Non-perturbative treatment of non-Markovian dynamics of open quantum systems

Andrea Smirne, Susana Huelga and Martin Plenio Institute for Theoretical Physics, Ulm Universität
 UNIVERSITÀ
DEGLI STUDI
DI MILANO

Quantum Foundations: New frontiers in testing quantum mechanics from underground to the space Frascati, 29 November 2017

Complex open quantum systems

Fenna-Matthews-Olsen (FMO) Complex

- Biological molecular complexes
nature Vol $446 \mid 12$ April 2007|doi:10.1038/nature05678 LETTERS

Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems
Gregory S. Engel ${ }^{1,2}$, Tessa R. Calhoun ${ }^{1,2}$, Elizabeth L. Read ${ }^{1,2}$, Tae-Kyu Ahn ${ }^{1,2}$, Tomáš Mančal ${ }^{1,2} \dagger$, Yuan-Chung Cheng ${ }^{1,2}$, Robert E. Blankenship ${ }^{3,4}$ \& Graham R. Fleming ${ }^{1,2}$

Complex open quantum systems

- Biological molecular complexes
nature Vol $446 \mid 12$ April 2007 |doi:10.1038/nature05678 LETTERS

Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems
Gregory S. Engel ${ }^{1,2}$, Tessa R. Calhoun ${ }^{1,2}$, Elizabeth L. Read ${ }^{1,2}$, Tae-Kyu Ahn ${ }^{1,2}$, Tomáš Mančal ${ }^{1,2} \dagger$, Yuan-Chung Cheng ${ }^{1,2}$, Robert E. Blankenship ${ }^{3,4} \&$ Graham R. Fleming ${ }^{1,2}$

- Nanoscale quantum thermal machines

- Solid-state implementations of quantum protocols
- Possibly structured systems subjected to the collapse noise
- and many more...

Non-Markovian dynamics

REVIEWS OF MODERN PHYSICS, vOLUME 88, APRIL-JUNE 2016
Colloquium: Non-Markovian dynamics in open quantum systems
Heinz-Peter Breuer
Physikalisches Inssitut, Universititat Freilurga,
Hermann-Herder-Straze 3 , D-79104 Freiliurg, Germany
Elsi-Mari Laine
OCD Labs, COMP Centro of Excellone

PeO. Box 135500 FI-OOO76 AAL TO, Finland
and Turku Centre for Quantum Physics
and Turku Centre for Quantum Physics
Department of Physics and Astronomy.
Department of Physics and Astronomy,
University of Turku, Fl-20014 Turun yliopisto, Finland
Jyrki Piilo
Turku Centre for Quantum Physics, Department of Physics and Astronomy,
University of Turku, Fl-20014 Turun yliopisto, Finland
Bassano Vacchini
Dipartimento di Fisica, Universita degli Studi di Milano,
Val Celoria 16,1-201 13 Milian, traly
and INFN, Sezione di Milano, Via Celoria 16, 1-20133 Milan, ttaly

OP Publishing
Rep. Prog. Phys. 7 (2014) 094001 (28pp)
Review Article
Quantum non-Markovianity: characterization, quantification and detection

Ángel Rivas ${ }^{1}$, Susana F Huelga ${ }^{2,3}$ and Martin B Plenio ${ }^{2,3}$

Non-Markovian dynamics

REVIEWS OF MODERN PHYSICS, VOLUME 88, APRIL-JUNE 2016
Colloquium: Non-Markovian dynamics in open quantum systems
Heinz-Peter Breuer
Physikalisches Institut, Universititat Freiburg,
Hermann-Herder-StraBe 3, D-790104 Frielưrg, Germany
Elsi-Mari Laine
QCD Labs, COMP Centre of Excellence,

and Turku Contre For Quantum Physics,
Department of Physics and Astronomy,
Univessity of Turku, F-20014 Turun y yiopisto, Finland
Jyrki Piilo
Turku Centre for Quantum Physics, Department of Physics and Astronomy,
Turku Centre for Quantum Physics, Department of Phy
University of Turku, F--20014 Turun yiopisito, Finland
Bassano Vacchini
Dipartimento di Fisica, Universita degli Studi di Milano,
Via Celoria $16,1-20133$ Milan, ttaly
and INFN, Sezione di Milano, Via Celoria $16,1-20133$ Milan, Italy

10P Publsthing
Rep. Prog. Phys. 77 (2014) 094001 (26pp)
Review Article
Quantum non-Markovianity: characterization, quantification and detection

