Test of discrete symmetries with neutral kaons at KLOE-2

Antonio Di Domenico
Dipartimento di Fisica, Sapienza Università di Roma and INFN sezione di Roma, Italy
on behalf of the KLOE-2 collaboration

Workshop on Quantum foundations
LNF - Frascati, Italy 29 November - 1 December 2017

K mesons - more than 70 years history

1944 : first indication of a new charged particle with mass $\sim 0.5 \mathrm{GeV} / \mathrm{c}^{2}$ in cosmic rays (Leprince-Ringuet, Lheritier)
1947 : first K ${ }^{0}$ observation in cloud chamber - V particle (Rochester, Butler)
1955 : introduction of Strangeness (Gell-Mann, Nishijima)
$\mathrm{K}^{0}, \overline{\mathrm{~K}^{0}}$ are two distinct particles (Gell-Mann, Pais) Strangeness oscillation
1955 prediction of regeneration of short-lived particle (Pais, Piccioni)
1956 Observation of long lived K_{L} (BNL Cosmotron)
$1957 \tau-\theta$ puzzle on spin-parity assignment, P violation in weak interactions
1960: $\Delta \mathrm{m}=\mathrm{m}_{\mathrm{L}}-\mathrm{m}_{\mathrm{S}}$ measured from regeneration
1964: discovery of CP violation (Cronin, Fitch,...)
1970 : suppression of FCNC, $\mathrm{K}_{\mathrm{L}} \rightarrow \mu \mu-$ GIM mechanism/charm hypothesis
1972 : Kobayashi Maskawa six quark model: CP violation explained in SM
1992-2000 : CPLear: $\mathrm{K}^{0}, \overline{\mathrm{~K}^{0}}$ time evolution and decays, T, CP, CPT tests
1999-2003 : KTeV and NA48 (prev. E731 and NA31): direct CP violation proven : $\varepsilon^{\prime} / \varepsilon \neq 0$ 2003-2008 : NA48/2: charged kaon beam, search for direct CP viol.

2000-2006 : KLOE at Daథne: first Φ factory enters in operation, $\mathrm{V}_{\text {us }}$ and precision tests of the SM, entangled neutral K pairs and CPT and QM tests.

Neutral K meson system: a jewel donated to us by Nature

R. Feynman
"If there is any place where we have a chance to test the main principles of quantum mechanics in the purest way - does the superposition of amplitudes work or doesn't it? - this is it."

Neutral K meson system: a jewel donated to us by Nature

"If there is any place where we have a chance to test the main principles of quantum mechanics in the purest way - does the superposition of amplitudes work or doesn't it? - this is it."
R. Feynman

"One of the most intriguing physical systems in Nature"

Neutral K meson system: a jewel donated to us by Nature

R. Feynman

"If there is any place where we have a chance to test the main principles of quantum mechanics in the purest way - does the superposition of amplitudes work or doesn't it? - this is it."
"One of the most intriguing physical systems in Nature"

"Neutral K mesons are a unique physical system which appears to be created by nature to demonstrate, in the most impressive manner, a number of spectacular phenomena."
"If the K mesons did not exist, they should have been invented 'on purpose' in order to teach students the principles of quantum mechanics"

The neutral kaon two-level oscillating system in a nutshell

K^{0} and $\overline{\mathrm{K}^{0}}$ can decay to common final states due to weak interactions: strangeness oscillations

$$
\begin{gathered}
|\Psi\rangle=a\left|K^{0}\right\rangle+b\left|\bar{K}^{0}\right\rangle \\
i \frac{\partial}{\partial t} \Psi(t)=\mathbf{H} \Psi(t)
\end{gathered}
$$

\mathbf{H} is the effective hamiltonian (non-hermitian), decomposed into a Hermitian part (mass matrix \mathbf{M}) and an anti-Hermitian part ($\mathrm{i} / 2$ decay matrix Γ) :

$$
\mathbf{H}=\mathbf{M}-\frac{i}{2} \Gamma=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)-\frac{i}{2}\left(\begin{array}{ll}
\Gamma_{11} & \Gamma_{12} \\
\Gamma_{21} & \Gamma_{22}
\end{array}\right)
$$

