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INTRODUCTION - Q&A
Q.     Is the discovered Higgs the SM one?  

Q.     Is it elementary or composite?  

Q.     Any other scalar accompanying it?  
         (minimality is not always a good  
           guiding principle)  

Q.     Which is the mechanism behind EWSB? 

Q.     How can we address the hierarchy problem?  

Q.     Do we really understand it? 

Q.     … ? … ? … ? … ?
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A.     we don’t know 

A.     we don’t know 

A.     we don’t know 

A.     we don’t know 

A.     Susy and compositeness are      
          the best-known paradigms  
A.     probably not 

A.     we don’t know

LHC is doing a great job in helping us answering these questions 
Future machine will do much better 



INTRODUCTION

mainly motivated by the hierarchy problem we consider 

SUSY                                                      COMPOSITE 

Their phenomenology is very rich and interesting:  
effects in the Higgs couplings, extended scalar sector, new resonances

we consider a Composite 2HDM and the MSSM as 
minimal realisations of EWSB based on a 2HDM structure

a composite 2HDM is the simplest natural 2HDM alternative to SUSY

What do we know about the  
MSSM?      it provides 2 Higgs doublets and … you already know everything 
C2HDM?   it provides 2 Higgs doublets and … I am going to tell you something



Symmetry fixes (almost) everything

G/H elem. 
SM

g, y

m*

mh

the coset delivers a set of states at a common mass 
scale m*    

a large separation with the Higgs can be achieved if 
we identify it with a NGB state 

 the mixing breaks the global symmetry and generates 
a one-loop effective potential

E

we borrow this idea from QCD 

Nature has already realised 
this mechanism 



Cooking recipe

the coset delivers 8 NGBs (2 Higgs doublets) 

spin 1/2 and 1 resonances

Elementary Fields Strong Sector

g� , m�

yL , yR

g , g
�

G/H

Figure 1: Pictorial representation of our scenario.

composite inert Higgs. The last section is devoted to conclusions.

2 Two Composite Higgs Doublets as PNGBs

2.1 General Structure

The basic structure of our composite-Higgs scenario is as follows. As depicted in figure 1, there exists a

new sector, that we denote as “strong”, or “strongly-interacting” sector, which is endowed with a global

group G of symmetry, spontaneously broken to H ⇢ G. As such, the strong sector delivers a set of massless

Nambu-Goldstone bosons (NGB). The only constraints on the choice of the G/H coset that characterizes

the strong sector are of phenomenological nature and they are rather mild, a priori. The main requirement,

needed to avoid generic large contributions to the T -parameter, is that the unbroken group must contain

a “custodial” SO(4) ⇠= SU(2) ⇥ SU(2) symmetry, H � SO(4), and at least one Higgs 4-plet (i.e., a 4 of

SO(4)) must be present. Compatibly with these basic requirements, several cosets exist. The smallest ones,

chosen so that H is a maximal subgroup of G, are present in table 1. Other cosets, with non-maximal

G H NG NGBs rep.[H] = rep.[SU(2) ⇥ SU(2)]
SO(5) SO(4) 4 4 = (2,2)
SO(6) SO(5) 5 5 = (1,1) + (2,2)
SO(6) SO(4) ⇥ SO(2) 8 4+2 + 4̄�2 = 2 ⇥ (2,2)
SO(7) SO(6) 6 6 = 2 ⇥ (1,1) + (2,2)
SO(7) G2 7 7 = (1,3) + (2,2)
SO(7) SO(5) ⇥ SO(2) 10 100 = (3,1) + (1,3) + (2,2)
SO(7) [SO(3)]3 12 (2,2,3) = 3 ⇥ (2,2)
Sp(6) Sp(4) ⇥ SU(2) 8 (4,2) = 2 ⇥ (2,2), (2,2) + 2 ⇥ (2,1)
SU(5) SU(4) ⇥ U(1) 8 4�5 + 4̄+5 = 2 ⇥ (2,2)
SU(5) SO(5) 14 14 = (3,3) + (2,2) + (1,1)

