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dCFT theory

AdS/CFT correspondence

• Important example of the conjecture: duality between

N = 4 Super Yang-Mills (SYM)
in 4 dimensions (all N and gYM )

⇐⇒ Type IIB String Theory on
AdS5 × S5

• Weak/strong duality: relates the non-perturbative strong coupling regime
of one theory to the weak coupling perturbative regime of the other
⇒ very interesting, but also difficult to check the correspondence

• We can consider the Maldacena Wilson Loop in particular setups in order
to have non trivial check of the duality
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Motivations

• dCFTs with holographic duals constitute an interesting new arena for precision
tests of the AdS/CFT and for the search for integrable structures correspon-
dence

• Non-vanishing one-point functions already at tree level

• Double scaling limit: λ
k2

- sugra computations ( valid for large λ ) → considered for large k in such
a way that λ/k2 is kept small

- the results on both side of the correspondence are found to be expressible
in powers of λ/k2

⇒ weak/strong computations are comparable
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Defect Theory

Defect Conformal Field Theory

[DeWolfe, Freedman, Ooguri, 2003]

[Mortensen, de Leeuw, Ipsen, Kristjansen and Wilhelm, 2017]

• We consider a codimension one defect, inserted at x3 = 0, connecting two
N = 4 SYM theories with gauge groups SU(N) and SU(N − k)

• The interface reduces the total symmetry but preserves conformal invariance

• Higgsing: three of the scalar fields acquire an x3-dependent vevs:

〈Φi(x)〉cl = −
1

x3
ti ⊕ 0(N−k)×(N−k) i = 1, 2, 3 x3 > 0

ti : k-dimensional irreducible representation of the SU(2) algebra

• The defect preserves 1/2 of the supersymmetries

• Original superconformal symmetry PSU(2, 2|4)
of N = 4 SYM → broken down to the subgroup
OSp(4|4)
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Holographic dual

• Realization in the String Theory side: the D3-D5 brane configuration

• D5 → probe brane in AdS5 × S5

• D5 geometry is AdS4 × S2 and a certain background gauge field has a non
vanishing flux κ = πk√

λ
on S2

⇒ k out of the N D3 branes get dissolved in the D5 brane:

[Nagasaki, Tanida, Yamaguchi, 2012]
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Maldacena Wilson Loop

The Wilson loop in N = 4 SYM

W (C) =
1

N
TrP exp

{∮
C
dτ
(
iAµẋ

µ + Φi |ẋ| θi
)}

• describes the phase factor linked to a massive quark in the fundamental repp-
resentation of the gauge group SU(N)

• euclidean signature

• xµ(τ) is a parametrization of the loop

• θi is a unit six-vector that describes a point on S5 (θiθ
i = 1)
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Maldacena Wilson Loop in N = 4 SYM

• Holographic dual: in the supergravity limit

λ→∞, α′ → 0 (λ = g2YMN ’t Hooft coupling )

〈W (C)〉= minimal area of the string worldsheet ending on the loop C

• Susy transformation on the Wilson loop:

δεA
µ = Ψ̄Γµε

δεΦ
i = Ψ̄Γiε

• Some of the supersymmetry will be preserved if:(
iΓµẋ

µ + Γi |ẋ| θi
)
ε(x) = 0

• ε(x) = ε0 + Γµxµε1 16-component Majorana-Weyl spinors
(ε0 → Poincaré supersymmetries, ε1 → conformal supersymmetries )

• Circular Wilson loop: 1/2 BPS object
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Circular Wilson loop in N = 4 defect theory

• We consider a circular Wilson Loop of radius R placed on a plane parallel
to the defect at a distance L from it:

W (C) =
1

N
TrP exp

{∮
C
dτ (iAµẋ

µ − |ẋ| (sinχΦ3 + cosχΦ6))

}
xµ = (0, R cos τ, R sin τ, L)

|ẋ| = R

χ∈ [0, π
2

] angle on S5

• χ = 0 BPS point, the operator + the defect preserve 1/4 of the supercharges

• conformal invariance→ 〈W 〉 depends on R and L only through the ratio R/L

• We explore the interaction of W with the defect in two different regimes:

I weak coupling limit → perturbative computations in the gauge theory
side

I strong coupling limit → non-perturbative computations in the string
thoery side
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Weak coupling limit

[Aguilera-Damia, Correa, Giraldo-Rivera, 2017]

• Perturbative expansion

〈W 〉 = 〈W 〉0 + 〈W 〉1 + 〈W 〉2 + ...

