Holographic phase transition in $\mathcal{N} = 4$ defect theory

Sara Bonansea

in collaboration with Silvia Davoli, Luca Griguolo, Domenico Seminara

University of Florence Department of Physics and Astronomy

 $\begin{array}{c} {\rm May} \ 25^{th} \ 2018 \\ {\rm Cortona} \end{array}$

• Motivations

- Description of the set-up
- Results in the field theory side (weak coupling)
- Results in the gravity side (strong coupling)
- Description of the phase transition (order,..)
- Conclusions

- Motivations
- Description of the set-up
- Results in the field theory side (weak coupling)
- Results in the gravity side (strong coupling)
- Description of the phase transition (order,..)
- Conclusions

- Motivations
- Description of the set-up
- Results in the field theory side (weak coupling)
- Results in the gravity side (strong coupling)
- Description of the phase transition (order,..)
- Conclusions

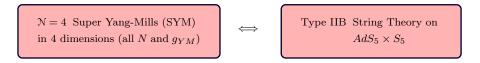
- Motivations
- Description of the set-up
- Results in the field theory side (weak coupling)
- Results in the gravity side (strong coupling)
- Description of the phase transition (order,..)
- Conclusions

- Motivations
- Description of the set-up
- Results in the field theory side (weak coupling)
- Results in the gravity side (strong coupling)
- Description of the phase transition (order,..)
- Conclusions

- Motivations
- Description of the set-up
- Results in the field theory side (weak coupling)
- Results in the gravity side (strong coupling)
- Description of the phase transition (order,..)
- Conclusions

AdS/CFT correspondence

• Important example of the conjecture: duality between



- Weak/strong duality: relates the non-perturbative strong coupling regime of one theory to the weak coupling perturbative regime of the other
 ⇒ very interesting, but also difficult to check the correspondence
- We can consider the **Maldacena Wilson Loop** in particular setups in order to have non trivial check of the duality

Motivations

- dCFTs with holographic duals constitute an interesting new arena for precision tests of the AdS/CFT and for the search for integrable structures correspondence
- Non-vanishing one-point functions already at tree level
- Double scaling limit: $\frac{\lambda}{k^2}$
 - sugra computations (valid for large λ) \to considered for large k in such a way that λ/k^2 is kept small
 - the results on both side of the correspondence are found to be expressible in powers of λ/k^2
 - \Rightarrow weak/strong computations are comparable

Defect Theory

Defect Conformal Field Theory

[DeWolfe, Freedman, Ooguri, 2003]

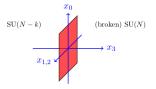
[Mortensen, de Leeuw, Ipsen, Kristjansen and Wilhelm, 2017]

- We consider a **codimension one defect**, inserted at $x_3 = 0$, connecting two $\mathcal{N} = 4$ SYM theories with gauge groups SU(N) and SU(N-k)
- The interface reduces the total symmetry but preserves **conformal invariance**
- **Higgsing**: three of the scalar fields acquire an x_3 -dependent vevs:

$$\langle \Phi_i(x) \rangle_{cl} = -\frac{1}{x_3} t_i \oplus 0_{(N-k) \times (N-k)} \qquad i = 1, 2, 3 \qquad x_3 > 0$$

 t_i : k-dimensional irreducible representation of the SU(2) algebra

- The defect preserves 1/2 of the supersymmetries
- Original superconformal symmetry PSU(2, 2|4)of $\mathcal{N} = 4$ SYM \rightarrow broken down to the subgroup OSp(4|4)

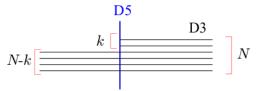


Sara Bonansea

Holographic dual

- Realization in the String Theory side: the D3-D5 brane configuration
- D5 \rightarrow probe brane in $AdS_5 \times S^5$

- D5 geometry is $AdS_4 \times S^2$ and a certain background gauge field has a non vanishing flux $\kappa = \frac{\pi k}{\sqrt{\lambda}}$ on S^2
 - \Rightarrow k out of the N D3 branes get dissolved in the D5 brane:



[Nagasaki, Tanida, Yamaguchi, 2012]

The Wilson loop in $\mathcal{N} = 4$ SYM

$$W(C) = \frac{1}{N} \operatorname{Tr} P \exp\left\{ \oint_C d\tau \left(iA_\mu \dot{x}^\mu + \Phi_i \left| \dot{x} \right| \theta^i \right) \right\}$$

- describes the phase factor linked to a massive quark in the fundamental reppresentation of the gauge group SU(N)
- euclidean signature
- $x^{\mu}(\tau)$ is a parametrization of the loop
- θ_i is a unit six-vector that describes a point on S^5 $(\theta_i \theta^i = 1)$