Table 1: Cosets G/H from simple Lie groups, with H maximal subgroup of G. For each coset, its dimension NG and the
NGBs representation under H and SO(4) ' SU(2)L ⇥ SU(2)R are reported. For Sp(6)/SU(2) ⇥ Sp(4), two embeddings are
possible, we will be interested only in the first one, which leads to two Higgs 4-plets.

subgroups, can be obtained from table 1 in a stepwise fashion G ! H ! H 0 etc.. The coset SO(6)/SO(4),

for instance, arises from the breaking SO(6) ! SO(5) ! SO(4). Besides two (2,2) Higgs 4-plets, this coset

4

G/H           SO(6)/SO(4)xSO(2)

Mrazek et al., 2011



Cooking recipe

calculability of the effective potential, absence of FCNC, constraints 
from flavour observables, Higgs data and direct searches

no freedom in the gauge sector 

partial compositeness among fermions (different reps. under G)

CP,  C2

the coset delivers 8 NGBs (2 Higgs doublets) 

spin 1/2 and 1 resonances

elementary/composite mixing 

discrete symmetries 

constraints

G/H           SO(6)/SO(4)xSO(2)



Partial compositeness
1 Introduction

Lint = gJµW
µ

Lint = yL qLOL + yR tR OR

The scenario we consider is characterized by the following structure of interactions

L = L2HDM + Lcomp (1)

where
L2HDM = Y ukawa+ V (H1, H2) + kinetic� terms (2)

The renormalizable 2HDM potential is given
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Aim of this work is to compute in an expansion in v2/f2 the leading contributions to the parameters
(m2

i
,�i) originating from the composite sector.

2 Composite two Higgs doublet models

In this section we discuss the main aspects of composite two Higgs doublet models, highlighting the
main di↵erences with the renormalizable case. In the introduction we separated the two main aspects
in L2HDM and Lcomp. The former contains the kinetic terms and the scalar potential (up to quartic
terms) and the Yukawa structure, while the latter includes e↵ective operators (starting from dimension
six) that can give modifications to Higgs couplings to bosons and fermions, e↵ects in flavour physics
and electroweak precision tests. In general these e↵ective operators are suppressed by at least a factor
of 1/f2, however, larger suppressions can be achieved by virtue of some approximate symmetries of the
underlying composite dynamics.

In the spirit of Composite Higgs models with partial compositeness, the parameters that enter the
two terms are related to each other...

2.1 Custodial symmetry

A renormalizable 2HDM never faces custodial breaking e↵ects at tree-level (as manifest from the famous
formula for the ⇢ parameter). This can be traced back to the presence, when the hypercharge coupling
is neglected, of a large SU(2)L⇥Sp(4) symmetry of the kinetic terms of the two Higgs doublets. Since in
the renormalizable 2HDM there are no other terms in the lagrangian that contribute to the T parameter
other than the kinetic terms, no custodial violation is present for any number of Higgs doublet.

However, in composite Higgs models the non-linearities of the e↵ective lagrangian for goldstone
bosons contribute with operators of dimension six of the following form
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at least 2 heavy 
resonances are 
needed for a UV 
finite potential
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in the IR 

In our scenario with G/H = SO(6)/SO(4)xSO(2) and fermions in the 6 of SO(6):
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2hâ↵T

â
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hâ
2

�hâ
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two terms are related to each other...
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does not require an excessive and 
unnatural tuning of the parameters. 
flavour symmetries can also help to 

control these observables

2.1 Custodial and discrete symmetries

A renormalisable 2HDM never faces custodial breaking e↵ects at tree level (as manifest from the
formula for the ⇢ parameter). This can be traced back to the presence, when the hypercharge coupling
is neglected, of a large SU(2)L⇥Sp(4) symmetry in the kinetic terms of the two Higgs doublets. Since
in the renormalisable 2HDM there are no other terms in the Lagrangian that contribute to the T
parameter other than the kinetic terms, no custodial violation is present for any number of Higgs
doublets.