Diagonalizing the effective Hamiltonian:
eigenstates: physical states

$$
\begin{aligned}
& \text { eigenvalues } \\
& \lambda_{S, L}=m_{S, L}-\frac{i}{2} \Gamma_{S, L} \\
& \left|K_{S, L}(t)\right\rangle=e^{-i \lambda_{S, L} t}\left|K_{S, L}(0)\right\rangle \\
& \tau_{S} \sim 90 \mathrm{ps} \quad \tau_{\mathrm{L}} \sim 51 \mathrm{~ns} \\
& \quad K_{L} \rightarrow \pi \pi \text { violates } \mathrm{CP}
\end{aligned}
$$

$$
\left|K_{S, L}\right\rangle=\frac{1}{\sqrt{2\left(1+\left|\varepsilon_{S, L}\right|\right.} \mid}\left[\left(1+\varepsilon_{S, L}\right)\left|K^{0}\right\rangle_{\left. \pm\left(1-\varepsilon_{S, L}\right)\left|\bar{K}^{0}\right\rangle\right]}\right.
$$

$$
\mid \mathrm{K}_{1,2}>\text { are }
$$

$$
=\frac{1}{\sqrt{\left(1+\left|\varepsilon_{S, L}\right|\right)}}\left[\left|K_{1,2}\right\rangle+\varepsilon_{S, L}\left\langle K_{2,,}\right\rangle\right]
$$

$$
\mathrm{CP}= \pm 1 \text { states }
$$

The neutral kaon two-level oscillating system in a nutshell

$$
\left|K_{S, L}\right\rangle \propto\left[\left(1+\varepsilon_{S, L}\right)\left|K^{0}\right\rangle \pm\left(1-\varepsilon_{S, L}\right)\left|\bar{K}^{0}\right\rangle\right]
$$

CP violation:

$$
\varepsilon_{S, L}=\varepsilon \pm \delta
$$

T violation:

$$
\varepsilon=\frac{H_{12}-H_{21}}{2\left(\lambda_{s}-\lambda_{L}\right)}=\frac{-i \Im M_{12}-\Im \Gamma_{12} / 2}{\Delta m+i \Delta \Gamma / 2}
$$

CPT violation:

$$
\delta=\frac{H_{11}-H_{22}}{2\left(\lambda_{S}-\lambda_{L}\right)}=\frac{1}{2} \frac{\left(m_{\bar{K}^{0}}-m_{K^{0}}\right)-(i / 2)\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)}{\Delta m+i \Delta \Gamma / 2}
$$

- $\delta \neq 0$ implies CPT violation
- $\varepsilon \neq 0$ implies T violation
- $\varepsilon \neq 0$ or $\delta \neq 0$ implies CP violation
(with a phase convention $\left.\Im \Gamma_{12}=0\right) \quad \Delta \Gamma \approx \Gamma_{\mathrm{S}} \approx 2 \Delta m=7 \times 10^{-15} \mathrm{GeV}$
$\Delta m=m_{L}-m_{S} \quad, \quad \Delta \Gamma=\Gamma_{S}-\Gamma_{L}$
$\Delta m=3.5 \times 10^{-15} \mathrm{GeV}$

The neutral kaon two-level oscillating system in a nutshell

$$
\left|K_{S, L}\right\rangle \propto\left[\left(1+\varepsilon_{S, L}\right)\left|K^{0}\right\rangle \pm\left(1-\varepsilon_{S, L}\right)\left|\bar{K}^{0}\right\rangle\right]
$$

CP violation:

$$
\varepsilon_{S, L}=\varepsilon \pm \delta
$$

T violation:

$$
\varepsilon=\frac{H_{12}-H_{21}}{2\left(\lambda_{s}-\lambda_{L}\right)}=\frac{-i \Im M_{12}-\Im \Gamma_{12} / 2}{\Delta m+i \Delta \Gamma / 2}
$$