Ángel Rivas ${ }^{1}$, Susana F Huelga ${ }^{2,3}$ and Martin B Plenio ${ }^{2,3}$
${ }^{1}$ Departamento de Física Teórica I F Facultad de Ciencias Físicas, Universidad Complutense, ${ }_{2}^{2}$ Institut fiur Theoretische Physik, Universitat Ulm, Albert-Einstein-Allee 11, 89073 Ulm, Germany

- Lack of a general characterization which i) guarantees a well-defined (CP) evolution
ii) encloses all the relevant information about the environment, simplifying the description

Non-Markovian dynamics

REVIEWS OF MODERN PHYSICS, VOLUME 88, APRIL-JUNE 2016
Colloquium: Non-Markovian dynamics in open quantum systems
Heinz-Peter Breuer
Physikalisches Institut, Universitita Freiburg,
Hermann-Herder-Strabe 3, 0 -790104 FFriburg, Germany
Elsi-Mari Laine
QCD Labs, COMP Centre of Excellence,

P.O. Box 13500 , F1-00076 AALTO, Filland
and Turku Centre for Quantum Physics.
and Turku Centre for Quantum Physics,
Department of Physics and Astronomy,
Uepittment of Physicic and Astronomy,
University of Turku, Fl-20014 Turun yliopisto, Finland
Jyrki Piilo
Jyrk Pillo Cente for Quantum Physics, Department of Physics and Astronomy,
Turku Centre for Ruantum Physics, Department of Phy
University of Turku, F--20014 Turun yliopisto, Finland
Bassano Vacchini
Dipartimento di Fisica, Università degli Studi di Milano,
Via Celoria $16,1-20133$ Milan, tlaly
and INFN, Sezione di Milano, Via Celoria $16,1-20133$ Milan, ttaly

OP Publishing
Rep. Prog. Phys. 77 (2014) 094001 (268p)
Review Article

Quantum non-Markovianity:

 characterization, quantification and detectionÁngel Rivas ${ }^{1}$, Susana F Huelga ${ }^{2,3}$ and Martin B Plenio ${ }^{2,3}$

Departamento de Física Teórica I, Facultad de Ciencias Fisicas, Universidad Complutense,

Institut fur Theoretische Physik, Universitat Ulm, Albert-Einstein-Allee 11,89073 Ulm, Germany
Center for Integrated Quantum Science and Technologies, Albert-Einstein-Allee 11, 89073 UIm,

- Lack of a general characterization which i) guarantees a well-defined (CP) evolution
ii) encloses all the relevant information about the environment, simplifying the description

Compare with the Lindblad equation
G. Lindblad Comm. Math. Phys. 48, 119 (1976)
V. Gorini, A. Kossakowski and E.C.G. Sudarshan, J. Math. Phys. 17, 821(1976)

$$
\begin{aligned}
& \dot{\rho=-i}[H, \rho]+\sum_{i=1}^{N^{2}-1} \gamma_{i}\left(L_{i} \rho L_{i}^{\dagger}-\frac{1}{2}\left\{L_{i}^{\dagger} L_{i}, \rho\right\}\right) \\
& \text { Phys. 17, 821(1976) } \gamma_{j} \geq 0
\end{aligned}
$$

Analytical and numerical methods

> Perturbative methods

- Projection super-operators (TCL, Nakajima-Zwanzig,...)
- Expansions on the average of stochastic equations
- Recursive approaches

Luca's talk
Breuer \& Petruccione, The theory of open quantum systems (2002)

Adler \& Bassi, J. Phys. A 40, 15083 (2007)
Barchielli, EPL 91, 24001 (2010)
Gasbarri \& Ferialdi, arXiv: 1707.06540 (2017)

- Hierarchical equations of motions

Analytical and numerical methods

Perturbative methods

- Projection super-operators (TCL, Nakajima-Zwanzig,...)
- Expansions on the average of stochastic equations
- Recursive approaches

Luca's talk

- Hierarchical equations of motions

P Non-perturbative methods

- Non-Markovian piecewise quantum dynamics
- Collisional models

Vacchini, Phys. Rev. Lett. 117, 230401 (2016)
Bassano's talk
Lorenzo, Ciccarello \& Palma, PRA 93, 05211 (2016)

- TEBD and other numerical techniques relying on the Trotter decomposition

Auxiliary models: unitary equivalence

Prior et al., Phys. Rev. Lett. 105, 050404 (2010)

Nearest-neighbor interactions
 Evolution:
Evolution: TEBD

Auxiliary models: unitary equivalence

Prior et al., Phys. Rev. Lett. 105, 050404 (2010)

- Chin et al, Nat. Phys. 2013: The role of non-equilibrium vibrational structures for long-lasting electronic coherences in pigment-protein complexes
- The auxiliary system is more suitable for numerical simulation
- BUT the number of degrees of freedom involved is still very high (one needs to cut the chain, ...)