However, in CHMs, the non-linearities of the e↵ective Lagrangian for GBs contribute with operators
of dimension six of the following form

Lcomp �
cij c̃kl
f2

(H†
i

 !
D µHj)(H

†
k

 !
D µHl) + h.c., (9)

which do not respect the Sp(4) symmetry and contribute to the T parameter for generic VEVs of the two
Higgs doublets. However, the value of the coe�cients c, c̃’s is constrained by the unbroken symmetry
H. This in turn suggests that only models where the unbroken group contains H � SU(2)L⇥Sp(4)
are free from tree level violation of custodial symmetry for any form of the Higgs VEVs. This is not
the case for SO(4)⇥SO(2), which does not contain the full symmetry of the renormalisable kinetic
terms, therefore in our case the coe�cients in (9) are non-vanishing and fixed by the symmetries to be
c11 = c22..., which then predict a T parameter [] such that

T̂ / 16⇥ v2

f2
⇥ Im[hH1i†hH2i]2

(|hH1i|2 + |hH2i|2)2
. (10)

Since custodial breaking is sensitive to the combination Im[hH1i†hH2i] there are two approximate
symmetries that can be used to reduce these e↵ects: i) CP, which is well approximated in the SM; ii)
a new symmetry that forbids a VEVs for one of the two Higgs doublets.

CP invariance and custodial symmetry

In this case we realise a scenario where the two Higgs doublets have VEVs aligned in phase as described
by the above eq. (10). Without a very accurate alignment, the bound coming from precision tests can
be roughly estimated as �T̂ < 10�3, which then constrains the phase misalignment �� = �1 � �2,
defined through hH1,2i = v1,2/

p
2 exp(i�1,2), to be

�� . 0.03
� f

600 GeV

�
(11)

assuming tan� = v2/v1 ⇠ O(1). Such a value can be achieved by assuming that the model has an
approximate CP symmetry in the scalar potential. Interestingly, the interactions of the Goldstone
bosons among themselves and with other composite fields respect automatically charge conjugation C
since Hi ! H⇤

i
is realized on the real degrees of freedom �1,2 encoded in the matrix U as

C = diag[1,�1, 1,�1, 1, 1], (12)

which is an element of SO(4). Because of this argument we find it rather natural to consider the scenario
where CP is a good symmetry of the composite sector and very well approximated in the elementary
couplings (needed to comply with flavour constraints) and derive the phenomenological consequences
of this scenario.

6

The predicted leading order correction to the T parameter arises from the 
non-linearity of the GB lagrangian. In the SO(6)/SO(4)xSO(2) model is

possible solutions: 
CP 

C2: ( H1 → H1, H2 → -H2 )  which 
forbids H2 to acquire a vev

no freedom in the coefficient, 
fixed by the coset
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Aim of this work is to compute in an expansion in v2/f2 the leading contributions to the parameters
(m2

i
,�i) originating from the composite sector.

2 Composite two Higgs doublet models

In this section we discuss the main aspects of composite two Higgs doublet models, highlighting the
main di↵erences with the renormalizable case. In the introduction we separated the two main aspects
in L2HDM and Lcomp. The former contains the kinetic terms and the scalar potential (up to quartic
terms) and the Yukawa structure, while the latter includes e↵ective operators (starting from dimension
six) that can give modifications to Higgs couplings to bosons and fermions, e↵ects in flavour physics
and electroweak precision tests. In general these e↵ective operators are suppressed by at least a factor
of 1/f2, however, larger suppressions can be achieved by virtue of some approximate symmetries of the
underlying composite dynamics.

In the spirit of Composite Higgs models with partial compositeness, the parameters that enter the
two terms are related to each other...