CPT violation:

$$
\delta=\frac{H_{11}-H_{22}}{2\left(\lambda_{S}-\lambda_{L}\right)}=\frac{1}{2} \frac{\left(m_{\bar{K}^{0}}-m_{K^{0}}\right)-(i / 2)\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)}{\Delta m+i \Delta \Gamma / 2}
$$

- $\delta \neq 0$ implies CPT violation
- $\varepsilon \neq 0$ implies T violation
- $\varepsilon \neq 0$ or $\delta \neq 0$ implies CP violation
(with a phase convention $\mathfrak{J} \Gamma_{12}=0$)
$\Delta m=m_{L}-m_{S} \quad, \quad \Delta \Gamma=\Gamma_{S}-\Gamma_{L}$
$\Delta m=3.5 \times 10^{-15} \mathrm{GeV}$
$\Delta \Gamma \approx \Gamma_{\mathrm{S}} \approx 2 \Delta m=7 \times 10^{-15} \mathrm{GeV}$

Neutral kaons at a ϕ-factory

Production of the vector meson ϕ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilations:
$-\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \phi \quad \sigma_{\phi} \sim 3 \mu \mathrm{~b}$

$$
\mathrm{W}=\mathrm{m}_{\phi}=1019.4 \mathrm{MeV}
$$

- $\operatorname{BR}\left(\phi \rightarrow \mathrm{K}^{0} \mathrm{~K}^{0}\right) ~ \sim 34 \%$
- $\sim 10^{6}$ neutral kaon pairs per
 pb^{-1} produced in an antisymmetric quantum state with $J^{P C}=1^{--}$:

$$
\begin{aligned}
& \mathbf{p}_{\mathrm{K}}=110 \mathrm{MeV} / \mathrm{c} \\
& \lambda_{\mathrm{S}}=6 \mathrm{~mm} \quad \lambda_{\mathrm{L}}=3.5 \mathrm{~m}
\end{aligned}
$$

$$
\begin{gathered}
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}(\vec{p})\right\rangle\left\langle\bar{K}^{0}(-\vec{p})\right\rangle-\left|\bar{K}^{0}(\vec{p})\right\rangle\left|K^{0}(-\vec{p})\right\rangle\right] \\
=\frac{N}{\sqrt{2}}\left[\left|K_{S}(\vec{p})\right\rangle\left\langle K_{L}(-\vec{p})\right\rangle-\left|K_{L}(\vec{p})\right\rangle\left|K_{S}(-\vec{p})\right\rangle\right] \\
N=\sqrt{\left(1+\left|\varepsilon_{S}\right|^{2}\right)\left(1+\left|\varepsilon_{L}\right|^{2}\right)} /\left(1-\varepsilon_{s} \varepsilon_{L}\right) \cong 1
\end{gathered}
$$

The KLOE detector at the Frascati ϕ-factory DAФNE

Integrated luminosity (KLOE)

Total KLOE $\int \mathcal{L} \mathrm{dt} \sim 2.5 \mathrm{fb}^{-1}$
(2001-05) $\rightarrow \sim 2.5 \times 10^{9} \mathrm{~K}_{S} \mathrm{~K}_{\mathrm{L}}$ pairs

Lead/scintillating fiber calorimeter drift chamber
4 m diameter $\times 3.3 \mathrm{~m}$ length helium based gas mixture

KLOE-2 at DAФNE

LYSO Crystal w SiPM Low polar angle

Tungsten / Scintillating Tiles w SiPM

Inner Tracker - 4 layers of Cylindrical GEM detectors Improve track and vtx reconstr. First CGEM in HEP expt.

