

Discrete symmetries tests in the positronium decays with the J-PET detector

Michał Silarski for the J-PET Collaboration Jagiellonian University

- 1. Positronium as a probe for fundamental symmetries tests
- 2. The J-PET detector
- 3. Potential of the discrete symmetries studies with J-PET
- 4. Conclusions and outlook

Workshop Quantum Foundations: New frontiers in testing quantum mechanics from underground to the space, Frascati, 01.12.2017

* Positronium as a probe for symmetries tests

- Positronium:
- Eigenstate of the CP operator: e⁺e⁻ state (C eigenstate) bound by a central potential (P eigenstate)
- The lightest purely leptonic object
- Effects due the weak interaction can lead to the violation at the order of 10⁻¹⁴.
 M. Sozzi, Discrete Symmetries and CP Violation, Oxford Uviversity Press (2008)
- No charged particles in the final state (radiative corrections very small 2 * 10⁻¹⁰)
 B. K. Arbic et al., Phys. Rev. A 37, 3189 (1988); W. Bernreuther et al., Z. Phys. C 41, 143 (1988).

P Ps > = (-1) C Ps > = (-1)									
Ps state	τ [ns]	L	S	J	J _z	Ρ	C	СР	e
¹ S ₀ (para-Ps)	0.125	0	0	0	0	-	+	-	Θ
³ S ₁ (ortho-Ps)	142	0	1	1	-1,0,1	-	-	+	

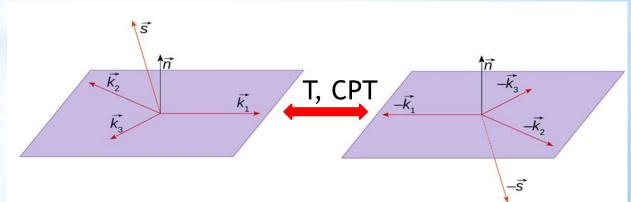
C tests: search for decays to forbidden photons systems (e.g. $o-Ps \rightarrow 4\gamma$, $p-Ps \rightarrow 3\gamma$):

BR($oPs \rightarrow 4\gamma/oPs \rightarrow 3\gamma$) < 2.6 · 10⁻⁶ at 90% C. L. BR($pPs \rightarrow 3\gamma/pPs \rightarrow 2\gamma$) < 2.8 · 10⁻⁶ at 68% C. L. BR($oPs \rightarrow 5\gamma/oPs \rightarrow 2\gamma$) < 2.7 · 10⁻⁷ at 90% C. L.

J. Yang et al., Phys. Rev. A54, 1952 (1996), A.P. Mills, S. Berko, Phys. Rev. Lett. 18, 420 (1967), P.A. Vetter, S.J. Freedman, Phys. Rev. A66, 052505 (2002)

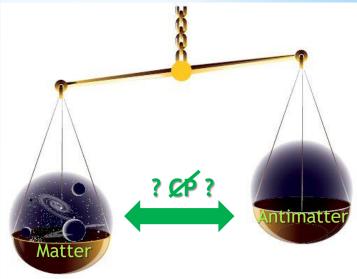
* Positronium as a probe for symmetries tests

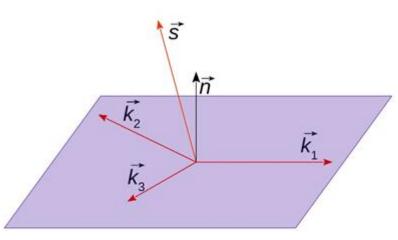
- Measurement of the expectation value of the symmetry-odd operators.
- ★ They are constructed using o-Ps spin (\vec{S}) and the decay photons momentum ($\vec{k_i}$) or polarization ($\vec{\varepsilon_i}$)
- There is no experimental data for most of the operators