2

On the other hand, the relative size of a1f and a2f and/or the vanishing of one of the two is
controlled by approximate discrete symmetries that can be enjoyed by the model. As identified in []
one such possible simmetry is a Z2 acting as

C2 : H1 ! H1, H2 ! �H2 . (9)

If C2 is realized the presence of Higgs-mediated FCNCs is avoid tout-court, however we believe that
an approximate U(2)5 symmetry is anyhow needed to explain the CKM-like outcome of many flavour
experiments. Therefore, in the remainder of the paper we would like to insist on flavour symmetries
rather than on an approximate discrete symmetry C2, and outline the phenomenological consequences
when this symmetry is not imposed on the system [ right? is this a di↵erence with mrazek?].
When C2 is not realized, the second Higgs also participates in the phenomenology, otherwise it would
behave as an inert Higgs doublet with very suppressed interactions with the SM-like Higgs (see eq.(7))

2.2 Model with SO(6)/SO(4) SO(2) symmetry

This model describe the following coset

G
H =

SO(6)

SO(4)⇥ SO(2)
(10)

The GB fluctuations are describe by the matrix U in the vector represenation of SO(6)

U ⌘ exp(i
⇧

f
), ⇧ = ... (11)

where the generators are...

T parameter. In this model one can explicitly compute the coe�cients c1,2,12 that controls the
deviations from custodial symmetry. And we do find c1 = c2 = c12. Therefore, by expanding the above
operators aorund the VEVs of the Higgs bosons we find that the contribution of new physics to the T
parameter is

T ⇠ c1
Re[vH2 ]Im[vH2 ]

f2
(12)

This shows that T is generically non-zero unless, C2 and/or CP are good symmetries of the model.

2.3 Approximate symmetries

In this explicit realisation it can be checked what are the discrete symmetries that are realised. As
noticed in [] there is one symmetry acting as

C1 = diag(1,�1, 1,�1, 1, 1) (13)

which is an element of SO(4) and acts as charge conjugations on the two Higgs fields. Therefore it
can serve as a generalised CP symmetry under the assumptions that the strong sector respects the SM
parity P , and the SM embeddings respects CP.

4

the most general lagrangian is built from the H invariants in rL 𝗑 rR

FCNC may arise if there are 
several non trivial invariants in the product rL 𝗑 rR 

multiple embeddings of the SM fermions in rL,R

For instance, 6 = 4 + 2, provides three invariants (4·4, 2·2, 2Λ2) in 6 𝗑 6 
and two independent embeddings for tR 
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In this section we discuss the main aspects of composite two Higgs doublet models, highlighting the
main di↵erences with the renormalizable case. In the introduction we separated the two main aspects
in L2HDM and Lcomp. The former contains the kinetic terms and the scalar potential (up to quartic
terms) and the Yukawa structure, while the latter includes e↵ective operators (starting from dimension
six) that can give modifications to Higgs couplings to bosons and fermions, e↵ects in flavour physics
and electroweak precision tests. In general these e↵ective operators are suppressed by at least a factor
of 1/f2, however, larger suppressions can be achieved by virtue of some approximate symmetries of the
underlying composite dynamics.

In the spirit of Composite Higgs models with partial compositeness, the parameters that enter the
two terms are related to each other...
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controlled by approximate discrete symmetries that can be enjoyed by the model. As identified in []
one such possible simmetry is a Z2 acting as
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If C2 is realized the presence of Higgs-mediated FCNCs is avoid tout-court, however we believe that
an approximate U(2)5 symmetry is anyhow needed to explain the CKM-like outcome of many flavour
experiments. Therefore, in the remainder of the paper we would like to insist on flavour symmetries
rather than on an approximate discrete symmetry C2, and outline the phenomenological consequences
when this symmetry is not imposed on the system [ right? is this a di↵erence with mrazek?].
When C2 is not realized, the second Higgs also participates in the phenomenology, otherwise it would
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T parameter. In this model one can explicitly compute the coe�cients c1,2,12 that controls the
deviations from custodial symmetry. And we do find c1 = c2 = c12. Therefore, by expanding the above
operators aorund the VEVs of the Higgs bosons we find that the contribution of new physics to the T
parameter is

T ⇠ c1
Re[vH2 ]Im[vH2 ]
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This shows that T is generically non-zero unless, C2 and/or CP are good symmetries of the model.

