From the Sakai-Sugimoto Model to the Generalized Skyrme Model Work in collaboration with Stefano Bolognesi and Andrea Proto

Lorenzo Bartolini Convegno Nazionale di Fisica Teorica - Cortona

Università di Pisa

25 May 2018

From SSM to GSM

Lorenzo Bartolini

Contents

- Baryons as solitons
- Holographic QCD (WSS Model)
- The Sextic Term
- Small λ solitons
- Conclusions

From SSM to GSM

Lorenzo Bartolini

Witten/'t Hooft: study QCD in $\mathit{N_c} ightarrow \infty$ limit

Greatly simplified

- Description as an effective field theory of mesons and glueballs
- Meson coupling $\sim \mathcal{O}(N_c^{-1})$
- Baryons are solitons of this large N_c Lagrangian
- Baryon mass $\sim \mathcal{O}(N_c)$
- Baryon size $\sim \mathcal{O}\left(1
 ight)$

From SSM to GSM

Lorenzo Bartolini

Degrees of freedom: chiral field U (map $R^3 \rightarrow S^3$) Action: NL σ Model with quartic "Skyrme Term"

$$\mathcal{L} = \frac{f_{\pi}^2}{16} \text{Tr} \left(\partial_{\mu} U \partial_{\mu} U^{\dagger} \right) + \frac{1}{32e^2} \text{Tr} \left[\partial_{\mu} U U^{\dagger}, \partial_{\nu} U U^{\dagger} \right]^2$$

Hedgehog ansatz:

$$U = \exp\left[if(r)\hat{x}\cdot\vec{\tau}\right]$$

From SSM to GSM

Lorenzo Bartolini

Remarks:

- Admits solitonic solutions ("Skyrmions")
- Winding number \leftrightarrow Baryon number
- Solitons can be quantized as fermions
- Accuracy within 30%
- Can (and SHOULD) be extended with other terms

From SSM to GSM

Lorenzo Bartolini

Holographic QCD

1997: Maldacena introduces AdS/CFT correspondence

1998: Witten develops the confining background geometry

 \Downarrow

Bulk geometry fixes a length scale dual to confinement scale

Holographic QCD models become feasible

From SSM to GSM

Lorenzo Bartolini

Why holography?

Strong/weak duality

₩

 $\mathsf{Perturbative}\ \mathsf{QFT} \leftrightarrow \mathsf{Strongly}\ \mathsf{coupled}\ \mathsf{gravity}$

Strongly coupled QFT \leftrightarrow Perturbative gravity

Great for studying the rich non-perturbative sector of strongly coupled QFTs From SSM to GSM

Lorenzo Bartolini

Why holography?

Strong/weak duality

₩

 $\mathsf{Perturbative}\ \mathsf{QFT} \leftrightarrow \mathsf{Strongly}\ \mathsf{coupled}\ \mathsf{gravity}$

Strongly coupled QFT \leftrightarrow Perturbative gravity

₩

Great for studying the rich non-perturbative sector of strongly coupled QFTs

From SSM to GSM

Lorenzo Bartolini

WSS Model

Key elements:

- COLOR: Background 10d geometry from string theory (stack of N_c D4-Branes)
- FLAVOR: U(N_f) Yang-Mills/Chern-Simons theory on D8-Branes

$$\mathcal{A}_{\alpha} = \widehat{A}_{\alpha} \frac{\mathbb{I}}{N_f} + A_{\alpha}^{a} \frac{\tau^{a}}{2}$$

$$\alpha = 0, i, z$$

From SSM to GSM

Lorenzo Bartolini

SUGRA Background

Geometry $\mathsf{ds}^{2} = \left(\frac{u}{R}\right)^{3/2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(u) d\tau^{2}\right) + \left(\frac{R}{u}\right)^{3/2} \left(\frac{du^{2}}{f(u)} + u^{2} d\Omega_{4}^{2}\right)$ $f(u) = 1 - \frac{u_{KK}^3}{u^3}$

From SSM to GSM

Lorenzo Bartolini

SUGRA Background

Geometry $ds^{2} = \left(\frac{u}{R}\right)^{3/2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + f(u) d\tau^{2}\right) + \left(\frac{R}{u}\right)^{3/2} \left(\frac{du^{2}}{f(u)} + u^{2} d\Omega_{4}^{2}\right)$ $f(u) = 1 - \frac{u_{KK}^3}{u^3}$ Subspace (u, τ) : "Cigar" $u = u_{KK}$ The geometry ends here 1 $R_{\tau} = \frac{4\pi}{3} \frac{R^{3/2}}{u^{1/2}} \Rightarrow M_{KK} = \frac{3}{2} \frac{u_{KK}^{1/2}}{R^{3/2}}$ Mass scale of the theory (glueballs)