Auxiliary models: non-Markovian core

Residual unidirectional leaking of information

AIM: same open-system dynamics, we do not necessarily need the same overall dynamics!!

Auxiliary models: non-Markovian core

Non-Markovian core: encloses all the memory effects

Residual unidirectional leaking of information

AIM: same open-system dynamics, we do not necessarily need the same overall dynamics!!

- The resulting configuration is much simpler than the original one: reduced number of d.o.f.
- Usually motivated on the ground of numerical simulations or approximate arguments

Imamoglu, Phys. Rev. A 50, 3650 (1994)
Mostame et al, New J. Phys. 14, 105013 (2012)

Tamascelli, Smirne, Huelga, Plenio. arXiv:1709.03509 (2017)

$$
\hat{H}_{S E}=\hat{H}_{S}+\hat{H}_{E}+\sum_{j=1}^{\kappa} \hat{A}_{S, j} \otimes \hat{G}_{E, j}
$$

$$
\rho_{S}^{U}(t)=\operatorname{Tr}_{E}\left\{e^{-i \hat{H}_{S E} t}\left(\rho_{S}(0) \otimes \rho_{E}(0)\right) e^{i \hat{H}_{S E} t}\right\}
$$

$$
G_{E, j}(t)=\operatorname{Tr}_{E}\left\{\hat{G}_{E, j} e^{-i \hat{H}_{E} t} \rho_{E}(0) e^{i \hat{H}_{E} t}\right\}
$$

$$
C_{j j^{\prime}}^{U}(t+s, s)=\operatorname{Tr}_{E}\left\{e^{i \hat{H}_{E}(t+s)} \hat{G}_{E, j} e^{-i \hat{H}_{E}(t+s)} e^{i \hat{H}_{E} s} \hat{G}_{E, j^{\prime}} e^{-i \hat{H}_{E} s} \rho_{E}(0)\right\}
$$

Main result

Tamascelli, Smirne, Huelga, Plenio. arXiv:1709.03509 (2017)

Main result

Tamascelli, Smirne, Helga, Plenio. arXiv:1709.03509 (2017)

$\hat{H}_{S} \quad \hat{A}_{S} \otimes \hat{F}_{R}$

$\left\{\rho_{S}^{L}, C^{L}\right\}$

Same 'system S

$$
\begin{array}{c:c}
\left.\hat{H}_{S E}=\hat{H}_{S}+\hat{H}_{E}+\sum_{j=1}^{\kappa} \overparen{A}_{S, j}\right) \otimes \hat{G}_{E, j} & \dot{\rho}_{S R}(t) \neq \mathcal{L}_{S R}[\rho S R \\
\rho_{S}^{U}(t)=\operatorname{Tr}_{E}\left\{e^{-i \hat{H}_{S E} t}\left(\rho_{S}(0) \otimes \rho_{E}(0)\right) e^{i \hat{H}_{S E} t}\right\} & \hat{H}_{S R}=-i\left[\hat{H}_{S R}, \rho_{S R}(t)\right]+\mathcal{D}_{R}\left[\rho_{S R}(t)\right] \\
\hat{H}_{R}+\sum_{j=1}^{\kappa} \hat{A}_{S, j} \otimes \hat{F}_{R, j} \mathcal{D}_{R}[\rho]=\sum_{j=1}^{\ell} \gamma_{j}\left(\hat{L}_{R, j} \hat{L}_{R, j}^{\dagger}-\frac{1}{2}\left\{\hat{L}_{R, j}^{\dagger} \hat{L}_{R, j}, \rho\right\}\right)
\end{array}
$$

$$
G_{E, j}(t)=\operatorname{Tr}_{E}\left\{\hat{G}_{E, j} e^{-i \hat{A}_{E} t} \rho_{E}(0) e^{i \hat{H}_{E} t}\right\}
$$

$$
C_{j j^{\prime}}^{U}(t+s, s)=\operatorname{Tr}_{E}\left\{e^{i \hat{H}_{E}(t+s)} \hat{G}_{E, j, e^{-i \hat{H}_{E}(t+s)}} e^{i \hat{H}_{E} s} \hat{G}_{E, j^{\prime}} e^{-i \hat{H}_{E} s} \rho_{E}(0)\right\}
$$

$$
F_{R, j}(t)=\operatorname{Tr}_{R}\left\{\hat{F}_{R, j} e^{\mathcal{L}_{R} t}\left[\rho_{R}(0)\right]\right\} \quad C_{j j^{\prime}}^{L}(t+s, s)=\operatorname{Tr}_{R}\left\{\hat{F}_{R, j} e^{\mathcal{L}_{R} t}\left[\hat{F}_{R, j^{\prime}} e^{\mathcal{C}_{R} s}\left[\rho_{R}(0)\right]\right]\right\}
$$

