra off-shell (not unique set, see later) Lorentz $\left(\omega_{a}{ }^{b c}\right), K^{a}\left(f_{a c}\right), S$-susy $\left(\phi_{a \gamma}{ }_{\gamma}^{k}\right)$ connections are composite fields How is this described in superspace?

6D conformal supergravity in conformal superspace

[Butter-Kuzenko-Novak-Theisen (2016)]
Take a $\mathcal{N}=(1,0)$ curved superspace $\mathcal{M}^{6 \mid 8}$ parametrised by coordinates

$$
z^{M}=\left(x^{m}, \theta_{\mathrm{i}}^{\mu}\right), \quad m=0,1,2,3,4,5, \quad \mu=1,2,3,4, \quad \mathbf{i}=\underline{1}, \underline{2}
$$

Choose the structure group X with generators $X_{\underline{a}}=\left(M_{c d}, J_{i j}, \mathbb{D}, S_{i}^{\alpha}, K^{a}\right)$ to contain $\mathrm{SO}(5,1)+\mathrm{SU}_{R}(2)+($ Dilatations $)+(S$-susy $)+(K$-boosts $)$.
The superspace covariant derivatives $\nabla_{A}=\left(\nabla_{a}, \nabla_{\alpha}^{i}\right)$ are
$\nabla_{A}=E_{A}{ }^{M} \partial_{M}-\omega_{A} \underline{\underline{b}} X_{\underline{b}}=E_{A}{ }^{M} \partial_{M}-\frac{1}{2} \Omega_{A}{ }^{a b} M_{a b}-\Phi_{A}{ }^{i j} J_{i j}-B_{A} \mathbb{D}-\mathfrak{F}_{A B} K^{B}$

- $E_{A}{ }^{M}(z)$ supervielbein associated with $P_{A}=\left(P_{a}, Q_{\alpha}^{i}\right), \quad \partial_{M}=\partial / \partial z^{M}$,
- $\Omega_{A}^{c d}(z)$ Lorentz connection, associated with $M_{c d}$
- $\Phi_{A}{ }^{i j}(z) \operatorname{SU}(2)_{R}$-connection, associated with $J_{i j}$
- $B_{A}(z)$ dilatation connection, associated with \mathbb{D}
- $\mathfrak{F}_{A B}(z)$ special superconformal connection, associated with $K^{A}=\left(K^{a}, S_{i}^{\alpha}\right)$
- local covariant conformal SUGRA gauge transformations:

$$
\begin{gathered}
\mathcal{K}:=\xi^{A} \nabla_{A}+\Lambda^{a} X_{\underline{a}}=\xi^{A} \nabla_{A}+\frac{1}{2} \Lambda^{b c} M_{b c}+\Lambda^{i j} J_{i j}+\tau \mathbb{D}+\Lambda_{A} K^{A} \\
\delta_{\mathcal{K}} \nabla_{A}=\left[\mathcal{K}, \nabla_{A}\right], \quad \text { and on a tensor superfield } U: \quad \delta_{\mathcal{K}} U=\mathcal{K} U
\end{gathered}
$$

Should think of $\nabla_{A} \simeq P_{A}: \nabla_{a} \simeq P_{a}$ and $\nabla_{\alpha}^{i} \simeq Q_{\alpha}^{i}$.

6D conformal supergravity in conformal superspace

One constrains the algebra:

$$
\begin{aligned}
{\left[\nabla_{A}, \nabla_{B}\right\}=} & -T_{A B}{ }^{C} \nabla_{C}-\frac{1}{2} R(M)_{A B}{ }^{c d} M_{c d}-R(N)_{A B}{ }^{k l} J_{k l} \\
& -R(\mathbb{D})_{A B} \mathbb{D}-R(S)_{A B}{ }_{\gamma}^{k} S_{k}^{\gamma}-R(K)_{A B C} K^{c}
\end{aligned}
$$

to be completely determined in terms of the super-Weyl tensor:

$$
W^{\alpha \beta}=\left(\tilde{\gamma}^{a b c}\right)^{\alpha \beta} W_{a b c} \quad[\text { Linch-GTM (12)] }
$$

describing in superspace the $6 \mathrm{D} \mathcal{N}=(1,0)$ Weyl multiplet

- $W^{\alpha \beta}$ is a dimension-1 primary superfield

$$
K^{A} W^{\beta \gamma}=0, \quad \mathbb{D} W^{\alpha \beta}=W^{\alpha \beta}
$$

