Amplituhedron meets Jeffrey-Kirwan Residue

Matteo Parisi

University of Oxford Mathematical Institute

New Frontiers in Theoretical Physics Cortona, May 24, 2018

with Livia Ferro and Tomasz Łukowski, arXiv:1805.01301

Introduction

Scattering Amplitudes in Quantum Field Theory

- → Modern On-Shell Methods: Recursion Relations, Generalized Unitarity, ...
- $\mathcal{N} = 4$ super Yang-Mills (SYM)
 - \rightarrow supersymmetric cousin of QCD
 - \rightarrow "Hydrogen Atom of 21st century" Integrability
 - \rightarrow numerous dualities & correspondences
- Geometrization of Scattering Amplitudes: Grassmannian, Amplituhedron, ...
 - ${\rm ``Amplitude = Volume\ of\ a\ Geometric\ Space''}$
- The Jeffrey-Kirwan Residue is a powerful concept in
 - → Mathematics: Localization of Group Actions in equivariant cohomology
 - \rightarrow Physics: Supersymmetric Localization in Gauge Theories

Our work establishes:

the connection between JK-Residue and the Amplituhedron

Outline

- Introduction
- 2 Amplituhedron
- 3 Jeffrey-Kirwan Residue
- 4 Amplituhedron meets Jeffrey-Kirwan Residue
- **5** Conclusions and Outlook

Amplituhedron: Geometry

The **Amplituhedron** $\mathcal{A}_{n,k}^{(m)}$ - a recently discovered mathematical object: [Arkani-H., Trnka, '13]

- lives in the space of k-planes in (m+k)-dimensions, i.e. the Grassmannian
- is a generalization of polytopes inside the Grassmannian
- has elements $Y \in \mathcal{A}_{n,k}^{(m)}$ of the form

$$Y = \underbrace{C \cdot Z}_{n \times (m+k) \text{ matrix of fixed } External \ Data}_{n \times n \text{ matrix } / GL(k) \text{ spanning the } \underbrace{Interior}_{n \times n \text{ matrix } / GL(k)}$$

- + Positivity: C, Z have all ordered maximal minors positive
- Examples
 - $\rightarrow (k=1, m=2): n$ -gon in two dimensions
 - $\rightarrow (k = 1, \text{any } m) : cyclic polytopes in m dimensions$
 - $\rightarrow (k > 1)$: previously unknown objects

Amplituhedron: Volume Function

For each Amplituhedron $\mathcal{A}_{n,k}^{(m)}$ one defines a volume function $\Omega_{n,k}^{(m)}$ such that

 $\Omega_{n,k}^{(m)}$ has logarithmic singularities at all boundaries of $\mathcal{A}_{n,k}^{(m)}$

- Tree Amplitudes in $\mathcal{N}=4$ SYM can be extracted from $\Omega_{n,k}^{(4)}$ helicity sector number of particles
- How do we find it?
 - \rightarrow Geometrically: Triangulate $\mathcal{A}_{n,k}^{(m)}$ and sum over the known volumes of each triangle

(e.g)
$$k = 1, m = 2, n = 5$$
: $\Omega_{n,1}^{(2)} = [123] + [134] + [145]$

 \rightarrow Analytically: Evaluate the contour integral

$$\Omega_{n,k}^{(m)}(Y,Z) = \int_{\gamma} \frac{d^{k\cdot n}\,C}{(12\ldots k)\ldots (n1\ldots k-1)} \delta^{k(m+k)}(Y-C\cdot Z) = \int_{\gamma} \omega_{n,k}^{(m)}(Y-C\cdot Z) = \int_{\gamma} \omega_{n,k$$

different contours \leftrightarrow different triangulations

Finding γ or triangulations is a highly non-trivial task!

The **Jeffrey-Kirwan Residue** is an operation on Differential Forms [Jeffrey, Kirwan, '95]

Toy)Example

$$\omega = \frac{dx_1 \wedge ... \wedge dx_r}{\beta_1(x)...\beta_n(x)}, \qquad \beta_i(x) = \beta_i \cdot x + \alpha_i$$

$$\beta_i(x) = \beta_i \cdot x + \alpha_i$$

$$\omega = \frac{dx_1 \wedge dx_2}{\beta_1(x)...\beta_5(x)}$$

- $B = \{\beta_i\}$ is the set of r dimensional vectors: charges
- A *Cone* is the positive span of r charges

e.g.
$$C_{25} = \operatorname{Span}_+\{\beta_2, \beta_5\}$$

For fixed $\eta \in \mathbb{R}^r$, the Jeffrey-Kirwan Residue is

$$JKRes^{\mathbf{B},\eta}\omega = \sum_{Cone\ni\eta} Res_{Cone}\,\omega$$

- $\rightarrow \operatorname{Res}_{Cone}$ is the multivariate residue, up to a sign e.g. $\operatorname{Res}_{C_{25}}\omega$: residue at $\{\beta_2(x) = \beta_5(x) = 0\}$
- \rightarrow signs determined by the orientation of cones e.g. $\det(\beta_2\beta_5) > 0$ for the cone C_{25}

$$JKRes^{B,\eta}\omega = \sum_{Cone\ni\eta} Res_{Cone}\omega$$

$$\mathrm{JKRes}^{B,\eta} = \mathrm{Res}_{C_{25}} + \mathrm{Res}_{C_{45}} + \mathrm{Res}_{C_{23}}$$

$$JKRes^{B,\eta}\omega = \sum_{Cone\ni\eta} Res_{Cone}\omega$$

JKRes<sup>B,
$$\eta_1$$</sup> = Res_{C₂₅} + Res_{C₄₅} + Res_{C₂₃} = JKRes^{B, η_2}
same form of the answer!