Free evolution of the environment E

$$
\rho_{S}^{L}(t)=\operatorname{Tr}_{R}\left\{e^{\mathcal{L}_{S R} t}\left[\rho_{S}(0) \otimes \rho_{R}(0)\right]\right\}
$$

$$
\mathcal{L}_{R}[\rho]=-i\left[\hat{H}_{R}, \rho\right]+\mathcal{D}_{R}[\rho]
$$

"Free" evolution of the environment R

Main result

Tamascelli, Smirne, Huelga, Plenio. arXiv:1709.03509 (2017)

$\hat{H}_{S} \hat{A}_{S} \otimes \hat{F}_{R}$

$$
\hat{H}_{S E}=\hat{H}_{S}+\hat{H}_{E}+\sum_{j=1}^{\kappa} \hat{A}_{S, j} \otimes \hat{G}_{E, j}
$$

$\rho_{S}^{U}(t)=\operatorname{Tr}_{E}\left\{e^{-i \hat{H}_{S E} t}\left(\rho_{S}(0) \otimes \rho_{E}(0)\right) e^{i \hat{H}_{S E} t}\right\}$

$$
G_{E, j, j}(t)=\operatorname{Tr}_{E}\left\{\hat{G}_{E_{E, j}-i-i \hat{i}_{E_{E}} t_{P} \rho_{E}(0) e^{i i_{E} E}}\right\}
$$

$C_{j j^{\prime}}^{U}(t+s, s)=\operatorname{Tr}_{E}\left\{e^{i \hat{H}_{E}(t+s)} \hat{G}_{E, j} e^{-i \hat{i}_{E}(t s)} e^{i \hat{H}_{E} s \hat{G}_{E, j} e^{-i \hat{i}_{s} s_{s}} \rho_{E}(0)}\right\}$

$$
\begin{aligned}
& \mathbf{I} \hat{H}_{S R}=\hat{H}_{S}+\hat{H}_{R}+\sum_{j=1}^{\kappa} \hat{A}_{S, j} \otimes \hat{F}_{R, j} \quad \mathcal{D}_{R}[\rho]=\sum_{j=1}^{\ell} \gamma_{j}\left(\hat{L}_{R, j} \rho \hat{L}_{R, j}^{\dagger}-\frac{1}{2}\left\{\hat{L}_{R, j}^{\dagger} \hat{L}_{R, j}, \rho\right\}\right) \\
& \mathbf{I} \rho_{S}^{L}(t)=\operatorname{Tr}_{R}\left\{e^{\mathcal{L}_{S R} t}\left[\rho_{S}(0) \otimes \rho_{R}(0)\right]\right\} \\
& \mathbf{I} F_{R, j}(t)=\operatorname{Tr}_{R}\left\{\hat{F}_{R, j} e^{\mathcal{L}_{R} t}\left[\rho_{R}(0)\right]\right\} \quad C_{j j^{\prime}}^{L}(t+s, s)=\operatorname{Tr}_{R}\left\{\hat{F}_{R, j} e^{\mathcal{L}_{R} t}\left[\hat{F}_{R, j^{\prime}} e^{\mathcal{L}_{R} s}\left[\rho_{R}(0)\right]\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
F_{R, j}(t) & =\quad G_{E, j}(t) \\
C_{j j^{\prime}}^{L}(t+s, s) & =C_{j j^{\prime}}^{U}(t+s, s) \\
& \Longrightarrow \quad \rho_{S}^{L}(t)=\rho_{S}^{U}(t) \forall t .
\end{aligned}
$$

Step 1: reduced dynamics from global unitaries

- The reduced dynamics is fixed by

Dyson expansion, TCL,...
I. The free system Hamiltonian \hat{H}_{S}
II. The system interaction terms $\hat{A}_{S, j}$
III. The environmental multi-time correlation functions

$$
C_{\bar{E}}\left(t_{1}, \ldots t_{k}\right)=\operatorname{Tr}_{\bar{E}}\left\{\hat{G}_{\bar{E}, j_{1}}\left(t_{1}\right) \ldots \hat{G}_{\bar{E}, j_{k}}\left(t_{k}\right) \rho_{\bar{E}}(0)\right\}
$$