Jacobi/Bianchi Identities: differential constraints on $W^{\alpha \beta}$

- The standard Weyl multiplet of $6 D \mathcal{N}=(1,0)$ conformal supergravity is encoded in the superspace geometry. The component fields can be readily identified as $\theta=0$ projections of the superspace one-forms and descendants of $W^{\alpha \beta}$

$$
T_{a b c}^{-}:=-\left.2 W_{a b c}\right|_{\theta=0}, \quad \chi^{\alpha i}:=-\left.\frac{3 \mathrm{i}}{4} \nabla_{\beta}^{i} W^{\alpha \beta}\right|_{\theta=0}, \quad D:=-\left.\frac{3 \mathrm{i}}{16} \nabla_{\alpha}^{k} \nabla_{\beta k} W^{\alpha \beta}\right|_{\theta=0}
$$

Other descendants of $W_{a b c}$ are composite superconformal curvatures: ex. $C_{a b c d} \propto\left(\gamma_{a b}\right)_{\alpha}^{\beta}\left(\gamma_{c d}\right)_{\gamma}{ }^{\delta} \nabla_{\beta}^{k} \nabla_{\delta k} W^{\alpha \gamma}$

The tensor multiplet and dilaton-Weyl multiplet

So far we have considered only the standard Weyl multiplet which possesses the covariant component fields: $T_{a b c}^{-}, \chi^{\alpha i}$ and D
A variant description of the off-shell conformal supergravity multiplet:

- Dilaton-Weyl multiplet: obtained by coupling the standard Weyl multiplet to a (on-shell) tensor multiplet with scalar superfield Φ
- Φ is described by a gauge (NSNS) two-form B_{2} in superspace. Its field strength is the closed super 3 -form

$$
\begin{aligned}
H_{3}=\mathrm{d} B_{2}=\frac{1}{3!} \mathrm{d} z^{P} & \wedge \mathrm{~d} z^{N} \wedge \mathrm{~d} z^{M} H_{M N P}(z), \quad \mathrm{d} H_{3}=0 \\
H_{\alpha \beta \gamma \gamma}^{j j} & =0, \quad H_{a \alpha \beta}^{i j}=2 \mathrm{i} \varepsilon^{i j}\left(\gamma_{a}\right)_{\alpha \beta} \Phi, \\
H_{a b \alpha}^{i} & =\left(\gamma_{a b}\right)_{\alpha}{ }^{\beta} \psi_{\beta}^{i}, \quad \psi_{\alpha}^{i}:=\nabla_{\alpha}^{i} \Phi, \\
H_{a b c} & =-\frac{i}{8}\left(\tilde{\gamma}_{a b c}\right)^{\gamma \delta} \nabla_{\gamma}^{k} \psi_{\delta k}-4 W_{a b c} \Phi,
\end{aligned}
$$

where Φ is primary $\left(K^{A} \Phi=0\right), \mathbb{D} \Phi=2 \Phi$, satisfying $\nabla_{\alpha}^{(i} \nabla_{\beta}^{j)} \Phi=0$ Assuming $\Phi \neq 0$ one can express the standard super-Weyl multiplet $W_{a b c}$ in terms of the tensor multiplet:

$$
W_{a b c}=-\frac{1}{4 \Phi} H_{a b c}-\frac{\mathrm{i}}{32 \Phi}\left(\tilde{\gamma}_{a b c}\right)^{\gamma \delta} \nabla_{\gamma}^{k} \nabla_{\delta k} \Phi
$$

The tensor multiplet and dilaton-Weyl multiplet

In components:

- define $\sigma:=\Phi \mid \neq 0$ the conformal compensator
- the covariant component fields of the standard Weyl multiplet are:

$$
\begin{aligned}
T_{a b c}^{-} & =\frac{1}{2 \sigma} H_{a b c}^{-} \\
\chi^{i} & =-\frac{15 \mathrm{i}}{8 \sigma} \not \nabla \psi^{i}-\frac{5 \mathrm{i}}{32 \sigma} T_{a b c}^{-} \tilde{\gamma}^{a b c} \psi^{i} \\
D & =\frac{15}{4 \sigma}\left(\nabla^{a} \nabla_{a} \sigma+\frac{1}{3} T^{-a b c} H_{a b c}\right)+\text { fermion terms }
\end{aligned}
$$

- This means that in the dilaton-Weyl multiplet $T_{a b c}^{-}, \chi^{\alpha i}$ and D
are exchanged with the component fields of the tensor multiplet:
$\sigma, \psi_{\alpha}^{i} \mid$ and $b_{m n}:=B_{m n} \mid\left(H_{a b c} \simeq 3 \nabla_{[a} b_{b c]}\right)$

6D $\mathcal{N}=(1,0)$ curvature squared invariants?

[Novak-Ozkan-Pang-GTM (17)]
[Butter-Novak-Ozkan-Pang-GTM (18)]
supersymmetric extensions of general curvature squared Lagrangian?

$$
\begin{aligned}
\mathcal{L}_{R^{2}} \propto & a C^{a b c d} C_{a b c d}+b \mathcal{R}^{a b c d} \mathcal{R}_{a b c d}+c \mathcal{R}^{2} \\
& + \text { SUSY completing terms }
\end{aligned}
$$

- Weyl tensor: $C_{a b}{ }^{c d}=\mathcal{R}_{a b}{ }^{c d}-\delta_{[a}{ }^{[c} \mathcal{R}_{b]}{ }^{d]}+\frac{1}{10} \delta_{[a}{ }^{[c} \delta_{b]}{ }^{d]} \mathcal{R}$ with $\mathcal{R}_{a b}{ }^{c d}$ component Riemann tensor
- Ricci tensor: $\mathcal{R}_{a}{ }^{b}:=\mathcal{R}_{a d}{ }^{b d}$
- Ricci scalar: $\mathcal{R}:=\mathcal{R}_{a}{ }^{a}$

Here I will focus on the construction of the Gauss-Bonnet invariant

A new $B_{2} \wedge H_{4}$ action principle

It turns out that we can construct all R^{2} invariants by using an action corresponding to the supersymmetrization of a $B_{2} \wedge H_{4}$ term:

- gauge 2-form B_{2} of tensor multiplet, $H_{3}=\mathrm{d} B_{2}$, hence dilaton-Weyl
- H_{4} is a closed super 4-form $\mathrm{d}_{4}=0$ based on $B_{a}{ }^{i j}(z)=B_{a}{ }^{(i j)}(z)$ a dimension-3 primary superfield satisfying the Bianchi identities

$$
\nabla_{\alpha}^{(i} B^{\beta \gamma j k)}=-\frac{2}{3} \delta_{\alpha}^{[\beta} \nabla_{\delta}^{(i} B^{\gamma] j k)}, \quad\left[\nabla_{\alpha}^{(i}, \nabla_{\beta k}\right] B^{\alpha \beta j) k}=-8 \mathrm{i} \nabla_{\alpha \beta} B^{\alpha \beta i j}
$$

- By using the superform approach to construct SUSY invariants $\Longrightarrow \quad$ locally superconformal invariant action principle:

$$
\begin{aligned}
S_{B_{2} \wedge H_{4}} & =\int \mathrm{d}^{6} \times e\left\{\varepsilon^{a b c d e f} b_{a b} h_{c d e f}-\frac{1}{4} \sigma C+\text { fermions }\right\} \\
h_{a b c d} & =\left.\frac{1}{48} \varepsilon_{a b c d e f}\left(\tilde{\gamma}^{e}\right)^{\alpha \beta} \nabla_{\alpha k} \nabla_{\beta 1} B^{f k l}\right|_{\theta=0}, \quad \nabla_{[a} h_{b c d e]} \simeq 0 \\
C & :=\left.\frac{1}{12}\left(\tilde{\gamma}^{a}\right)^{\alpha \beta} \nabla_{\alpha k} \nabla_{\beta 1} B_{a}{ }^{k l}\right|_{\theta=0}
\end{aligned}
$$

$B_{a}{ }^{i j}$ plays the role of a Lagrangian superfield

Riemann²

It was first constructed by [Bergshoeff-Rakowski (1987)].