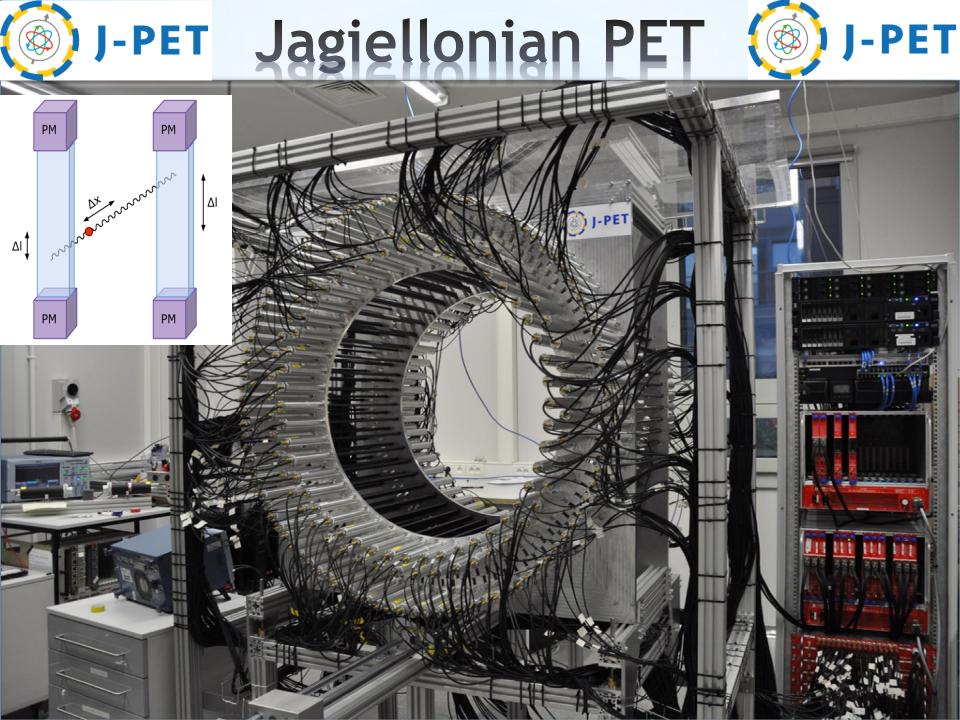

 $\left\langle \vec{S} \cdot \left(\vec{k}_1 \times \vec{k}_2 \right) \right\rangle = 0.0026 \pm 0.0031$

P.A. Vetter, S.J. Freedman, Phys. Rev. Lett. 91, 263401 (2003).

Operator	С	Ρ	т	СР	СРТ
$\vec{S} \cdot \vec{k}_1$	+	-	+	-	-
$\vec{S} \cdot \left(\vec{k}_1 \times \vec{k}_2 \right)$	+	+	-	+	-
$\left(\vec{S}\cdot\vec{k}_{1}\right)\left(\vec{S}\cdot\left(\vec{k}_{1}\times\vec{k}_{2}\right)\right)$	+	-	-	-	+
$\vec{k}_2 \cdot \vec{\varepsilon}_1$	+	-	-	-	+
$\vec{S} \cdot \vec{\epsilon}_1$	+	+	-	+	-
$\vec{S} \cdot \left(\vec{k}_2 \times \vec{\epsilon}_1 \right)$	+	-	+	-	-


 $|k_1| > |k_2| > |k_3|$ P. Moskal et. al.,Acta Phys.Polon. B47 (2016) 509


CP/CPTV SM predicion~ 10⁻¹⁰ - 10⁻⁹ (photon-photon interactions)