Step 1: reduced dynamics from global unitaries

- The reduced dynamics is fixed by

Dyson expansion, TCL,...
I. The free system Hamiltonian \hat{H}_{S}
II. The system interaction terms $\hat{A}_{S, j}$
III. The environmental multi-time correlation functions

- For initial Gaussian states, the multi-time correlation functions are fixed by the one- and two-time correlation functions Breuer \& Petruccione, The theory of open quantum systems (2002)

Step 1: reduced dynamics from global unitaries

- The reduced dynamics is fixed by

Dyson expansion, TCL,...
I. The free system Hamiltonian \hat{H}_{S}
II. The system interaction terms $\hat{A}_{S, j}$
III. The environmental multi-time correlation functions

- For initial Gaussian states, the multi-time correlation functions are fixed by the one- and two-time correlation functions Breuer \& Petruccione, The theory of open quantum systems (2002)

Step 2: unitary dilation of the Lindblad evolution

Step 2: unitary dilation of the Lindblad evolution

Bosonic modes on a proper Fock space

Initial vacuum state

$$
\left[\hat{b}_{\tilde{E}}(\omega, j), \hat{b}_{\tilde{E}}^{\dagger}\left(\omega^{\prime}, j^{\prime}\right)\right]=\delta_{j j^{\prime}} \delta\left(\omega-\omega^{\prime}\right)
$$

$$
\rho_{S R \tilde{E}}(0)=\rho_{S R}(0) \otimes\left|0_{\tilde{E}}\right\rangle 0_{\tilde{E}} \mid
$$

$$
\begin{aligned}
\hat{H}_{S R \tilde{E}} & =\hat{H}_{S R}+\hat{H}_{\tilde{E}}+\hat{V}_{R \tilde{E}}, \\
\hat{H}_{\tilde{E}} & =\sum_{j=1}^{\ell} \int_{-\infty}^{\infty} d \omega \omega \hat{b}_{\tilde{E}}^{\dagger}(\omega, j) \hat{b}_{\tilde{E}}(\omega, j), \\
\hat{V}_{R \tilde{E}} & =\sum_{i=1}^{\ell} \sqrt{-\frac{\gamma_{j}}{2 \pi}} \int_{-\infty}^{\infty} d \omega \hat{L}_{R, j} \hat{b}_{\tilde{E}}^{\dagger}(\omega, j)-\hat{L}_{R, j}^{\dagger} \hat{b}_{\tilde{E}}(\omega, j)
\end{aligned}
$$

Step 2: unitary dilation of the Lindblad evolution

Bosonic modes on a proper Fock space

Initial vacuum state
$\underline{\text { Input field }}$

$$
\left[\hat{b}_{\tilde{E}}(\omega, j), \hat{b}_{\tilde{E}}^{\dagger}\left(\omega^{\prime}, j^{\prime}\right)\right]=\delta_{j j^{\prime}} \delta\left(\omega-\omega^{\prime}\right)
$$

$$
\rho_{S R \tilde{E}}(0)=\rho_{S R}(0) \otimes\left|0_{\tilde{E}}\right\rangle\left\langle 0_{\tilde{E}}\right|
$$

$$
\hat{b}_{i n}(t, j)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d \omega e^{-i \omega t} \hat{b}_{\tilde{E}}(\omega, j)
$$

$$
\begin{aligned}
\hat{H}_{S R \tilde{E}} & =\hat{H}_{S R}+\hat{H}_{\tilde{E}}+\hat{V}_{R \tilde{E}}, \\
\hat{H}_{\tilde{E}} & =\sum_{j=1}^{\ell} \int_{-\infty}^{\infty} d \omega \omega \hat{b}_{\tilde{E}}^{\dagger}(\omega, j) \hat{b}_{\tilde{E}}(\omega, j), \\
\hat{V}_{R \tilde{E}} & =\sum_{i=1}^{\ell} \sqrt{-\frac{\gamma_{j}}{2 \pi}} \int_{-\infty}^{\infty} d \omega \hat{L}_{R, j} \hat{b}_{\tilde{E}}^{\dagger}(\omega, j)-\hat{L}_{R, j}^{\dagger} \hat{b}_{\tilde{E}}(\omega, j)
\end{aligned}
$$