We can reproduce it by using the $B_{2} \wedge H_{4}$ action principle with

$$
B^{\alpha \beta i j}=-\frac{i}{2} \Lambda^{\alpha(i}{ }_{\gamma}{ }^{\delta} \Lambda^{\beta j)}{ }_{\delta}{ }^{\gamma}
$$

with a primary dimension $3 / 2$

$$
\begin{aligned}
\Lambda^{\alpha i}{ }_{\beta} \gamma= & X_{\beta}^{i \alpha \gamma}-\frac{1}{3} \delta_{\beta}^{\alpha} X^{\gamma i}+\frac{1}{12} \delta_{\beta}^{\gamma} X^{\alpha i}+\frac{\mathrm{i}}{4} \Phi^{-1} \psi_{\beta}^{i} W^{\alpha \gamma}+\frac{\mathrm{i}}{12} \Phi^{-1} \delta_{\beta}^{\alpha} W^{\gamma \delta} \psi_{\delta}^{i} \\
& -\frac{\mathrm{i}}{12} \Phi^{-1} \delta_{\beta}^{\gamma} W^{\alpha \delta} \psi_{\delta}^{i}+\frac{\mathrm{i}}{12} \varepsilon^{\alpha \gamma \delta \rho} \Phi^{-1} \nabla_{\delta(\rho} \psi_{\beta)}^{i}-\frac{\mathrm{i}}{8} \varepsilon^{\alpha \gamma \delta \rho} \Phi^{-2}\left(\nabla_{\delta(\rho} \Phi\right) \psi_{\beta)}^{i} \\
& +\frac{\mathrm{i}}{32} \varepsilon^{\alpha \gamma \delta \rho} \Phi^{-2} H_{\rho \beta} \psi_{\delta}^{i}-\frac{1}{16} \varepsilon^{\alpha \gamma \delta \rho} \Phi^{-3} \psi_{\delta}^{i} \psi_{(\rho}^{k} \psi_{\beta) k}
\end{aligned}
$$

where

$$
\begin{gathered}
X^{\alpha i}:=-\frac{i}{10} \nabla_{\beta}^{i} W^{\alpha \beta}, \quad X_{\gamma}^{k \alpha \beta}=-\frac{i}{4} \nabla_{\gamma}^{k} W^{\alpha \beta}-\delta_{\gamma}^{(\alpha} X^{\beta) k} \\
\psi_{\alpha}^{i}=\nabla_{\alpha}^{i} \Phi, \quad \nabla_{\alpha}^{i} \psi_{\beta}^{j}=-\frac{i}{2} \varepsilon^{i j}\left(\gamma^{a b c}\right)_{\alpha \beta} H_{a b c}^{+}-\mathrm{i} \varepsilon^{i j}\left(\gamma^{\alpha}\right)_{\alpha \beta} \nabla_{a} \Phi
\end{gathered}
$$

$\Lambda^{\alpha i}{ }_{\beta}{ }^{\gamma}$ is a vector multiplet taking value in Lorentz algebra

Riemann ${ }^{2}$

Then, in the gauge $\sigma=1, b_{m}=0$ reduced to components

$$
\begin{aligned}
e^{-1} \mathcal{L}_{\mathrm{Riem}^{2}}= & \mathcal{R}^{a b c d}\left(\omega_{-}\right) \mathcal{R}_{a b c d}\left(\omega_{-}\right)-4 \mathcal{R}^{a b}{ }_{i j} \mathcal{R}_{a b}{ }^{i j} \\
& -\frac{1}{4} \varepsilon^{a b c d e f} b_{a b} \mathcal{R}_{c d}{ }^{g h}\left(\omega_{-}\right) \mathcal{R}_{e f ~ g h}\left(\omega_{-}\right)+\text {fermions }
\end{aligned}
$$