HET . 11 m from IP

calorimeters LYSO+SiPMs at $\sim 1 \mathrm{~m}$ from IP

KLOE-2 Data Taking

KLOE-2 goal: L acquired > $5 \mathrm{fb}^{-1}$ => L delivered > ~ $6.2 \mathrm{fb}-1$ by 31 March 2018

KLOE-2 Physics

KAON Physics:

- CPT and QM tests with kaon interferometry
- Direct T and CPT tests using entanglement
- CP violation and CPT test:
$\mathrm{K}_{\mathrm{s}}->3 \pi^{0}$
direct measurement of $\operatorname{Im}\left(\varepsilon^{\prime} / \varepsilon\right)$ (lattice calc. improved)
- CKM Vus:
K_{S} semileptonic decays and A_{S} (also CP and CPT test) $\mathrm{K} \mu 3$ form factors, Kl 3 radiative corrections
- $\chi \mathrm{pT}: \mathrm{K}_{\mathrm{s}}->\gamma \gamma$
- Search for rare K_{S} decays

Hadronic cross section

- Measurement of $\mathrm{a}_{\mu}{ }^{\text {HLO }}$ in the space-like
- ISR studies with $3 \pi, 4 \pi$ final states
- F_{π} with increased statistics

> region using Bhabha process

Dark forces:

- Improve limits on:

U γ associate production $\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{U} \gamma \rightarrow \pi \pi \gamma, \mu \mu \gamma$

- Higgstrahlung

$$
\mathrm{e}+\mathrm{e}-\rightarrow \text { Uh' } \rightarrow \mu+\mu-+ \text { miss. energy }
$$

- Leptophobic B boson search
$\phi \rightarrow \eta \mathrm{B}, \mathrm{B} \rightarrow \pi^{0} \gamma, \eta \rightarrow \gamma \gamma$
$\eta \rightarrow B \gamma, B \rightarrow \pi^{0} \gamma, \eta \rightarrow \pi^{0} \gamma \gamma$
- Search for U invisible decays

Light meson Physics:

- η decays, ω decays, TFF $\phi \rightarrow \eta \mathrm{e}^{+} \mathrm{e}^{-}$
- C,P,CP violation:
improve limits on $\eta \rightarrow \gamma \gamma \gamma, \pi^{+} \pi^{-}, \pi^{0} \pi^{0}, \pi^{0} \pi^{0} \gamma$
- improve $\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\chi \mathrm{pT}: \eta \rightarrow \pi^{0} \gamma \gamma$
- Light scalar mesons: $\phi \rightarrow \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}} \gamma$
- $\gamma \gamma$ Physics: $\gamma \gamma \rightarrow \pi^{0}$ and π^{0} TFF
- light-by-light scattering
- axion-like particles