Gardiner \& Zoller, Quantum noise (2004)

Step 2: unitary dilation of the Lindblad evolution

Bosonic modes on a proper Fock space Initial vacuum state

Input field

$$
\left[\hat{b}_{\tilde{E}}(\omega, j), \hat{b}_{\tilde{E}}^{\dagger}\left(\omega^{\prime}, j^{\prime}\right)\right]=\delta_{j j^{\prime}} \delta\left(\omega-\omega^{\prime}\right)
$$

$$
\rho_{S R \tilde{E}}(0)=\rho_{S R}(0) \otimes\left|0_{\tilde{E}}\right\rangle\left\langle 0_{\tilde{E}}\right|
$$

$$
\hat{b}_{i n}(t, j)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d \omega e^{-i \omega t} \hat{b}_{\tilde{E}}(\omega, j)
$$

$$
\rho_{S R}^{L}(t)=e^{\mathcal{L}_{S R} t}\left[\rho_{S R}(0)\right]=\operatorname{Tr}_{\tilde{E}}\left\{e^{-i \hat{H}_{S R E} t}\left(\rho_{S R}(0) \otimes\left|0_{\tilde{E}}\right\rangle\left\langle 0_{\tilde{E}}\right|\right) e^{i \hat{H}_{S R E} t}\right\}
$$

Step 1 plus 2

Step 1 plus 2

Step 3: quantum regression theorem

Step 3: quantum regression theorem

The multitime correlations of $\hat{O}_{R} \otimes \hat{1}_{\tilde{E}}$ on $\mathrm{R}+\tilde{E}$ can be directly evaluated by means of the reduced dynamics on R , i.e. with the Lindblad generator \mathcal{L}_{R}

Spin-boson model

$$
\omega \sigma_{z}+\sigma_{x} \otimes \int_{-\infty}^{\infty} d \omega\left(g(\omega) \hat{a}_{\omega}+g^{*}(\omega) \hat{a}_{\omega}^{\dagger}\right)+\int_{-\infty}^{+\infty} d \omega \omega \hat{a}_{\omega}^{\dagger} \hat{a}_{\omega}
$$

Archetypal model of OQS and common testbed for numerical approaches

Spin-boson model

$$
\omega \sigma_{z}+\sigma_{x} \otimes \int_{-\infty}^{\infty} d \omega\left(g(\omega) \hat{a}_{\omega}+g^{*}(\omega) \hat{a}_{\omega}^{\dagger}\right)+\mid \int_{-\infty}^{+\infty} d \omega \omega \hat{a}_{\omega}^{\dagger} \hat{a}_{\omega}
$$

H_{I}

- If RWA $\sigma_{+} \otimes \int_{-\infty}^{\infty} d \omega g(\omega) \hat{a}_{\omega}+\sigma_{-} \otimes \int_{-\infty}^{\infty} d \omega g^{*}(\omega) \hat{a}_{\omega}^{\dagger}$

The number of excitations is conserved

Archetypal model of OQS and common testbed for numerical approaches

Spin-boson model

Archetypal model of OQS and common testbed for numerical approaches

In both cases expectation values are 0
and there is only one 2 -time correlation
In both cases expectation values are 0
and there is only one 2 -time correlation (fixed by the correlation spectrum

$$
\mathcal{S}(\omega)=|g(\omega)|^{2}
$$

$$
\omega \sigma_{z}+\sigma_{x} \otimes \int_{-\infty}^{\infty} d \omega\left(g(\omega) \hat{a}_{\omega}+g^{*}(\omega) \hat{a}_{\omega}^{\dagger}\right)+\mid \int_{-\infty}^{+\infty} d \omega \omega \hat{a}_{\omega}^{\dagger} \hat{a}_{\omega}
$$

- If RWA

$$
\sigma_{+} \otimes \int_{-\infty}^{\infty} d \omega g(\omega) \hat{a}_{\omega}+\sigma_{-} \otimes \int_{-\infty}^{\infty} d \omega g^{*}(\omega) \hat{a}_{\omega}^{\dagger}
$$

The number of excitations is conserved

$$
\rho_{E}(0)=|0\rangle 0 \mid
$$

$$
C_{S B}^{U}(t)=\int_{-\infty}^{\infty} d \omega|g(\omega)|^{2} e^{-i \omega t}
$$