It is only a functional of the Weyl and tensor (dilaton-Weyl) multiplets Dependence on $H_{a b c}$ is in the torsionful Lorentz curvature $\mathcal{R}_{a b}{ }^{c d}\left(\omega_{-}\right)$

$$
\omega_{ \pm m}^{c d}:=\omega_{m}^{c d} \pm \frac{1}{2} e_{m}{ }^{a} H_{a}^{c d}
$$

such that

$$
\mathcal{R}_{a b}{ }^{c d}\left(\omega_{ \pm}\right)=\mathcal{R}_{a b}{ }^{c d} \pm \mathcal{D}_{[a} H_{b]}{ }^{c d}-\frac{1}{2} H_{e[a}^{[c} H_{b]}^{d] e}
$$

A new curvature squared invariant

A new curvature squared invariant by using the $B_{2} \wedge H_{4}$ action and the superfield [Butter-Kuzenko-Novak-Theisen (16)] ($Y_{\alpha}{ }^{\beta i j}=-5 / 2 \nabla_{\alpha}^{(i} X^{\beta j)}$)

$$
B^{\alpha \beta i j}=-4 W^{\gamma[\alpha} Y_{\gamma}{ }^{\beta] j}-32 \mathrm{i} X_{\gamma}{ }^{\alpha \delta(i} X_{\delta}{ }^{\beta \gamma j)}+10 \mathrm{i} X^{\alpha(i} X^{\beta j)}
$$

this leads to a new independent off-shell \mathcal{R}^{2} invariant [Novak-Ozkan-Pang-GTM (17)]

$$
\begin{aligned}
S_{\text {new }}= & \frac{1}{32} \\
& \int \mathrm{~d}^{6} \times e\left\{\sigma C_{a b}{ }^{c d} C_{c d}{ }^{a b}+3 \sigma \mathcal{R}_{a b}{ }^{i j} \mathcal{R}^{a b}{ }_{i j}+\frac{4}{15} \sigma D^{2}-8 \sigma T^{-d a b} \nabla_{d} \nabla^{c} T_{a b c}^{-}\right. \\
& +4 \sigma\left(\nabla_{c} T^{-a b c}\right) \nabla^{d} T_{a b d}^{-}+4 \sigma T^{-a b c} T_{a b}^{-d} T^{-e f}{ }_{c} T_{e f d}^{-}-\frac{8}{45} H_{a b c} T^{-a b c} D \\
& -2 H_{a b c} C^{a b}{ }_{d e} T^{-c d e}+4 H_{a b c} T_{d}^{-a b} \nabla_{e} T^{-c d e}-\frac{4}{3} H_{a b c} T^{-d e a} T^{-b c f} T_{d e f}^{-} \\
& \left.-\frac{1}{4} \varepsilon^{a b c d e f} b_{a b}\left(C_{c d}{ }^{g h} C_{e f g h}-\mathcal{R}_{c d}{ }^{i j} \mathcal{R}_{e f} i j\right)\right\}+ \text { fermions }
\end{aligned}
$$

In the gauge $\sigma=1, b_{a}=0$

$$
S_{\text {new }}=\frac{1}{32} \int \mathrm{~d}^{6} \times e\left\{\mathcal{R}_{a b c d} \mathcal{R}^{a b c d}-\mathcal{R}_{a b} \mathcal{R}^{a b}+\frac{1}{4} \mathcal{R}^{2}+\cdots\right\}
$$