2.3 Approximate symmetries

In this explicit realisation it can be checked what are the discrete symmetries that are realised. As
noticed in [] there is one symmetry acting as

C1 = diag(1,�1, 1,�1, 1, 1) (13)

which is an element of SO(4) and acts as charge conjugations on the two Higgs fields. Therefore it
can serve as a generalised CP symmetry under the assumptions that the strong sector respects the SM
parity P , and the SM embeddings respects CP.
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the most general lagrangian is built from the H invariants in rL 𝗑 rR

FCNC may arise if there are 
several non trivial invariants in the product rL 𝗑 rR 

multiple embeddings of the SM fermions in rL,R

For instance, 6 = 4 + 2, provides three invariants (4·4, 2·2, 2Λ2) in 6 𝗑 6 
and two independent embeddings for tR 

FCNC can be removed by 
1. assuming C2 in the strong sector and in the mixings 

2. requiring (flavour) alignment in the Yukawa couplings  
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2 Composite two Higgs doublet models

In this section we discuss the main aspects of composite two Higgs doublet models, highlighting the
main di↵erences with the renormalizable case. In the introduction we separated the two main aspects
in L2HDM and Lcomp. The former contains the kinetic terms and the scalar potential (up to quartic
terms) and the Yukawa structure, while the latter includes e↵ective operators (starting from dimension
six) that can give modifications to Higgs couplings to bosons and fermions, e↵ects in flavour physics
and electroweak precision tests. In general these e↵ective operators are suppressed by at least a factor
of 1/f2, however, larger suppressions can be achieved by virtue of some approximate symmetries of the
underlying composite dynamics.

In the spirit of Composite Higgs models with partial compositeness, the parameters that enter the
two terms are related to each other...

2

inert C2HDM

2.1 Custodial symmetry

A renormalizable 2HDM never faces custodial breaking e↵ects at tree-level (as manifest from the famous
formula for the ⇢ parameter). This can be traced back to the presence, when the hypercharge coupling
is neglected, of a large SU(2)L⇥Sp(4) symmetry of the kinetic terms of the two Higgs doublets. Since in
the renormalizable 2HDM there are no other terms in the lagrangian that contribute to the T parameter
other than the kinetic terms, no custodial violation is present for any number of Higgs doublet.

However, in composite Higgs models the non-linearities of the e↵ective lagrangian for goldstone
bosons contribute with operators of dimension six of the following form

f2Lcomp � c1(H
†
1
DµH1)

2 + c2(H
†
2
DµH2)

2 + c12(H
†
1
DµH2)

2 (7)

where the value of the coe�cients c’s is constrained by the unbroken symmetry H. This in turn
suggests that only models where the unbroken group contains H � SU(2)L⇥Sp(4) are free from tree-
level violation fo custodial symmetry.

The presence of an unbroken Sp(4) subgroup guarantees that in any 2HDM there would be no
tree-level contribution to custodial breaking. On the contrary, in a 2HDM where non-renormalizable
interactions break Sp(4) one should discuss the possible contribution to custodial violation.

We would like to emphasize the di↵erences between the elementary and composite 2HDM. The low
energy lagrangian describing the Higgs phenomenology in this context can be described by renormal-
izable interactions such as kinetic, Yukawa and potential terms included in L2HDM, as well as a few
other non-renormalizable interactions

Lcomp = ....+ c1(H
†
1
DµH1)

2 + c2(H
†
2
DµH2)

2 + c12(H
†
1
DµH2)

2 + Y ij

u QiujH1|H1|2 + cntd (8)

The first three terms encodes possible custodial breaking e↵ects, while the others parametrize deviations
in the Higgs couplings. The structure of these terms is further constrained by the global symmetries
of the strong sector H