* Tests of the CP symmetry with positronium

- New sources of CP violation needed to explain the matter-antimatter asymmetry
- Massive neutrinos suggest CP violation in the leptonic sector (so far not observed)
 - Neutrino oscillations studies (e.g. T2K experiment)
 - Positronium decay studies
 - CP-odd operators:
 - $\circ \vec{S} \cdot \vec{k}_{1}$ $\circ \vec{S} \cdot (\vec{k}_{1} \times \vec{k}_{2})$ $\circ (\vec{S} \cdot \vec{k}_{1}) (\vec{S} \cdot (\vec{k}_{1} \times \vec{k}_{2}))$ $\circ \vec{k}_{2} \cdot \vec{\epsilon}_{1}$ $\circ \vec{S} \cdot \vec{\epsilon}_{1}$ $\circ \vec{S} \cdot (\vec{k}_{2} \times \vec{\epsilon}_{1})$

★ The best limit of the CP non-invariance in the positronium decays: $\left(\left(\vec{S} \cdot \vec{k}_1 \right) \left(\vec{S} \cdot \left(\vec{k}_1 \times \vec{k}_2 \right) \right) \right) < 4.9 \cdot 10^{-3} \text{ at } 90\% \text{ C.L.}$ [T. Yamazaki et al., Phys. Rev. Lett. 104, 083401 (2010)]

Jagiellonian PET Jagiellonian PET

192 detection modules arranged in 3 layers (19x7x500 mm³ EJ-230 scintillator strips + Hamamatsu R9800 photomultipliers)

Annihilation gamma quanta hit time measurement: σ_t(0.511 MeV) ~ 125 ps. [P. Moskal et al., Nucl.Instrum.Meth. A775 (2015) 54-62]

Gamma quanta energy resolution: $\sigma_{\rm c} = 0.044 \sqrt{E(MeV)}$

 $\sigma_{E}/E = 0.044/\sqrt{E(MeV)}$ [P. Moskal et al. Nucl.Instrum.Meth. A764 (2014) 317]

Novel digital front-end electronics probing signals at multiple thresholds. [M. Pałka et al. JINST 12 (2017) no.08, P08001] o-ps spin and photon polarization measurement.

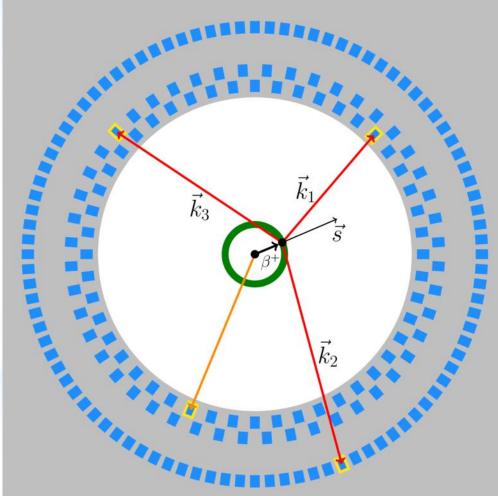
Resolution of photons relative angles measurement ~ 1°.

* CP symmetry tests with the J-PET detector

 $^{22}Na \rightarrow ^{22}Ne^* + e^+ + \nu_e$

Positrons source: ²²Na β⁺ decay (parity violation)