The pseudomodes

The pseudomodes

Finite (small) number of auxiliary modes

$$
\begin{gathered}
{\left[\hat{c}_{j}, \hat{c}_{l}^{\dagger}\right]=\delta_{j l}} \\
\hat{H}_{R}=\sum_{j=1}^{\ell} \eta_{j} \hat{c}_{j}^{\dagger} \hat{c}_{j} \quad \hat{H}_{S R}=\hat{H}_{S}+\hat{H}_{R}+\sigma_{x} \otimes \sum_{j}\left(\lambda \hat{c}_{j}+\lambda^{*} \hat{c}_{j}^{\dagger}\right) \\
\overbrace{\text { After RWA } \sigma_{+} \otimes \sum_{j} \lambda \hat{c}_{j}+\sigma_{-} \otimes \lambda^{*} \hat{c}_{j}^{\dagger}} \\
\mathcal{D}_{R}[\rho]=\sum_{j=1}^{\ell} \gamma_{j}\left(\hat{c}_{j} \rho \hat{c}_{j}^{\dagger}-\frac{1}{2}\left\{\hat{c}_{j}^{\dagger} \hat{c}_{j}, \rho\right\}\right) \begin{array}{l}
\text { Lindblad } \\
\text { spontaneous emission }
\end{array}
\end{gathered}
$$

The pseudomodes

Finite (small) number of auxiliary modes

The pseudomodes

The pseudomodes

Finite (small) number of auxiliary modes

$$
\left[\hat{c}_{j}, \hat{c}_{l}^{\dagger}\right]=\delta_{j l}
$$

$$
\hat{H}_{R}=\sum_{j=1}^{\ell} \eta_{j} \hat{c}_{j}^{\dagger} \hat{c}_{j} \quad \hat{H}_{S R}=\hat{H}_{S}+\hat{H}_{R}+\sigma_{x} \otimes \sum_{j}\left(\lambda \hat{c}_{j}+\lambda^{*} \hat{c}_{j}^{\dagger}\right)
$$

$$
\text { After RWA } \sigma_{+} \otimes \sum_{j} \lambda \hat{c}_{j}+\sigma_{-} \otimes \lambda^{*} \hat{c}_{j}^{\dagger}
$$

$$
\mathcal{D}_{R}[\rho]=\sum_{j=1}^{\ell} \gamma_{j}\left(\hat{c}_{j} \rho \hat{c}_{j}^{\dagger}-\frac{1}{2}\left\{\hat{c}_{j}^{\dagger} \hat{c}_{j}, \rho\right\}\right) \begin{aligned}
& \text { Lindblad } \\
& \text { spontaneous emission }
\end{aligned}
$$

ℓ pseudomodes for a $C_{S B}^{U}(t)$ which is the sum of ℓ exponentials
$C_{S B}^{L}(t)=|\lambda|^{2} \sum_{j=1} e^{\left(i \eta_{j}-\gamma_{j} / 2\right) t} \quad$ • Generalized to non-excitation-conserving coupling

The pseudomodes

Finite (small) number of auxiliary modes

$$
\begin{gathered}
{\left[\hat{c}_{j}, \hat{c}_{l}^{\dagger}\right]=\delta_{j l}} \\
\hat{H}_{R}=\sum_{j=1}^{\ell} \eta_{j} \hat{c}_{j}^{\dagger} \hat{c}_{j} \quad \hat{H}_{S R}=\hat{H}_{S}+\hat{H}_{R}+\sigma_{x} \otimes \sum_{j}\left(\lambda \hat{c}_{j}+\lambda^{*} c_{j}^{\dagger}\right) \\
\text { After RWA } \sigma_{+} \otimes \sum_{j} \lambda \hat{c}_{j}+\sigma_{-} \otimes \lambda^{*} \hat{c}_{j}^{\dagger}
\end{gathered} \mathcal{D}_{R}[\rho]=\sum_{j=1}^{\ell} \gamma_{j}\left(\hat{c}_{j} \rho \hat{c}_{j}^{\dagger}-\frac{1}{2}\left\{\hat{c}_{j}^{\dagger} \hat{c}_{j}, \rho\right\}\right) \begin{aligned}
& \text { Lindblad } \\
& \text { spontaneous emission }
\end{aligned}
$$

Lorentzian spectrum

Strong coupling, non-excitation-conserving: beyond Garraway, PRA 55,2290 (1997)

Imamoglu, PRA 50, 3650 (1994)
[Approximated analysis]

Approach for an approximated equivalence

What if one needs a very high number of pseudomodes, or, even, there is no Lindblad such that $C^{L}=C^{U}$?

$$
C^{U}(t) \approx C^{L}(\dot{t}) \square C^{X}(t) \approx C^{U}(t) \square \rho_{S}^{U}(t) \approx \rho_{S}^{L}(t) \begin{aligned}
& \text { Mascherpa, Smirne, Huelga } \\
& \begin{array}{l}
\text { \&Plenio, PRL 118, 100401 (2017) } \\
\text { to bound the error!! }
\end{array}
\end{aligned}
$$

Step 2 and 3 still work, without adding any further approximation!!