From SSM to GSM

Lorenzo Bartolini

Flavor D8-Branes

 N_f couples of antipodal D8/ $\overline{\text{D8}}$ -Branes on S^1

From SSM to GSM

Lorenzo Bartolini

WSS 5d Effective Action

5*d* effective action:
$$S = S_{YM} + S_{CS}$$

$$S_{YM} = -rac{N_c\lambda}{216\pi^3} \mathrm{tr} \int d^4x dz \left[k(z)\mathcal{F}_{\mu z}^2 + rac{1}{2}h(z)\mathcal{F}_{\mu
u}^2
ight]$$

$$S_{CS} = \frac{N_c}{384\pi^2} \epsilon_{\alpha_1 \cdots \alpha_5} \int d^4 x dz \widehat{A}_{\alpha_1} \left[3F^a_{\alpha_2 \alpha_3} F^a_{\alpha_4 \alpha_5} + \widehat{F}_{\alpha_2 \alpha_3} \widehat{F}_{\alpha_4 \alpha_5} \right]$$

$$k(z) = 1 + z^2$$
; $h(z) = k(z)^{-1/3}$
Meson modes expansion:

$$\mathcal{A}_{\mu} = \mathcal{U}^{-1} \partial_{\mu} \mathcal{U} \psi_{+}(z) + \sum_{1}^{+\infty} B_{\mu}^{(n)}(x) \psi_{(n)}(z)$$
$$-h(z) \partial_{z} (k(z) \partial_{z} \psi_{n}) = \lambda_{n} \psi_{n}$$

From SSM to GSM

Lorenzo Bartolini

WSS 5d Effective Action

Remark: if we only include pions

$$\mathcal{A}_{\mu} = \mathcal{U}^{-1} \partial_{\mu} \mathcal{U} \psi_{+}(z)$$

And drop the CS term, we find that:

We obtain a Skyrme model in the low energy regime

$$f_{\pi}=\sqrt{rac{\kappa}{\pi}}$$
 ; $e\sim-rac{1}{2.5\kappa}$

But to set to zero vector mesons by brute force is not the correct way of deriving the effective action

\downarrow

We should instead integrate away higher energy states from the action

From SSM to GSM

Lorenzo Bartolini

WSS 5d Effective Action

Remark: if we only include pions

$$\mathcal{A}_{\mu} = \mathcal{U}^{-1} \partial_{\mu} \mathcal{U} \psi_{+}(z)$$

And drop the CS term, we find that:

We obtain a Skyrme model in the low energy regime

$$f_{\pi}=\sqrt{rac{\kappa}{\pi}}$$
 ; $e\sim-rac{1}{2.5\kappa}$

But to set to zero vector mesons by brute force is not the correct way of deriving the effective action

₩

We should instead integrate away higher energy states from the action

From SSM to GSM

Lorenzo Bartolini

The Sextic term

A potential which is sextic in the derivatives can be added to the Skyrme model:

$$\mathcal{L} = rac{\gamma^2}{24^2} \left[\epsilon^{\mu
u_1
u_2
u_3} \left(\textit{R}_{
u_1}\textit{R}_{
u_2}\textit{R}_{
u_3}
ight)
ight]^2$$

With $R_{\mu} = \mathcal{U}^{-1} \partial_{\mu} \mathcal{U}$

A sextic term can be generated by extending the Skyrme model with ω -mesons and integrating them away

We will use this guideline to derive such term from the holographic model

From SSM to GSM

Lorenzo Bartolini

[∜]

The Sextic term

 Abelian ansatz and factorization for the vector meson part:

$$\mathcal{A}_{\mu} = egin{cases} \widehat{\mathcal{A}}_{\mu} = \mathcal{B}_{\mu}(x)\chi(z) \ \mathcal{A}_{\mu} = \mathcal{U}^{-1}\partial_{\mu}\mathcal{U}\psi_{+}(z) \end{cases}$$