Target around the source

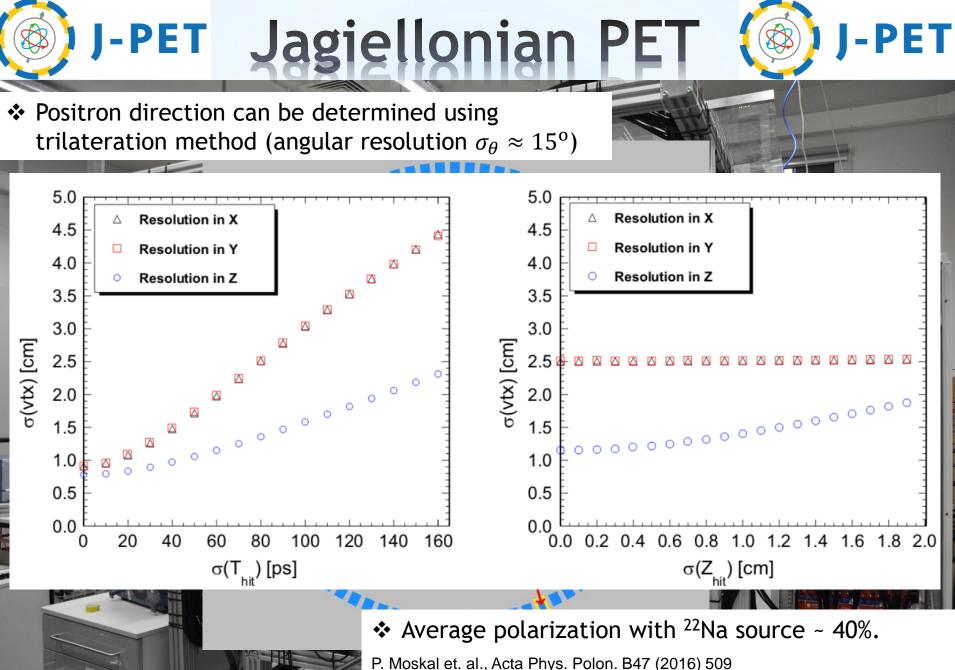

- e⁺ thermalization + o-Ps formation
- made of a porous material (aerogel IC3100/XAD-4 polymer)
- Positron longitudinal polarization

o-Ps spin determination

Signal signature:

- 3γ quanta with common vertex reconstructed in the target
- Late decay with respect to the registration of the de-excitation photon
- Photon polarization determination using Compton scattering

 $^{22}Ne^* \rightarrow ^{22}Ne + \gamma (1.247 \text{ MeV}, \tau \approx 3.7 \text{ ps})$

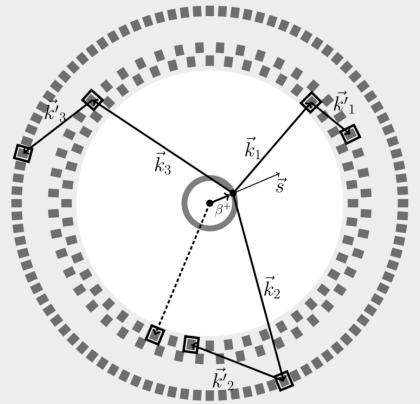

P. Moskal et. al., Acta Phys. Polon. B47 (2016) 509

Jagiellonian PE J-PET -PET Positron direction can be determined using trilateration method (angular resolution $\sigma_{\theta} \approx 15^{\circ}$) SV1 **GPS** Receiver SV2 SV4 SV3 Solving the GPS k_3 **Geometry Problem** k_2

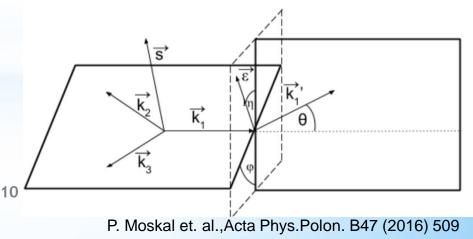
✤ Average polarization with ²²Na source ~ 40%.

P. Moskal et. al., Acta Phys. Polon. B47 (2016) 509

- A. Gajos et al. Nucl. Instrum. Meth. A819 (2016) 54-59
- D. Kamińska et al., Eur. Phys. J. C76 (2016) no.8, 445


- A. Gajos et al. Nucl. Instrum. Meth. A819 (2016) 54-59
- D. Kamińska et al., Eur. Phys. J. C76 (2016) no.8, 445

