QUANTUM LAB

Quantum Information Lab Dipartimento di Fisica, Università di Roma La Sapienza

3D-QUES

Quantum causality: Violation of bilocality and instrumental test

Fabio Sciarrino

Quantum Information Lab Sapienza, Università di Roma

<u>www.quantumlab.it</u>

Causal inference

Causal explanation

Quantum Nonlocality from a Causal Inference Perspective

Classical Causal Structures

• For n variables X₁, ..., X_n, the causal relationships are encoded in a causal structure, represented by a directed acyclic graph (**DAG**).

Nodes of graph

event: random variable X (A) acquires a precise value

Directed graph

arrow: causal relation between two variables

Acyclic graph

closed cycle are not allowed (relativistic causality)

Quantum Nonlocality from a Causal Inference Perspective

Classical Causal Structures

• For n variables X_1, \dots, X_n , the causal relationships are encoded in a

causal structure, represented by a directed acyclic graph (**DAG**).

• Causal relationships are encoded in the conditional independencies implied by the DAG:

GOAL: to disregard some classical causal structures from observational (statistical) data.

...more in general: to infer causal relationships

Directed Acyclic Graph associated to Bell inequalities

Nodes: relevant random variables in the network

Arrows: causal relations

Directed Acyclic Graph associated to Bell inequalities

- Alice and Bob measure two possible observables each: A₀, A₁, B₀, B₁
- After sufficiently many repetitions they can estimate statistical quantities. The experiment can be described in terms of p(a, b | x, y)

• There are two causal assumptions. Measurement Independence:

 $p(x, y, \lambda) = p(x)p(y)p(\lambda)$

Locality:

$$p(b|a, x, y, \lambda) = p(b|y, \lambda)$$

Nodes: *relevant random variables in the network*

> Arrows: *causal relations*

Quantum Non-locality from a Causal Inference Perspective

• Alternative causal structures can easily be represented with the graphical notation of directed acyclic graph

M.Ringbauer, C. Giarmatzi, R. Chaves, F. Costa, A-G. White, and A. Fedrizzi, *Science Advances* 2, e1600162 (2016)

Representation of the causal structures underlying the networks as directed acyclic graphs

To generalize Bell's theorem to more complex networks

C. Branciard, D. Rosset, N. Gisin, and S. Pironio, *Phys. Rev. A*,85:032119 (2012) Branciard, C., Gisin, N. & Pironio, S. *Phys. Rev. Lett.* 104, 170401 (2010). Chaves, R., Kueng, R., Brask, J. B. & Gross, D. *Phys. Rev. Lett.* **114**, 140403 (2015).

Non-localiy in a tripartite scenario with two independent sources

Correlation between distant parties mediated by two independent sources

Bilocal Hidden Variable (BLHV) Model p(a, b, c | x, y, z) = $d\lambda_1 d\lambda_2 \rho_1(\lambda_1) \rho_2(\lambda_2) p(a | x, \lambda_1) p(b | y, \lambda_1, \lambda_2) p(c | z, \lambda_2)$

C. Branciard, D. Rosset, N. Gisin, and S. Pironio, *Phys. Rev. A*,85:032119 (2012)
Branciard, C., Gisin, N. & Pironio, S. Phys. Rev. Lett. 104, 170401 (2010).
Tavakoli, A., Skrzypczyk, P., Cavalcanti, D. & Acín, A. Phys. Rev. A 90, 062109 (2014).
Chaves, R., Kueng, R., Brask, J. B. & Gross, D. Phys. Rev. Lett. 114, 140403 (2015).
Chaves, R. Phys. Rev. Lett. 116, 010402 (2016).
Rosset, D. et al. Phys. Rev. Lett. 116, 010403 (2016).

Bilocality inequality

C. Branciard, D. Rosset, N. Gisin, and S. Pironio, Phys. Rev. A 85:032119 (2012)

Locality versus bilocality

How to violate bilocality? Entanglement swapping scenario

Violation of bilocality via entanglement swapping

Our goal: to experimentally observe non-locality in a quantum network

Optimization of the setup

Temporal matching between the two entangled pairs via Hong-Ou-Mandel effect

Optimization of the setup

Experimental bilocality violation in an entanglement swapping scenario

Violation of bilocality inequality versus the noise of Bell measurement

 $\mathfrak{B}=1.268\pm0.014$

Noise in Bell measurement = Distinguishability p between photons (increase of temporal delay)

G. Carvacho, F. Andreoli, L. Santodonato, M. Bentivegna, R. Chaves, F. Sciarrino, *Nature Communications* 8, 14775 (2017)

Experimental locality versus bilocality

Specific LHV inequality

R. Horodecki, P. Horodecki, M. Horodecki, Physics Letters A, 200(5):340 – 344, 19

Conclusion - part I

Experimental violation of bilocality based on entanglement Swapping.

Next steps.. to experimentally address Bilocality without shared reference frames Other causal structures Application for quantum information processing More complex scenarios

Experimental demonstration of non-bilocal quantum correlations

Dylan J. Saunders[†],^{1,2} Adam J. Bennet,¹ Cyril Branciard,³ and Geoff J. Pryde¹

¹Centre for Quantum Dynamics and Centre for Quantum Computation and Communication Technology, Griffith University, Brisbane, 4111, Australia ²Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK ³Institut Néel, CNRS and Université Grenoble Alpes, 38042 Grenoble Cedez 9, France (Dated: October 28, 2016)

ARTICLE Received 1 Aug 2016 Accepted 1 Feb 2017 Published 16 Mar 2017 DOI: 10.1038/ncomms1477 OPEN Experimental violation of local causality in a quantum network Gonzalo Carvacho¹, Francesco Andreoli¹, Luca Santodonato¹, Marco Bentivegna¹,

Rafael Chaves^{2,3} & Fabio Sciarrino¹

What is the simplest causal structure that admits a gap between classical and quantum causal models?

Instrumental inequalities

Instrumental causal models:

 Classical instrumental-inequality violations possible only by noninstrumental causal models

... they all satisfy:

 Quantum mechanically no violation by quantum instrumental causal models.

J. Henson, R. Lal, and M. Pussey, New J. Phys. ${\bf 16},\, 113043 \ (2014)$.

Violation of a classical instrumental test with quantum instrumental causal models

If *X* is trichotomic, another instrumental inequality appears:

$$I_{\text{inst}} := -\langle B \rangle_{x=1} + 2\langle B \rangle_{x=2} + \langle A \rangle_{x=1} - \langle A B \rangle_{x=1} + 2\langle A B \rangle_{x=3} \le 3$$

B. Bonet, UAI (2001).

R. Chaves, G. Carvacho, I. Agresti, V. Di Giulio, L. Aolita, S. Giacomini, and F. Sciarrino, Nature Physics (2017).

QUANTUM LAB

Quantum Information Lab

Dipartimento di Fisica, Università di Roma La Sapienza