The interactions in the first row are typical of any 2HDM, therefore the phenomenological di↵erence
arises when also the interactions in the second row are taken into account, these are the true corrections
orginating from the pseudo-Goldstone nature of the Higgs bosons. Notice that these corrections, do
not decouple with the mass of the heavy Higgs bosons, so we expect them also in the limit where

2.1.1 Flavour structure

The generic flavour structure of the. Di↵erently from most renormalizable 2HDM discussed in the
literature, when the Yukawa terms are generated by means of the partial compositeness paradigm [],
no discrete symmetries protecting the couplings of the Higgs bosons are present, therefore we have

However, as often needed in composite model, approximate symmetries of the composite sector
are needed to reproduce the observed flavour sector of the SM. This scenario automatically generates
Yukawa couplings of the following form

L2HDM � Y ij

u Qiuj
�
a1uH1 + a2uH2) + Y ij

d
Qidj

�
a1dH1 + a2dH2) + Y ij

e Liej
�
a1eH1 + a2eH2) + h.c. (9)

when all the families of the of the SM are embedded in the same representation. The flavour alignement
of the several contributions is ensured also for the higher dimensional operators, when the composite
sector enjoys a large flavour symmetry such as U(2)5 or larger. This assumption restricts the Higgs-
mediated FCNCs only to loop order.

3

the ratio a1/a2 is predicted by the strong dynamics



The effective potential

the entire effective potential is fixed by the parameters of the strong sector 
and the scalar spectrum is fully predicted by the strong dynamics
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hâ
2

�hâ
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2hâ↵T

â
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hâ
2

�hâ
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In this section we discuss the main aspects of composite two Higgs doublet models, highlighting the
main di↵erences with the renormalizable case. In the introduction we separated the two main aspects
in L2HDM and Lcomp. The former contains the kinetic terms and the scalar potential (up to quartic
terms) and the Yukawa structure, while the latter includes e↵ective operators (starting from dimension
six) that can give modifications to Higgs couplings to bosons and fermions, e↵ects in flavour physics
and electroweak precision tests. In general these e↵ective operators are suppressed by at least a factor
of 1/f2, however, larger suppressions can be achieved by virtue of some approximate symmetries of the
underlying composite dynamics.

In the spirit of Composite Higgs models with partial compositeness, the parameters that enter the
two terms are related to each other...
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2 Composite two Higgs doublet models

In this section we discuss the main aspects of composite two Higgs doublet models, highlighting the
main di↵erences with the renormalizable case. In the introduction we separated the two main aspects
in L2HDM and Lcomp. The former contains the kinetic terms and the scalar potential (up to quartic
terms) and the Yukawa structure, while the latter includes e↵ective operators (starting from dimension
six) that can give modifications to Higgs couplings to bosons and fermions, e↵ects in flavour physics
and electroweak precision tests. In general these e↵ective operators are suppressed by at least a factor
of 1/f2, however, larger suppressions can be achieved by virtue of some approximate symmetries of the
underlying composite dynamics.

In the spirit of Composite Higgs models with partial compositeness, the parameters that enter the
two terms are related to each other...
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MSSM: we use FeynHiggs 2.14.1 and scan the parameter space according 
to LHCHXSWG-2015-002:

2loop + NNLL resummation 

soft SUSY breaking = MSUSY
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tan β is predicted by the strong sector 

mh and mtop require tan β ~ O(1) 

larger tuning at large f 

values of tan β in the C2HDM and 

MSSM cannot be directly compared

mH, mA, mH+ grow with f (and tan β)

1 Introduction

Lint = gJµW
µ

Lint = yL qLOL + yR tR OR

Lmix + Lstrong = �I

Lq̄
6
L 

I

R +�I

Rt̄
6
R 

I

L

+  ̄IiD/  I �  ̄I

LM
IJ

  
J

R �  ̄I

L

�
Y IJ

1 ⌃+ Y IJ

2 ⌃2
�
 J

R (1)

�Lyuk = aAij(q̄
i

L)rL UPAU
† (tj

R
)rR + h.c. (2)