* CP symmetry tests with the J-PET detector

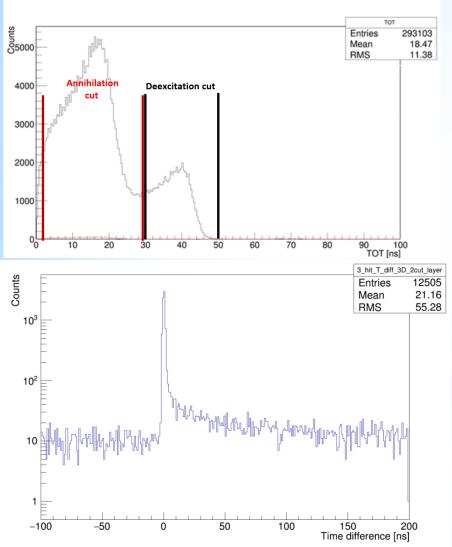

- De-excitation photon reconstruction based on the energy deposition.
- Photon momentum reconstruction based on hit position and common vertex (with 4-momentum conservation).
- Photons polarisation (ansatz):

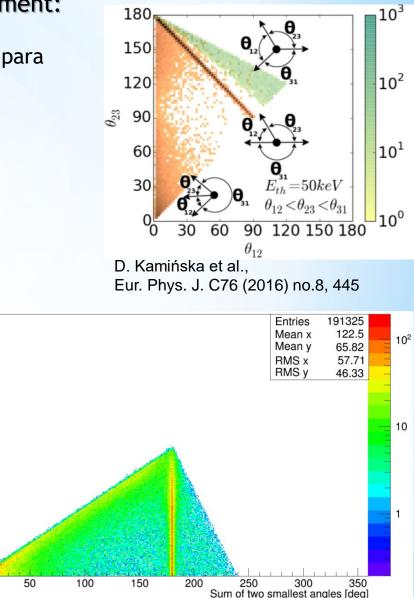
 $\vec{\varepsilon}_i = \vec{k}_i \times \vec{k'}_i$

Most probable angle between Compton scattering plane and the photon *E* vector η ~ 90°

$$\frac{d\sigma}{d\Omega} \sim \left(\frac{k_i'}{k_i}\right)^2 \left(\frac{k_i}{k_i'} + \frac{k_i'}{k_i} - 2\sin^2\theta\cos^2\eta\right)$$

* CP symmetry tests with the J-PET detector


Difference of these angles [deg] 005 Difference of these angles [deg] 120

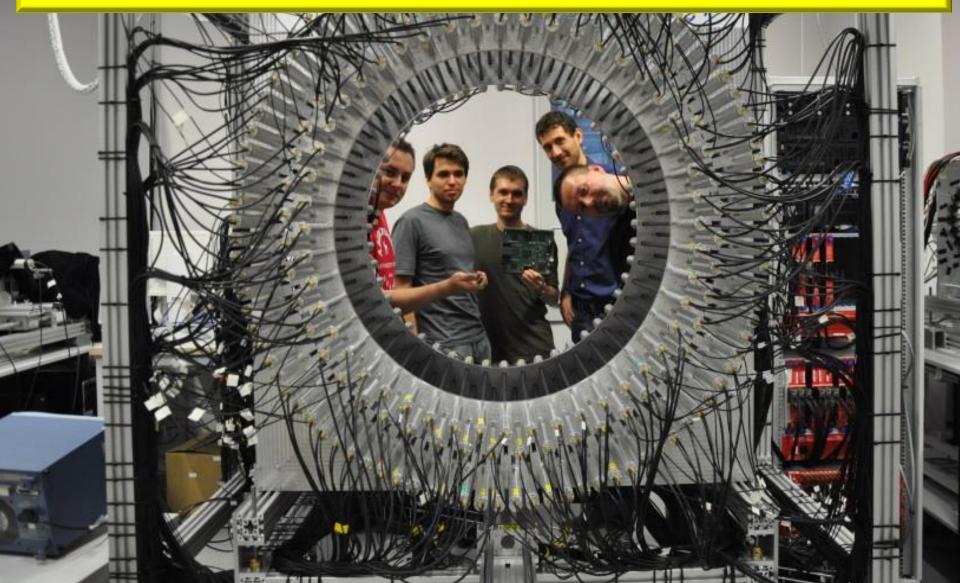

100

50

0

- ✤ Background sources for the o-Ps \rightarrow 3γ measurement:
- $e^+e^- \rightarrow 2\gamma$ + scattering
- void borders effects: pick-off annihilations or ortho-para conversion (7-36%)