List of KLOE CP/CPT/QM tests with neutral kaons

Mode	Test	Param.	KLOE measurement
$\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}$	CP	BR	$(1.963 \pm 0.012 \pm 0.017) \times 10^{-3}$
$\mathrm{K}_{\mathrm{s}} \rightarrow 3 \pi^{0}$	CP	BR	$<2.6 \times 10^{-8}$
$\mathbf{K}_{\text {S }} \rightarrow \pi \mathrm{ev}$	CP	$\mathbf{A}_{\text {S }}$	$(1.5 \pm 10) \times 10^{-3}$
$\mathrm{K}_{\text {S }} \rightarrow \pi \mathrm{ev}$	CPT	$\operatorname{Re}\left(\mathbf{x}_{\text {- }}\right)$	$(-0.8 \pm 2.5) \times 10^{-3}$
$\mathrm{K}_{\mathrm{s}} \rightarrow \pi \mathrm{e} v$	CPT	$\operatorname{Re}(\mathrm{y})$	$(0.4 \pm 2.5) \times 10^{-3}$
All $K_{\text {s,L }}$ BRs, η 's etc... (unitarity)	$\begin{gathered} \text { CP } \\ \text { CPT } \end{gathered}$	$\begin{aligned} & \operatorname{Re}(\varepsilon) \\ & \operatorname{Im}(\delta) \end{aligned}$	$\begin{gathered} (159.6 \pm 1.3) \times 10^{-5} \\ (0.4 \pm 2.1) \times 10^{-5} \end{gathered}$
$\mathbf{K}_{\mathbf{S}} \mathrm{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	QM	ζ_{00}	$(0.1 \pm 1.0) \times 10^{-6}$
$\mathbf{K}_{S} \mathbf{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	QM	$\zeta_{\text {SL }}$	$(0.3 \pm 1.9) \times 10^{-2}$
$\mathrm{K}_{\mathbf{S}} \mathrm{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	α	$(-10 \pm 37) \times 10^{-17} \mathrm{GeV}$
$\mathbf{K}_{\mathbf{S}} \mathrm{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	β	$(1.8 \pm 3.6) \times 10^{-19} \mathrm{GeV}$
$\mathbf{K}_{S} \mathbf{K}_{L} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	γ	$\begin{gathered} (0.4 \pm 4.6) \times 10^{-21} \mathrm{GeV} \\ \text { compl. pos. hyp. } \\ (0.7 \pm 1.2) \times 10^{-21} \mathrm{GeV} \end{gathered}$
$\mathrm{K}_{\mathbf{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	$\operatorname{Re}(\omega)$	$(-1.6 \pm 2.6) \times 10^{-4}$
$\mathbf{K}_{\mathbf{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	$\operatorname{Im}(\omega)$	$(-1.7 \pm 3.4) \times 10^{-4}$
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	$\Delta \mathrm{a}_{0}$	$(-6.2 \pm 8.8) \times 10^{-18} \mathrm{GeV}$
$\mathbf{K}_{\mathbf{S}} \mathrm{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	$\Delta \mathrm{a}_{\mathrm{z}}$	$(-0.7 \pm 1.0) \times 10^{-18} \mathrm{GeV}$
$\mathrm{K}_{\mathbf{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	$\Delta \mathbf{a}_{\mathbf{X}}$	$(3.3 \pm 2.2) \times 10^{-18} \mathrm{GeV}$
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	$\Delta \mathrm{a}_{\mathrm{Y}}$	$(-0.7 \pm 2.0) \times 10^{-18} \mathrm{GeV}$

A. Di Domenico

Workshop on quantum foundations - LNF - 29 November - 1 December 2017

K_{S} semileptonic charge asymmetry CP and CPT test

K_{S} semileptonic charge asymmetry

K_{S} and K_{L} semileptonic charge asymmetry

CPTV in $\Delta \mathrm{S}=\Delta \mathrm{Q} \quad \uparrow_{\mathrm{S} \neq \Delta \mathrm{Q} \text { decays }}^{\uparrow}$
$A_{S, L} \neq 0$ signals $C P$ violation
$A_{S} \neq A_{L}$ signals CPT violation
$\mathrm{A}_{\mathrm{L}}=(\mathbf{3 . 3 2 2} \pm \mathbf{0 . 0 5 8} \pm \mathbf{0 . 0 4 7}) \times \mathbf{1 0}^{-\mathbf{3}}$
KTEV PRL88,181601(2002)

$$
A_{S}=(1.5 \pm 9.6 \pm 2.9) \times 10^{-3}
$$

KLOE PLB 636(2006) 173
Data sample: L=410 pb-1

\mathbf{K}_{S} semileptonic charge asymmetry

$$
|i\rangle \propto\left[\left|K_{S}\right\rangle\left|K_{L}\right\rangle-\left|K_{L}\right\rangle\left|K_{S}\right\rangle\right]
$$

\boldsymbol{K}_{S} tagged by \boldsymbol{K}_{L} interaction in EmC Efficiency ~ 30\% (largely geometrical)

- KLOE $1.7 \mathrm{fb}^{-1}$; $\sim 4 \times$ statistics w.r.t. previous measurement
- Pre-selection
- PID with time of flight technique

$$
\delta t\left(m_{X}\right)=t_{c l}-\frac{L}{c \beta\left(m_{X}\right)} \quad \delta_{t, a b}=\delta t\left(m_{a}\right)-\delta t\left(m_{b}\right)
$$

\mathbf{K}_{S} semileptonic charge asymmetry

- Fit of $\mathrm{M}^{2}(\mathrm{e})$ distribution varying MC normalizations of signal and bkg contributions
- Control sample: $\mathrm{K}_{\mathrm{L}}->$ rev close to IP tagged by $\mathrm{K}_{\mathrm{s}}->\pi^{0} \pi^{0}$
- track to EMC cluster and TOF efficiency correction from data c.s.