$$JKRes^{B,\eta}\omega = \sum_{Cone\ni\eta} Res_{Cone}\omega$$

• A Chamber is a (non-empty) maximal intersection of cones \rightarrow JKRes gives the same form of the answer

$$JKRes^{B,\eta} = Res_{C_{25}} + Res_{C_{45}} + Res_{C_{23}}, \forall \eta \in \Lambda_1$$

$$JKRes^{B,\eta}\omega = \sum_{Cone\ni\eta} Res_{Cone}\omega$$

• A Chamber is a (non-empty) maximal intersection of cones \rightarrow JKRes gives the same form of the answer

$$JKRes^{B,\eta} = Res_{C_{25}} + Res_{C_{45}} + Res_{C_{23}}, \forall \eta \in \Lambda_1$$

JKRes is *independent* from the chamber

$$\begin{split} \operatorname{JKRes}^{B,\eta_1} &= \operatorname{Res}_{C_{25}} + \operatorname{Res}_{C_{45}} + \operatorname{Res}_{C_{25}} \\ & \parallel \\ \operatorname{JKRes}^{B,\eta_3} &= \operatorname{Res}_{C_{45}} + \operatorname{Res}_{C_{12}} + \operatorname{Res}_{C_{42}} \end{split}$$

The JK-Residue provides a particular contour on which we integrate ω

Amplituhedron meets Jeffrey-Kirwan Residue

$$\rightarrow \operatorname{Recall} \left(\Omega_{n,k}^{(m)}(Y,Z) = \int_{\gamma} \omega_{n,k}^{(m)} \right)$$

• Apply JK-Residue to Amplituhedron

$$\Omega_{5,1}^{(2)} = \text{JKRes}^{B,\eta} \omega_{5,1}^{(2)}$$

• Res_{Cone} computes the volume of triangles

$$Res_{C_{25}} = [134]$$

• Each Chamber corresponds to a Triangulation

$${\rm JKRes}^{B,\eta_1}\omega_{5,1}^{(2)}=[134]+[123]+[145]$$

$$\text{JKRes}^{B,\eta_3}\omega_{5,1}^{(2)} = [345] + [351] + [312]$$

- Adjacent chambers correspond to triangulations related by bistellar flip
 - \rightarrow Geometrically:

 \rightarrow Analytically:

Global Residue Theorem

General Statements: Cyclic Polytopes

For Cyclic Polytopes (k = 1, any m, any n):

$$\Omega_{n,1}^{(m)} = \text{JKRes}^{B,\eta} \omega_{n,1}^{(m)}$$

[Ferro, Łukowski, MP, '18]

- Positivity of Amplituhedron determines the configuration of Chambers
- For each Chamber
 - \rightarrow Geometrically: different triangulation of $\mathcal{A}_{n,1}^{(m)}$
 - \rightarrow Analytically: different representation of $\Omega_{n,1}^{(m)}$
- For adjacent Chambers
 - \rightarrow Geometrically: triangulations related by bistellar flip
 - \rightarrow Analytically: representations related by Global Residue Theorem
- Secondary Polytope $\Sigma(\mathcal{P})$ vertices are triangulations of a given polytope \mathcal{P}

[Gelfand, Zelevinsky, Kapranov, '90]

- \rightarrow For an *n*-gon it is the *Associahedron*
- \rightarrow In general it is very complicated
 - e.g. physical case, 8 particles: 3-dimensional and 40 vertices
- → It is fully captured by the Jeffrey-Kirwan Residue!

General Statements: Conjugates to Polytopes

Parity Conjugation is an operation which in

- \rightarrow Amplitudes: flips the helicities of the particles
- \rightarrow Amplituhedron: is realized by replacing k with n-m-k e.g. $\overline{A^{(2)}} = A^{(2)}$

Conjugates to Polytopes $A_{n,n-m-1}^{(m)}$ are not Polytopes! Nevertheless:

- \bullet The Jeffrey-Kirwan Residue computes $\Omega_{n.n-m-1}^{(m)},$ for $even\ m$
- Triangles and triangulations of $\mathcal{A}_{n,n-m-1}^{(m)}$ are in direct correspondence with the ones of the conjugate polytope $\mathcal{A}_{n,1}^{(m)}$
- The Secondary Amplituhedron is the same as the Secondary Polytope of the conjugate

Conclusions and Outlook

The Jeffrey-Kirwan Residue

- strenghten the connection between
 - → The complex Analytic-Algebraic nature of Scattering Amplitudes
 - \rightarrow The rich Geometric-Combinatorial structure of the Amplituhedron
- naturally leads to the study of Secondary Amplituhedron
 - \rightarrow encodes all triangulations of the Amplituhedron
 - \rightarrow generalises the notion of Secondary Polytope

We showed this for polytopes and their conjugates

Open Questions

- What is the generalisation of the Jeffrey-Kirwan Residue for all other Amplituhedra, i.e. other helicity sectors and loops?
- Can we find the Secondary Amplituhedron in all these cases?
 - → many new representations of Scattering Amplitudes!