Y IJ

1 / Y IJ

2 (3)

V = m2

1H
†
1
H1 +m2

2H
†
2
H2 �

h
m2

3H
†
1
H2 + h.c.

i

+
�1

2
(H†

1
H1)

2 +
�2

2
(H†

2
H2)

2 + �3(H
†
1
H1)(H

†
2
H2) + �4(H

†
1
H2)(H

†
2
H1)

+
�5

2
(H†

1
H2)

2 + �6(H
†
1
H1)(H

†
1
H2) + �7(H

†
2
H2)(H

†
1
H2) + h.c. (4)

m2

3
6= 0,�6 6= 0,�7 6= 0 (5)

�6 = �7 =
5

3

m
2
3

f2 (6)

M2 =

✓
⇤1v2 ⇤6v2

⇤6v2 M2

22

◆
(7)

The scenario we consider is characterized by the following structure of interactions
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Aim of this work is to compute in an expansion in v2/f2 the leading contributions to the parameters
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In the limit f → ∞ (+ EWSB), we 
recover the SM (not the E2HDM)



3

parameters of the strong sector, i.e.,

f, g⇢, Y 12
1 , Y 12

2 , �1
L
, �2

R
, M , M12

 (10)

In order to have phenomenologically acceptable config-
urations, other than ensuring Electro-Weak Symmetry
Breaking (EWSB), with EW parameters consistent with
data, we further require: (i) the vanishing of the two
tadpoles of the CP-even Higgs bosons, (ii) the predicted
top mass to be 165GeV < mt < 175 GeV and (iii) the
predicted Higgs boson mass to be 120GeV < mh < 130
GeV. Under these constraints, we scan the parameters
shown in Eq. (10) within the ranges 0  X  10f (X =
Y 12
1 , Y 12

2 , �1
L
, �2

R
, M , M12

 ), 600 GeV  f  3000
GeV. Hereafter, g⇢ is fixed to be 5. As outputs, we obtain
the masses of the charged Higgs boson (mH±), the CP-
odd Higgs boson (mA), the heavier CP-even Higgs boson
(mH) and the mixing angle ✓ between the two CP-even
Higgs boson states (h,H).

We highlight next the main di↵erences between our
C2HDM and the Minimal Supersymmetric SM (MSSM),
both of which can be regarded as the minimal realisa-
tions of EWSB based on a 2HDM structure embedded in
Compositeness and Supersymmetry, respectively. (In the
MSSM, the latter is a Type-II one). For the MSSM pre-
dictions, we employ FeynHiggs 2.14.1 [8, 9] and scan
the parameter space according to the recommendations
provided in [10].
1. Prediction of tan� and Higgs Boson Masses – While
in the MSSM the parameter tan� is essentially a free
one, albeit potentially limited by theoretically and ex-
perimentally constraints, in the C2HDM it is predicted
and correlates strongly to f . This is illustrated in Fig. 1.
We note that all scan points are randomly generated, so
that their density is a measure of probability of a region of
parameter space to meet the above constraints. Clearly,
it is seen that the density of the allowed points become
smaller at regions with larger values of f and/or tan�.
This can be understood by the fact that departure from
f ⇠ vSM requires fine-tuning among the strong parame-
ters, in order to satisfy the tadpole conditions and recon-
struct the observed mh and mt values. Therefore, in the
C2HDM, small f (well within the LHC energy domain)
and tan� ⇠ O(1) (indeed, solutions above tan� ⇠ 4
are highly disfavoured by requiring mh ⇠ 125 GeV and
mt ⇠ 170 GeV) are naturally predicted.