K_{S} semileptonic charge asymmetry at KLOE

Data sample: $\mathrm{L}=1.7 \mathrm{fb}{ }^{-1}$
KLOE (2017)
$A_{S}=(-4.8 \pm 5.7 \pm 2.6) \times 10^{-3}$

It will improve the CPT test (Im δ) using Bell-Steinberger relationship
with KLOE-2 data: $\delta \mathrm{A}_{S}($ stat $) \rightarrow \sim 3 \times 10^{-3}$

CPT \& $\Delta S=\Delta Q$ viol.
$A_{S}+A_{L}=4(\Re \varepsilon-\Re y) \rightarrow \quad \mathfrak{R y}=(\mathbf{2 . 0} \pm \mathbf{1 . 6}) \times \mathbf{1 0}^{-3}$
CPT viol.
input from other experiments

Direct test of CPT and T in neutral kaon transitions

Testing CPT

The three discrete symmetries of QM, C (charge conjugation: $q \rightarrow-q$), P (parity: $x \rightarrow-x$), and T (time reversal: $t \rightarrow-t$) are known to be violated in nature both singly and in pairs. Only CPT appears to be an exact symmetry of nature.
CPT theorem holds for any QFT formulated on flat space-time which assumes:
(1) Lorentz invariance (2) Locality (3) Unitarity (i.e. conservation of probability).

Extension of CPT theorem to a theory of quantum gravity far from obvious. (e.g. CPT violation appears in several QG models) huge effort in the last decades to study and shed light on QG phenomenology \Rightarrow Phenomenological CPTV parameters to be constrained by experiments
Consequences of CPT symmetry: equality of masses, lifetimes, $|q|$ and $|\mu|$ of a particle and its anti-particle.

Neutral meson systems offer unique possibilities to test CPT invariance; e.g. taking as figure of merit the fractional difference between the masses of a particle and its anti-particle:

$$
\begin{array}{ccl}
\text { neutral K system } & \text { neutral B system } & \text { proton- anti-proton } \\
\left|m_{K^{0}}-m_{\bar{K}^{0}}\right| / m_{K}<10^{-18} & \left|m_{B^{0}}-m_{\bar{B}^{0}}\right| / m_{B}<10^{-14} & \left|m_{p}-m_{\bar{p}}\right| / m_{p}<10^{-8}
\end{array}
$$

Other interesting CPT tests: e.g. the study of anti-hydrogen atoms, etc..

Testing CPT

The three discrete symmetries of QM, C (charge conjugation: $q \rightarrow-q$), P (parity: $x \rightarrow-x$), and T (time reversal: $t \rightarrow-t$) are known to be violated in nature both singly and in pairs. Only CPT appears to be an exact symmetry of nature.
CPT theorem holds for any QFT formulated on flat space-time which assumes:
(1) Lorentz invariance (2) Locality (3) Unitarity (i.e. conservation of probability).

Extension of CPT theorem to a theory of quantum gravity far from obvious. (e.g. CPT violation appears in several QG models) huge effort in the last decades to study and shed light on QG phenomenology \Rightarrow Phenomenological CPTV parameters to be constrained by experiments
Consequences of CPT symmetry: equality of masses, lifetimes, $|q|$ and $|\mu|$ of a particle and its anti-particle.