• Holographic dual: in the supergravity limit

$$\lambda \to \infty, \ \alpha' \to 0$$
 ($\lambda = g_{YM}^2 N$ 't Hooft coupling)

 $\langle W(C)\rangle =$ minimal area of the string worldsheet ending on the loop C

• Susy transformation on the Wilson loop:

$$\delta_{\epsilon} A^{\mu} = \bar{\Psi} \Gamma^{\mu} \epsilon$$
$$\delta_{\epsilon} \Phi^{i} = \bar{\Psi} \Gamma^{i} \epsilon$$

• Some of the supersymmetry will be preserved if:

$$\left(i\Gamma_{\mu}\dot{x}^{\mu} + \Gamma^{i}\left|\dot{x}\right|\theta_{i}\right)\epsilon(x) = 0$$

- $\epsilon(x) = \epsilon_0 + \Gamma^{\mu} x_{\mu} \epsilon_1$ 16-component Majorana-Weyl spinors ($\epsilon_0 \rightarrow$ Poincaré supersymmetries, $\epsilon_1 \rightarrow$ conformal supersymmetries)
- Circular Wilson loop: 1/2 BPS object

Sara Bonansea

Circular Wilson loop in $\mathcal{N} = 4$ defect theory

• We consider a circular Wilson Loop of radius R placed on a plane parallel to the defect at a distance L from it:

$$\begin{split} W(C) &= \frac{1}{N} \operatorname{Tr} P \exp\left\{ \oint_C d\tau \ (iA_\mu \dot{x}^\mu - |\dot{x}| \left(\sin\chi \Phi_3 + \cos\chi \Phi_6 \right) \right) \right\} \\ x^\mu &= (0, R \cos\tau, R \sin\tau, L) \\ |\dot{x}| &= R \\ \chi \in [0, \frac{\pi}{2}] \text{ angle on } S^5 \end{split}$$

- $\chi = 0$ BPS point, the operator + the defect preserve 1/4 of the supercharges
- conformal invariance $\rightarrow \langle W \rangle$ depends on R and L only through the ratio R/L
- We explore the interaction of W with the defect in two different regimes:
 - \blacktriangleright weak coupling limit \rightarrow perturbative computations in the gauge theory side
 - ▶ strong coupling limit \rightarrow non-perturbative computations in the string theory side

Sara Bonansea

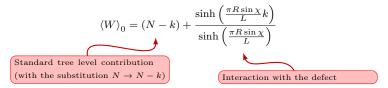
Weak coupling limit

[Aguilera-Damia, Correa, Giraldo-Rivera, 2017]

• Perturbative expansion

$$\langle W\rangle\,=\,\langle W\rangle_0+\langle W\rangle_1+\langle W\rangle_2+\ldots$$

• $\langle W \rangle_0$ is the **tree-level term** which receives contribution from the classical value of the massive scalar Φ_3



• tadpole contribution: $\langle W \rangle_1 = 0\,$ since 1-point function at 1-loop vanishes after regularization

Weak coupling

• Rainbow and ladder contributions (planar limit):

$$\begin{split} \langle W \rangle_2 &= \langle W \rangle_{(2)} + (N-k) \, \frac{g_{YM}^2 R}{4\pi L} \int_0^\infty dr \, r \int_0^\pi d\delta \, \left(\frac{\sinh\left(\frac{(\pi-\delta)R\sin\chi}{L}k\right)}{\sinh\left(\frac{\pi(\pi-\delta)R\sin\chi}{L}\right)} + \right. \\ &\left. + \frac{\sinh\left(\frac{(\pi+\delta)R\sin\chi}{L}k\right)}{\sinh\left(\frac{\pi(\pi+\delta)R\sin\chi}{L}\right)} \right) \left(\mathfrak{I}_1 + \sin^2\chi\mathfrak{I}_2 \right) \end{split}$$

$$\begin{aligned} \mathfrak{I}_{1} &= 2\cos\frac{\delta}{2}\sin\left(\frac{2\pi R}{L}\right)I_{\frac{k}{s}}(r)\,K_{\frac{k}{s}}(r)\\ \mathfrak{I}_{2} &= \frac{\sin\left(\frac{2\pi R}{L}\cos\frac{\delta}{2}\right)}{\cos\frac{\delta}{2}}\left(\frac{k\!-\!1}{2k}I_{\frac{k+2}{2}}(r)\,K_{\frac{k+2}{2}}(r) + \frac{k\!+\!1}{2k}I_{\frac{k-2}{2}}(r)\,K_{\frac{k-2}{2}}(r) - I_{\frac{k}{2}}(r)\,K_{\frac{k}{2}}(r)\right)\end{aligned}$$