• 〈W 〉0 is the tree-level term which receives contribution from the classical
value of the massive scalar Φ3

〈W 〉0 = (N − k) +
sinh

(
πR sinχ

L
k
)

sinh
(
πR sinχ

L

)
Standard tree level contribution

(with the substitution N → N − k) Interaction with the defect

• tadpole contribution: 〈W 〉1 = 0 since 1-point function at 1-loop vanishes after
regularization
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Weak coupling

• Rainbow and ladder contributions (planar limit):

〈W 〉2 = 〈W 〉(2) + (N − k)
g2YMR

4πL

∫ ∞
0

dr r

∫ π

0
dδ

 sinh
(

(π−δ)R sinχ
L

k
)

sinh
(
π(π−δ)R sinχ

L

)+

+
sinh

(
(π+δ)R sinχ

L
k
)

sinh
(
π(π+δ)R sinχ

L

)
(I1 + sin2 χI2

)

I1 = 2 cos δ
2

sin
(

2πR
L

)
I k
s

(r)K k
s

(r)

I2 =
sin( 2πR

L
cos δ

2 )
cos δ

2

(
k−1
2k

I k+2
2

(r)K k+2
2

(r) + k+1
2k

I k−2
2

(r)K k−2
2

(r)− I k
2

(r)K k
2

(r)

)

• I1 and I2 complicated integrals → we can solve them in tow different limit:

- L
R
→ 0 circle very close to the defect

- R
L
→ 0 circle far from the defect
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L
R → 0 limit

• tree level:

〈W 〉I(0) = N −K 〈W 〉II(0) = e
(k−1)πR

L
sinχ

• 1-loop:

〈W 〉I(2) =
g2YM (N − k)2

8

〈W 〉II(2) =
λR

4πLk
e

(k−1)πR
L

sinχ 1

cos3 χ

(
π

2
− χ−

1

2
sin 2χ

)(
sin2 χ+

L2

R2

)

• 〈W 〉I and 〈W 〉II correspond to different configuration in the string theory side:

- 〈W 〉I → the string does not end on the D5

- 〈W 〉II → the string do end on the D5

log 〈W 〉II '
kπR

L

(
sinχ+

λ

4π2k2
1

cos3 χ

(
π

2
− χ−

1

2
sin 2χ

)(
sin2 χ+

(
L

R

)2
))

(large R/L and large k)
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R
L → 0 limit

〈W 〉II(2) = IBPS + sin2 χ I

• Expanding for R
L
→ 0 :

〈W 〉II(2) = I
(0)
BPS + I

(2)
BPS x

2logx+

+ k(N − k)
g2YMR

L
sin2 χ

[
−
x

2
logx+

x

4

[
2ψ(0)

(
k + 1

2

)
+ 3γ − 1 + ψ(0)

(
3

2

)]]

• The asymptotic expantion of I contains an x logx behavior:

=⇒ it could be an hint of an anomalous dimension
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String Theory side

• AdS5 metric (Poincaré patch):

ds2AdS =
1

y2

(
−dt2 + dr2 + r2dφ2 + dx23 + dy2

)
• S5 metric:

ds2
S5 = dθ2 + sin2 θdΩ2

2 + cos2 θ dΩ̃2
2

• Polyakov action in the conformal gauge:

S =

√
λ

4π

∫
dτdσ

1

y2(σ)
(y′2(σ) + r′2(σ) + r2(σ) + x′23 (σ) + y2(σ)θ′2(σ))

• Using the Virasoro constraint (VC)

y′2(σ) + r′2(σ) + x′23 (σ) + y2(σ)θ′2(σ) = r2(σ)