Field strength becomes

$$F_{\mu\nu} = [R_{\mu}, R_{\nu}] \psi_{+} (i\psi_{+} - 1)$$

$$F_{z\mu} = R_{\mu}\psi'_{+}$$

$$\widehat{F}_{\mu\nu} = f_{\mu\nu}\chi$$

$$f_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$$

$$\widehat{F}_{z\mu} = B_{\mu}\chi'$$

From SSM to GSM

Lorenzo Bartolini

Equation of motion for \widehat{A}_{μ}

Neglecting higher derivative terms (...) we obtain:

$$2\kappa z B_{\mu}\chi' + \kappa(1+z^2)B_{\mu}\chi'' + \ldots +$$

 $+ rac{N_c}{16\pi^2}\epsilon^{\mu z \mu_1 \mu_2 \mu_3} \operatorname{Tr} \left(R_{\mu_1} \left[R_{\mu_2}, R_{\mu_3}
ight] \psi_+ \psi'_+ (i\psi_+ - 1)
ight) + \ldots = 0$

Which is nicely decoupled as

$$2z\chi' + k(z)\chi'' = rac{N_c}{16\kappa\pi^2}\psi_+\psi_+'(i\psi_+ - 1)$$

 $B_\mu(x) = -\epsilon_\mu^{\ \ z
u_1
u_2
u_3} \operatorname{Tr}\left(R_{
u_1}\left[R_{
u_2}, R_{
u_3}
ight]
ight)$

From SSM to GSM

Lorenzo Bartolini

Profile in the holographic direction

$$\chi = -\frac{N_c}{64\pi^3\kappa} \left(\frac{5\pi^2}{48} - \frac{1}{2} \arctan^2(z) + \frac{1}{3\pi^2} \arctan^4(z) \right)$$

From SSM to GSM

Lorenzo Bartolini

Skyrme Model Holographic QCD The Sextic term

 $a_n\equiv |\langle\chi^{(\it norm)},\psi_n
angle|^2$ $a_1=0,988$; $a_3=0,0115$; $a_5=0,00029$

50

-100

-50

Ζ

100

Resulting sextic term

Plug configuration in $S_{YM} + S_{CS}$ and integrate bulk direction

$$S_6 = S_6^{YM} + S_6^{CS} = rac{51N_c}{8960\lambda} \int d^4x \left[\epsilon^{\mu z
u_1
u_2
u_3} \mathrm{Tr} \left(R_{
u_1} R_{
u_2} R_{
u_3}
ight)
ight]^2$$

We can also add a quark mass term via Aharony-Kutasov action

$$S_{AK} = mc \int d^4 x \operatorname{Tr} \left[(\mathcal{U} - 1) + \mathrm{c.c.} \right]$$

Which produces a pion mass potential

$$S_0 = 4mc \int d^4x \left(\sigma - 1
ight)$$
 $\mathcal{U} \equiv \sigma + iec{\pi}\cdotec{ au}$

The SSM "contains" a Generalized Skyrme Model

$$\mathcal{L}_{GSM} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \mathcal{L}_0$$

From SSM to GSM

Lorenzo Bartolini

Resulting sextic term

Plug configuration in $S_{YM} + S_{CS}$ and integrate bulk direction

$$S_{6} = S_{6}^{YM} + S_{6}^{CS} = \frac{51N_{c}}{8960\lambda} \int d^{4}x \left[\epsilon^{\mu z \nu_{1} \nu_{2} \nu_{3}} \text{Tr} \left(R_{\nu_{1}} R_{\nu_{2}} R_{\nu_{3}} \right) \right]^{2}$$

We can also add a quark mass term via Aharony-Kutasov action

$$S_{AK} = mc \int d^4 x \operatorname{Tr} \left[(\mathcal{U} - 1) + \mathrm{c.c.}
ight]$$

Which produces a pion mass potential

$$S_0 = 4mc \int d^4x \left(\sigma - 1
ight)$$

 $\mathcal{U} \equiv \sigma + iec{\pi}\cdotec{ au}$

The SSM "contains" a Generalized Skyrme Model

$$\mathcal{L}_{GSM} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \mathcal{L}_6$$

From SSM to GSM

Lorenzo Bartolini

Resulting sextic term

Plug configuration in $S_{YM} + S_{CS}$ and integrate bulk direction

$$S_{6} = S_{6}^{YM} + S_{6}^{CS} = \frac{51N_{c}}{8960\lambda} \int d^{4}x \left[\epsilon^{\mu z \nu_{1} \nu_{2} \nu_{3}} \text{Tr} \left(R_{\nu_{1}} R_{\nu_{2}} R_{\nu_{3}} \right) \right]^{2}$$

We can also add a quark mass term via Aharony-Kutasov action

$$S_{AK} = mc \int d^4 x \operatorname{Tr} \left[(\mathcal{U} - 1) + \mathrm{c.c.}
ight]$$