• \mathcal{I}_1 and \mathcal{I}_2 complicated integrals \rightarrow we can solve them in tow different limit:

- $\frac{L}{R} \rightarrow 0$ circle very close to the defect
- $\frac{R}{L} \rightarrow 0$ circle far from the defect

$\frac{L}{R} \to 0$ limit

• tree level:

$$\langle W \rangle_{(0)}^{I} = N - K$$
 $\langle W \rangle_{(0)}^{II} = e^{\frac{(k-1)\pi R}{L} \sin \chi}$

• 1-loop:

$$\begin{split} \langle W \rangle_{(2)}^{I} &= \frac{g_{YM}^{2} (N-k)^{2}}{8} \\ \langle W \rangle_{(2)}^{II} &= \frac{\lambda R}{4\pi L k} e^{\frac{(k-1)\pi R}{L} \sin \chi} \frac{1}{\cos^{3} \chi} \left(\frac{\pi}{2} - \chi - \frac{1}{2} \sin 2\chi\right) \left(\sin^{2} \chi + \frac{L^{2}}{R^{2}}\right) \end{split}$$

- $\langle W \rangle^I$ and $\langle W \rangle^{II}$ correspond to different configuration in the string theory side: - $\langle W \rangle^I \rightarrow$ the string does not end on the D5
 - $\langle W
 angle^{II}
 ightarrow$ the string do end on the D5

$$\log \langle W \rangle^{II} \simeq \frac{k\pi R}{L} \left(\sin \chi + \frac{\lambda}{4\pi^2 k^2} \frac{1}{\cos^3 \chi} \left(\frac{\pi}{2} - \chi - \frac{1}{2} \sin 2\chi \right) \left(\sin^2 \chi + \left(\frac{L}{R} \right)^2 \right) \right)$$
(large R/L and large k)

$$\langle W \rangle_{(2)}^{II} = I_{BPS} + \sin^2 \chi I$$

• Expanding for
$$\frac{R}{L} \to 0$$
:

$$\begin{split} \langle W \rangle_{(2)}^{II} &= I_{BPS}^{(0)} + I_{BPS}^{(2)} x^2 \log x + \\ &+ k(N-k) \frac{g_{YM}^2 R}{L} \sin^2 \chi \left[-\frac{x}{2} \log x + \frac{x}{4} \left[2\psi^{(0)} \left(\frac{k+1}{2} \right) + 3\gamma - 1 + \psi^{(0)} \left(\frac{3}{2} \right) \right] \right] \end{split}$$

• The asymptotic expansion of I contains an $x \log x$ behavior:

 \implies it could be an hint of an **anomalous dimension**

University of Florence

String Theory side

• *AdS*₅ **metric** (Poincaré patch):

$$ds_{AdS}^2 = \frac{1}{y^2} \left(-dt^2 + dr^2 + r^2 d\phi^2 + dx_3^2 + dy^2 \right)$$

•
$$S^5$$
 metric:
$$ds^2_{S^5} = d\theta^2 + \sin^2 \, \theta d\Omega^2_2 + \cos^2 \theta \, d\tilde{\Omega}^2_2$$

• Polyakov action in the conformal gauge:

$$S = \frac{\sqrt{\lambda}}{4\pi} \int d\tau d\sigma \frac{1}{y^2(\sigma)} (y'^2(\sigma) + r'^2(\sigma) + r^2(\sigma) + x_3'^2(\sigma) + y^2(\sigma)\theta'^2(\sigma))$$

• Using the **Virasoro constraint** (VC)

$$y'^{2}(\sigma) + r'^{2}(\sigma) + x_{3}'^{2}(\sigma) + y^{2}(\sigma)\theta'^{2}(\sigma) = r^{2}(\sigma)$$

• The action becomes:

$$S = \frac{\sqrt{\lambda}}{2\pi} \int d\tau d\sigma \frac{r^2(\sigma)}{y^2(\sigma)} = \sqrt{\lambda} \sqrt{\frac{m^2 - 1}{k^2 + 1}} \left(\left(1 - \frac{E(k^2)}{K(k^2)}\right) \tilde{s} - \frac{\pi}{2K(k^2)} \frac{\vartheta_1'\left(\frac{\pi \tilde{s}}{2K(k^2)}\right)}{\vartheta_1\left(\frac{\pi \tilde{s}}{2K(k^2)}\right)} \right)$$

Sara Bonansea

University of Florence

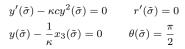
Boundary conditions

- Fundamental string
- \rightarrow stretched from the boundary ($\sigma = 0$) to the D5 ($\sigma = \tilde{\sigma}$)

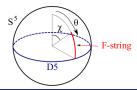
boundary conditions in $\sigma = 0$:

 $r(0) = R \qquad y(0) = 0$

 $x_3(0) = L \qquad \qquad \theta(0) = \chi$



• boundary conditions in $\tilde{\sigma}$:



Sara Bonansea

•

University of Florence

Double scaling limit

- We want to match the string computation with the gauge result:
 - $\frac{L}{R} \to 0$ limit. Possibile because of $k \Rightarrow$ we can organize the espression for S as a series in $\frac{\lambda}{k^2}$
- Wilson loop close to the defect \Rightarrow string attached to the D5 $\Rightarrow m$ large $(m \rightarrow \text{growing rate for } \theta)$
- large m corresponds also to large value for the flux κ
- taking also c (appears in the EOM for x_3) and small χ (close to the BPS point):

$$\log \langle W \rangle = \frac{k\pi R}{L} \left[\chi + \frac{\lambda}{8\pi} \left(\frac{L}{Rk} \right)^2 \left(1 - \frac{4\chi}{\pi} + \chi^2 \left(\frac{R^2}{L^2} + \frac{5}{2} \right) + \mathcal{O} \left(\chi^3 \right) \right) \right]$$

• agreement with the perturbative computation

Holographic phase transition in $\mathcal{N} = 4$ defect theory

Sara Bonansea

Holographic Phase Transition

- Boundary conditions (BC) in $\sigma = 0$ are quite easy to solve, **BUT** BC in $\tilde{\sigma}$ are a non trivial issue!!
- After having imposed all the BC, there are only three indipendent parameters left:

$$ilde{s}$$
 , m^2 , k^2

• As seen in the perturbative computation, we have two different phases:

- 1. Disconnected phase \rightarrow Wilson loop far from the defect, the string does not reach the brane. This solution exists only in a certain range of the parameters
- 2. Connected phase \rightarrow Wilson loop close to the defect, string attached to the D5

There is a phase transition

Disconnected Phase

•
$$x_3$$
 is constant $(x_3 = L) \Rightarrow \mathbf{c} = \mathbf{0}$

- θ is costant \Rightarrow **m** = **0** ($\theta' = m$)
- In this limit, we have a particular reparametrization for the circle:

$$\begin{split} y(\sigma) &= R \, \tanh(\sigma) \qquad r(\sigma) = R \, \mathrm{sech}(\sigma) \\ r(\sigma)^2 + y(\sigma)^2 &= R^2 \quad \Rightarrow \quad \mathrm{spherical \ cap \ equation} \end{split}$$

• Equation for the D5:
$$y(\tilde{\sigma}) = \frac{L}{\kappa}$$

 $\frac{L^2}{R^2\kappa^2} = 1 \Rightarrow$ The brane and the D5 touch each other only in one point $\frac{L^2}{R^2\kappa^2} < 1 \Rightarrow$ string and D5 attached, CONNECTED SOLUTION

Sara Bonansea

University of Florence

Order of the phase transition

• Determine the order of the phase transition → look at the value of the area of the connected phase and at its derivatives for the critical values of the parameters

•
$$c = 0 \quad (\Rightarrow k^2 = -m^2, \ k^2 = -1/m^2)$$

$$S = \frac{\sqrt{\lambda}}{\sqrt{m^2 + 1}} \left(m^2 K \left(\frac{1}{m^2 + 1} \right) - (m^2 + 1) E \left(\frac{1}{m^2 + 1} \right) \right)$$

• For $m \to 0$, $S = -\sqrt{\lambda} \Rightarrow$ is the value of area of the disconnected solution, no zero order phase transition

Order of the phase transition

- Consider now the first derivative of the area respect to the parameter of the transition $x=\frac{L^2}{R^2\kappa^2}$

•
$$c = 0 \rightarrow m^2 = \frac{1}{x} - 1$$
:

 $\implies \quad \frac{\partial S}{\partial \, m^2} \frac{\partial \, m^2}{\partial x} \ \, \text{shows a logarithmic divergence when} \ \, m \, \rightarrow \, 0$

$$\frac{1}{4}\left(2-4\log 2+\log m^2\right)$$

First order phase transition

Conclusion

- We analyzed the Circular Wilson loop operator in the $\mathbb{N}=4$ SYM theory with the insertion of a defect
- Field Theory side: we can study the problem in two different limit and we found that when it is far from the defect, it receives a contribution that could be linked to the anomalous dimension
- **String Theory side**: non trivial boundary conditions problem, we are left with three indipendent parameter

 \implies we have a phase transition regulated by the parameter $\frac{L^2}{R^2\kappa^2}$

This is a first order phase transition

• Outlook: Look at what happens if we consider, for example, a Zarembo Wilson Loop

Thank you for the attention!!

Sara Bonansea Holographic phase transition in $\mathcal{N}=4$ defect theory

University of Florence