• The action becomes:

S =

√
λ

2π

∫
dτdσ

r2(σ)

y2(σ)
=
√
λ

√
m2 − 1

k2 + 1

(1−
E(k2)

K(k2)

)
s̃−

π

2K(k2)

ϑ
′
1

(
π s̃

2K(k2)

)
ϑ1
(

π s̃
2K(k2)

)
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Boundary conditions

• Fundamental string
• → stretched from the boundary (σ = 0) to the D5 (σ = σ̃)

• boundary conditions in σ = 0 :

r(0) = R y(0) = 0

x3(0) = L θ(0) = χ

• boundary conditions in σ̃ :

y′(σ̃)− κcy2(σ̃) = 0 r′(σ̃) = 0

y(σ̃)−
1

κ
x3(σ̃) = 0 θ(σ̃) =

π

2
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Double scaling limit

• We want to match the string computation with the gauge result:
L
R
→ 0 limit. Possibile because of k ⇒ we can organize the espression for S as

a series in λ
k2

• Wilson loop close to the defect ⇒ string attached to the D5
⇒ m large (m → growing rate for θ)

• large m corresponds also to large value for the flux κ

• taking also c ( appears in the EOM for x3) and small χ (close to the BPS
point):

log 〈W 〉 =
kπR

L

[
χ+

λ

8π

(
L

Rk

)2 (
1−

4χ

π
+ χ2

(
R2

L2
+

5

2

)
+ O

(
χ3
))]

• agreement with the perturbative computation
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Holographic Phase Transition

• Boundary conditions (BC) in σ = 0 are quite easy to solve, BUT BC in σ̃ are
a non trivial issue!!

• After having imposed all the BC, there are only three indipendent parameters
left:

s̃ , m2 , k2

• As seen in the perturbative computation, we have two different phases:

1. Disconnected phase→Wilson loop far from the defect, the string
does not reach the brane.
This solution exists only in a certain range of the parameters

2. Connected phase→Wilson loop close to the defect, string attached
to the D5

There is a phase transition
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Holographic Phase Transition

Disconnected Phase

• x3 is constant (x3 = L) ⇒ c = 0

• θ is costant ⇒ m = 0 (θ′ = m)

• In this limit, we have a particular reparametrization for the circle:

y(σ) = R tanh(σ) r(σ) = R sech(σ)

r(σ)2 + y(σ)2 = R2 ⇒ spherical cap equation

• Equation for the D5: y(σ̃) = L
κ

L2

R2κ2
= 1 ⇒ The brane and the D5 touch each other only in one point

L2

R2κ2
< 1 ⇒ string and D5 attached, CONNECTED SOLUTION
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Order of the phase transition

• Determine the order of the phase transition → look at the value of the
area of the connected phase and at its derivatives for the critical values of the
parameters

• c = 0 (⇒ k2 = −m2, k2 = −1/m2)

S =

√
λ

√
m2 + 1

(
m2K

(
1

m2 + 1

)
− (m2 + 1)E

(
1

m2 + 1

))

• For m → 0, S = −
√
λ ⇒ is the value of area of the disconnected solution,

no zero order phase transition
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Order of the phase transition

• Consider now the first derivative of the area respect to the parameter of the
transition x = L2

R2κ2

• c = 0 → m2 = 1
x
− 1:

=⇒
∂S

∂ m2

∂ m2

∂x
shows a logarithmic divergence when m → 0

1

4

(
2− 4 log2 + logm2

)

First order phase transition
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Conclusion

• We analyzed the Circular Wilson loop operator in the N = 4 SYM theory with
the insertion of a defect

• Field Theory side: we can study the problem in two different limit and we
found that when it is far from the defect, it receives a contribution that could
be linked to the anomalous dimension

• String Theory side: non trivial boundary conditions problem, we are left
with three indipendent parameter

=⇒ we have a phase transition regulated by the parameter L2

R2κ2

This is a first order phase transition

• Outlook: Look at what happens if we consider, for example, a ZaremboWilson
Loop
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Thank you for the attention!!
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