Which produces a pion mass potential

$$S_0 = 4mc \int d^4x \left(\sigma - 1
ight)$$
 $\mathcal{U} \equiv \sigma + iec{\pi}\cdotec{ au}$

The SSM "contains" a Generalized Skyrme Model

$$\mathcal{L}_{GSM} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \mathcal{L}_0$$

From SSM to GSM

Lorenzo Bartolini

The small λ limit

We already know the picture in the large λ regime:

BPST instanton of size $\mathcal{O}(\lambda^{-1/2})$

We have derived a GSM as a low energy effective field theory: what happens to this picture in the new SMALL λ limit?

make use of Derrick's theorem

₩

Different outcomes for massive or massless quarks

From SSM to GSM

Lorenzo Bartolini

Massless quarks case

Skyrmion profiles for various values of λ . Size $R \sim \lambda^{-1/2}$

From SSM to GSM

Lorenzo Bartolini

Massless quarks case

Skyrmion profiles for various values of λ rescaled to the same size. In red the solution of the model $\mathcal{L}_2 + \mathcal{L}_6$

From SSM to GSM

Lorenzo Bartolini

Massless quarks case

Green and red lines: asymptotic power laws (Derrick) Blue line: correct behaviour for large λ Black star: phenomenological λ

From SSM to GSM

Lorenzo Bartolini

Size $R \sim \lambda^{-1/3}$ in the small λ regime but more interesting things happen...

From SSM to GSM

Lorenzo Bartolini

$$\mathcal{L}_0 + \mathcal{L}_6$$
 is the "BPS Skyrme Model"

∜

It admits an analytic solution of the compacton type

$$f(r) = \begin{cases} 2 \arccos(Ar) & \text{for} \quad r \in [0, A^{-1}] \\ 0 & \text{for} \quad r \ge A^{-1} \end{cases}$$
$$A^{-1} = \sqrt[3]{\frac{4\sqrt{\alpha}}{\Lambda m_{\pi}}}$$
$$\alpha = 76,701 \quad ; \quad \Lambda = \frac{8\lambda}{27\pi}$$

From SSM to GSM

Lorenzo Bartolini

In red the analytic compacton solution. Again, numerical solutions confirm the expected behaviour

From SSM to GSM

Lorenzo Bartolini

Red dashed line: asymptotic linear law Red vertical line: size corresponding to $R \sim m_{\pi}^{-1}$ Blue line: correct behaviour at large λ

From SSM to GSM

Lorenzo Bartolini

Summing up our results

- We obtained a Generalized Skyrme model within the holographic model of Sakai-Sugimoto.
- The mechanism with which it is obtained resembles of the old idea of integrating out the ω meson, extending it to the whole tower of states with the same quantum numbers.
- ► In the small \(\lambda\) regime a BPS Skyrme model is obtained

Large $\lambda \Rightarrow$ Self-dual BPST instanton

The SSM interpolates with λ between two BPS models

Phenomenological \u03c6 is not in any of the two regimes: can small nuclear binding energies be thought as a consequence of (inevitable?) closeness to a BPS model? From SSM to GSM

Lorenzo Bartolini

Summing up our results

- We obtained a Generalized Skyrme model within the holographic model of Sakai-Sugimoto.
- The mechanism with which it is obtained resembles of the old idea of integrating out the ω meson, extending it to the whole tower of states with the same quantum numbers.
- ► In the small \(\lambda\) regime a BPS Skyrme model is obtained

Large $\lambda \Rightarrow$ Self-dual BPST instanton

The SSM interpolates with λ between two BPS models

Phenomenological \u03c6 is not in any of the two regimes: can small nuclear binding energies be thought as a consequence of (inevitable?) closeness to a BPS model? From SSM to GSM

Lorenzo Bartolini

Summing up our results

- We obtained a Generalized Skyrme model within the holographic model of Sakai-Sugimoto.
- The mechanism with which it is obtained resembles of the old idea of integrating out the ω meson, extending it to the whole tower of states with the same quantum numbers.
- \blacktriangleright In the small λ regime a BPS Skyrme model is obtained

Large $\lambda \Rightarrow$ Self-dual BPST instanton

The SSM interpolates with λ between two BPS models

Phenomenological \u03c6 is not in any of the two regimes: can small nuclear binding energies be thought as a consequence of (inevitable?) closeness to a BPS model? From SSM to GSM

Lorenzo Bartolini

From SSM to GSM

Lorenzo Bartolini

Skyrme Model Holographic QCD The Sextic term

Thanks for your attention