AFOV: 17 cm \rightarrow 50 cm ; TOF < 500 ps

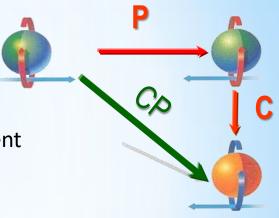

 \square

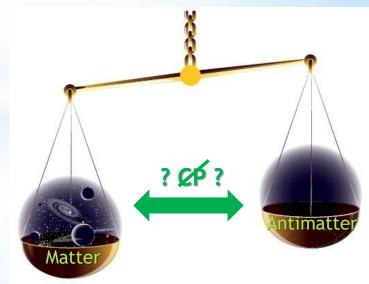
* Summary and outlook

- Discrete symmetries play a fundamental role in particle and nuclear physics.
- There is still substantial lack of experimental data on fundamental symmetries tests in the leptonic sector.
- The J-PET detector has a big potential to contribute in C, T, CP and CPT tests in the o-Ps decays at the level of 10⁻⁵.
- The detector is under the commissioning and first tests measurements were done.
- Further detector upgrades are already under development
- With the J-PET detector we are sensitive to the CP violating effects at the level of 10⁻⁵.

SPARES

* Discrete symmetries in physics


- ✤ Parity transformation: P(\vec{x}) = $-\vec{x}$
 - ✤ Not conserved by weak interactions (discovered in the ⁶⁰Co → ⁶⁰Ni e⁻ $\bar{\nu}$ decay)


✤ Time reversal T: t → -t

 Violated by weak interactions (recent BaBar measurement in the B⁰ meson system)

\clubsuit Charge conjugation C: particle \leftrightarrow antiparticle

- $\bullet \quad \mathbf{C}|\boldsymbol{\gamma} > = -1|\boldsymbol{\gamma} >$
- Symmetry broken by weak interaction (discovered in the neutral kaon system)
- CP symmetry
 - Relevant in view of matter-antimater asymmetry
 - Broken in weak proesses
 - Strong CP problem
- CPT theorem: The combination CPT is always conserved in any local quantum field theory

TABLE 2.		JPET + START + NEW LAYER	Gammasphere [47]	CP-Tokyo [35]	
Detector material		EJ-230 / BaF2	HPGe and BGO	LYSO	
Time resolution (sigma)		80 ps / 80 ps	4.6 ns	0.9 ns	
Reconstruction efficiency including registration of deexcitation γ(start)	p-Ps→2γ	1.5 • 10-3	4·10 ⁻²	—	
	o-Ps→γγγ _n	3 • 10-4	4 • 10-2	4 · 10 ⁻⁴	
	o-Ps→3γ	6.10-6	5.7 • 10-3	_	
Reconstruction efficiency	р-Рs→үү	10-2	~4 • 10 ⁻²	—	
	o-Ps→3γ	4 · 10 ⁻⁵	~5.7 • 10-3	—	
Statistics of events (days of run)	p-Ps→2γ	1.2·10 ¹² (~1000)*	—	—	
	o-Ps→γγγ _n	2.4 10 ¹¹ (~1000)*	—	~10 ⁷ (~180)	
	o-Ps→3γ	5.0 109 (~1000)*	2.65 · 10 ⁷ (~36)	—	
Angular resolution (sigma)	polar	~1°	~4°	~3.5°	
	azimuthal	0.5°	~4°	~3.5°	
Delectrodice de more	tensor	~87%	—	~87%	
Polarization degree	linear	~40%	less than 40%	_	
Source activity		10 MBq	0.04 MBq ²² Na or ⁶⁸ Ge (limited by pile-ups)	1 MBq / ²² Na (limited by pile-ups)	
Available angular range		full range	full range	few fixed angles	