Application: Gauss-Bonnet $\mathcal{N}=(1,0)$ invariant

Constructed the new curvature squared invariant, we can describe an off-shell extension of the Gauss-Bonnet combination in six dimensions:

$$
S_{\mathrm{GB}}=-3 S_{\text {Riem }^{2}}+128 S_{\text {new }}
$$

In the gauge $\sigma=1, b_{a}=0$

$$
\begin{aligned}
e^{-1} \mathcal{L}_{\mathrm{GB}}= & \mathcal{R}_{a b c d} \mathcal{R}^{a b c d}-4 \mathcal{R}_{a b} \mathcal{R}^{a b}+\mathcal{R}^{2} \\
& +\frac{1}{2} \mathcal{R}_{a b c d} H^{a b e} H^{c d}{ }_{e}-\mathcal{R}^{a b} H_{a b}^{2}+\frac{1}{6} \mathcal{R} H^{2}+\frac{1}{144}\left(H^{2}\right)^{2}-\frac{1}{8}\left(H_{a b}^{2}\right)^{2}+\frac{5}{24} H^{4} \\
& -\frac{1}{4} \epsilon^{a b c d e f} b_{a b} \mathcal{R}_{c d}{ }^{g h}\left(\omega_{+}\right) \mathcal{R}_{\text {ef } g h}\left(\omega_{+}\right)+\epsilon^{a b c d e f} b_{a b} \mathcal{R}_{c d}{ }^{i j} \mathcal{R}_{e f} i j+\text { fermions }
\end{aligned}
$$

where

$$
H^{2}:=H_{a b c} H^{a b c}, \quad H_{a b}^{2}:=H_{a}^{c d} H_{b c d}, \quad H^{4}:=H_{a b e} H_{c d}{ }^{e} H^{a c f} H^{b d}{ }_{f}
$$

Advantages to know the off-shell $(1,0)$ Gauss-Bonnet invariant:

- off-shell supersymmetry transformations completely under control (same as two derivative actions)
- complete off-shell descriptions of NSNS b_{2}-form which cannot be all recast in $\mathcal{R}_{a b}{ }^{c d}\left(\omega_{+}\right)$ as tried in [Bergshoeff-Salam-Sezgin (1986-87)]
- possible to add the invariant to general sugra-matter couplings

Application: Einstein-Gauss-Bonnet supergravity

With $\mathcal{L}_{\text {EH }}$ the $6 \mathrm{D} \mathcal{N}=(1,0)$ off-shell Poincaré SUGRA constructed in [Bergshoeff-Sezgin-VanProeyen (1986)]
We can now consider the combination

$$
\mathcal{L}_{\mathrm{EGB}}=\mathcal{L}_{\mathrm{EH}}+\frac{1}{16} \alpha^{\prime} \mathcal{L}_{\mathrm{GB}}
$$

off-shell extension of first order α^{\prime}-corrected string theory effective action

- matches with on-shell string theory derivation of [Liu-Minasian (2013)] α^{\prime}-corrected Type IIA reduced on K3, dual to Heterotic on T4.
- Action possesses an $\mathrm{AdS}_{3} \times \mathrm{S}^{3}$ solution analogue of the $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$ solution in IIB string theory.
- By using the off-shel action, computed the α^{\prime}-corrected KK spectrum of fluctuations around $\mathrm{AdS}_{3} \times \mathrm{S}^{3}$ organized in short and long multiplets of isometry $\mathrm{SU}(1,1 \mid 2) \times \mathrm{SL}(2, R) \times \mathrm{SU}(2)$. see [de Boer (1999)]

Hints on dynamics of strings in $\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{K} 3\left(\mathrm{~T}^{4}\right)$ backgrounds. [Novak-Ozkan-Pang-GTM (2017)]

Conclusion and Outlook

- We have constructed all off-shell $6 \mathrm{D} \mathcal{N}=(1,0)$ curvature-squared supergravity invariants [Novak-Ozkan-Pang-GTM (17)] [Butter-Novak-Ozkan-Pang-GTM (18)]
- The new 6D curvature-squared invariant complete an element missing since the 80s, see the Gauss-Bonnet
- Of importance in studying low energy String Theory and α^{\prime}-corrected AdS/CFT ...
- Study properties of α^{\prime}-corrections for solutions of GB and general curvature squared actions, e.g. Dyonic strings, ... (in progress)
- Extensions of $\mathcal{N}=(1,0)$ curvature squared? general matter couplings and... How about $\mathcal{N}=(1,1)$ (arising from Type IIA/Heterotic)? and $\mathcal{N}=(2,0)$ (arising from Type IIB)?