However, this result does not imply that the parame-
ter space of the Higgs sector of the C2HDM is reduced
with respect to that of the MSSM, where tan� can in
general take values between 1 and, say, m̄t/m̄b ⇡ 45
(with m̄b,t being the running masses of the b, t-quarks
computed at mh), compatible with Supersymmetry uni-
fication conditions other than compliant with theoreti-
cal and experimental constraints. In fact, it should be
recalled that tan� is not, in general, a fundamental pa-
rameter of a 2HDM, as explained in [11–13], since it is not
basis-independent and a one-to-one comparison of mod-
els for fixed values of tan� is not meaningful unless the
realisation of the 2HDM is the same, namely the models

FIG. 1: Prediction of f and tan� in the C2HDM.

share the same discrete symmetries. While the MSSM is
characterised by a Type-II 2HDM structure, with tan�
defined in the basis where the discrete symmetry of the
two Higgs doublets is manifest, the C2HDM considered in
this work does not possess a C2 symmetry. Even though
the strong sector uniquely identifies a special basis for
the Higges and, thus, selects a special tan� among all
possible basis-dependent definitions (see [1] for more de-
tails), this parameter cannot be directly compared to the
MSSM one. Therefore, when comparing physical observ-
ables in the composite and supersymmetric scenarios, we
inclusively span tan� between 1 and 45 for the MSSM
and over all predicted values (see Fig. 1) for the C2HDM.

Other than tan�, also the Higgs masses are predicted
in the C2HDM, e.g.,m

A
is shown in Fig. 2. In the MSSM,

in contrast, m
A
is normally taken, together with tan�, as

input value to uniquely define the MSSM Higgs sector at
tree level (although now the discovered SM-like Higgs bo-
son, identified with the h state, removes the arbitrariness
of the mA choice, at least at lowest order). In particular,
we find that larger values of m

A
are obtained for larger

f and/or tan�. All these features remain stable against
di↵erent choices of g⇢ > 1.

2. Alignment with Delayed Decoupling – In addition to
Higgs masses, further physics observables that can be
used to compare the C2HDM to the MSSM are, e.g.,
Higgs cross sections and branching ratios. A convenient
way to exploit the latter in order to extract the model
parameters of potential new physics in the Higgs sec-
tor is to recast them in the language of the so called
i ‘modifiers’ of Ref. [14], wherein any of the latter is
nothing but a coupling of the SM-like Higgs boson dis-
covered at the LHC to known fermions (i = b, t, ⌧) and
bosons (i = g, �, Z,W±) normalised to the correspond-
ing SM prediction. In order to compare the C2HDM and
MSSM in this framework, we turn now to the case of V

(V = Z,W±), this being the most precisely known of all
i’s. In the C2HDM the hV V (V = Z,W±) coupling,
normalised to the SM prediction, is given by
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the SM-like Higgs coupling to W,Z

the alignment limit is approached more 
slowly in the C2HDM than in MSSM

a relevant deviation is present 
even for no mixing
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mH+ and mA are very close in both 
scenarios 
very sharp prediction in the 
C2HDM:
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The scenario we consider is characterized by the following structure of interactions
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Aim of this work is to compute in an expansion in v2/f2 the leading contributions to the parameters
(m2
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,�i) originating from the composite sector.

3

larger mass prediction in the 
C2HDM  
A → H Z can be an interesting 
channel discriminating the two 
scenarios 
H → A Z*  could also be useful



the heavy resonance in the 6 of SO(6) 
delivers 4 top partners, 1 bottom partner 

and 1 exotic fermion with Q = 5/3

C2HDM: lightest top partner T1

MSSM: lightest stop t1
~

reproducing the observed value of mh 
requires a fermionic top partner in the 
C2HDM significantly lighter than the 

scalar one in the MSSM 



CONCLUSIONS AND 
PERSPECTIVES

a C2HDM is the simplest natural 2HDM alternative to SUSY 

we considered the SO(6)/SO(4)xSO(2) scenario with a broken C2 
which realises a (type-III) Composite 2HDM 

several observables can be used to discriminate between C2HDM 
and MSSM: kV, mass spectrum, top partners, … 

other interesting scenarios: exact C2, spontaneously broken C2, 
broken CP 

phenomenological study of the C2HDM: constraints and 
predictions for the LHC and future colliders