Approach for an approximated equivalence

What if one needs a very high number of pseudomodes, or, even, there is no Lindblad such that $C^{L}=C^{U}$?

$$
C^{U}(t) \approx C^{L}(\dot{t}) \longmapsto C^{X}(t) \approx C^{U}(t) \longmapsto \rho_{S}^{U}(t) \approx \rho_{S}^{L}(t)
$$

Mascherpa, Smirne, Huelga \&Plenio, PRL 118, 100401 (2017) to bound the error!!
Step 2 and 3 still work, without adding any further approximation!!
EXAMPLE: Simulation of an antisymmetrized Lorentzian spectrum, finite T with ion traps

$$
\mathscr{D}_{\kappa, \bar{n}} \rho=\kappa(\bar{n}+1)\left[a \rho a^{\dagger}-a^{\dagger} a \rho\right]+\kappa \bar{n}\left[a^{\dagger} \rho a-a a^{\dagger} \rho\right]+\text { H.c. }
$$

Solid lines: numerically exact (TEDOPA) Markers: Lindblad-type dynamics

Non-resonant regime

Resonant regime

Summary

Physical idea:
non-Markovian core

$$
\begin{aligned}
F_{R, j}(t) & =G_{E, j}(t) \\
C_{j j^{\prime}}^{L}(t+s, s) & =C_{j j^{\prime}}^{U}(t+s, s) \\
& \Longrightarrow \quad \rho_{S}^{L}(t)=\rho_{S}^{U}(t) \forall t .
\end{aligned}
$$

Direct applications

- Generalization of the pseudomodes approach to different couplings
- Simulation of the spin-boson model with ion traps

Outlook

Formulating a "dictionary" of correlation functions
obtained from some (simple) reference Lindblad structures

Optimization of the decomposition of the environmental correlation function

$$
J(\omega) \approx \sum_{i} w_{i} J_{A L}^{\omega_{m}^{i}, \Gamma^{i}}(\omega)
$$

Outlook

Formulating a "dictionary" of correlation functions
obtained from some (simple) reference Lindblad structures

$$
J(\omega) \approx \sum_{i} w_{i} J_{A L}^{\omega_{m}^{i}, \Gamma^{i}}(\omega)
$$

Optimization of the decomposition of the environmental correlation function

Extending the approach (fermionic baths, system multitime...)

Outlook

Formulating a "dictionary" of correlation functions obtained from some (simple) reference Lindblad structures

Optimization of the decomposition of the environmental correlation function

$$
J(\omega) \approx \sum_{i} w_{i} J_{A L}^{\omega_{m,}^{i}, \Gamma^{i}}(\omega)
$$

Extending the approach (fermionic baths, system multitime...)

Institut für Theoretische Physik

Summarizing the proof

QUANTUM REGRESSION $C_{j j^{\prime}}^{L}(t+s, s)=C^{X}(t+s, s)$

$$
=\operatorname{Tr}_{R E}\left\{e^{i \hat{H}_{R \bar{E}}(t+s)} \hat{F}_{R, j} e^{-i \hat{H}_{R \bar{E}}(t+s)} e^{i \hat{H}_{R \bar{E}^{s}} \hat{F}_{R, j^{\prime}}} e^{-i \hat{H}_{R \bar{E}^{s}}}\left(\rho_{R}(0) \otimes \rho_{\tilde{E}}(0)\right)\right\}
$$

Summarizing the proof

QUANTUM REGRESSION $C^{C_{j j^{\prime}}^{L}(t+s, s)}=C^{X}(t+s, s)$

$$
=\operatorname{Tr}_{R E}\left\{e^{i \hat{H}_{R \bar{E}}(t+s)} \hat{F}_{R, j} e^{-i \hat{H}_{R \bar{E}}(t+s)} e^{i \hat{H}_{R \bar{E}}{ }^{s} \hat{F}_{R, j^{\prime}}} e^{-i \hat{H}_{R \bar{E}^{s}}}\left(\rho_{R}(0) \otimes \rho_{\tilde{E}}(0)\right)\right\}
$$

Summarizing the proof