Neutral meson systems offer unique possibilities to test CPT invariance; e.g. taking as figure of merit the fractional difference between the masses of a particle and its anti-particle:
neutral K system neutral B system
$\left.\left|m_{K^{0}}-m_{\bar{K}^{0}}\right| / m_{K}<10^{-18}\right)\left|m_{B^{0}}-m_{\bar{B}^{0}}\right| / m_{B}<10^{-14}$
proton- anti-proton
$\left|m_{p}-m_{\bar{p}}\right| / m_{p}<10^{-8}$

Other interesting CPT tests: e.g. the study of anti-hydrogen atoms, etc..

Direct CPT test in transitions

- Is it possible to test the CPT symmetry directly in transition processes between kaon states, rather than comparing masses, lifetimes, or other intrinsic properties of particle and anti-particle states?
- CPT violating effects may not appear at first order in diagonal mass terms (K^{0} vs \underline{K}^{0} survival probabilities) while they can manifest at first order in transitions (non-diagonal terms).
- In standard WWA the test is related to Re , a genuine CPT violating effect independent of $\Delta \Gamma$, i.e. not requiring the decay as an essential ingredient.
- Clean formulation required. Possible spurious effects induced by CP violation in the decay and/or a violation of the $\Delta S=\Delta Q$ rule have to be well under control.

```
Probing CPT: J. Bernabeu, A.D.D., P. Villanueva, JHEP 10 (2015) }13
Time-reversal violation: J. Bernabeu, A.D.D., P. Villanueva, NPB 868(2013)}10
```


Definition of states

Let us also consider the states $\left|\mathrm{K}_{+}\right\rangle,\left|\mathrm{K}_{-}\right\rangle$defined as follows: $\left|\mathrm{K}_{+}\right\rangle$is the state filtered by the decay into $\pi \pi\left(\pi^{+} \pi^{+}\right.$or $\left.\pi^{0} \pi^{0}\right)$, a pure $\mathrm{CP}=+1$ state; analogously $\left|\mathrm{K}_{-}\right\rangle$is the state filtered by the decay into $3 \pi^{0}$, a pure $\mathrm{CP}=-1$ state. Their orthogonal states correspond to the states which cannot decay into $\pi \pi$ or $3 \pi^{0}$, defined, respectively, as

$$
\begin{array}{rlrl}
\left|\widetilde{\mathrm{K}}_{-}\right\rangle & \equiv \widetilde{\mathrm{N}}_{-}\left[\left|\mathrm{K}_{\mathrm{L}}\right\rangle-\eta_{\pi \pi}\left|\mathrm{K}_{\mathrm{S}}\right\rangle\right] \\
\left|\widetilde{\mathrm{K}}_{+}\right\rangle & \equiv \widetilde{\mathrm{N}}_{+}\left[\left|\mathrm{K}_{\mathrm{S}}\right\rangle-\eta_{3 \pi^{0}}\left|\mathrm{~K}_{\mathrm{L}}\right\rangle\right] & \eta_{\pi \pi} & =\frac{\langle\pi \pi| T\left|\mathrm{~K}_{\mathrm{L}}\right\rangle}{\langle\pi \pi| T\left|\mathrm{~K}_{\mathrm{S}}\right\rangle} \\
\left\{\begin{aligned}
& \left.\widetilde{\mathrm{K}}_{+}\right\} \\
& \left\{\widetilde{\mathrm{K}}_{+}, \mathrm{K}_{-}\right\}
\end{aligned}\right. & \eta_{3 \pi^{0}} & =\frac{\left\langle 3 \pi^{0}\right| T\left|\mathrm{~K}_{\mathrm{S}}\right\rangle}{\left\langle 3 \pi^{0}\right| T\left|\mathrm{~K}_{\mathrm{L}}\right\rangle}
\end{array}
$$

Orthogonal bases: $\left\{\mathrm{K}_{+}, \widetilde{\mathrm{K}}_{-}\right\} \quad\left\{\widetilde{\mathrm{K}}_{+}, \mathrm{K}_{-}\right\}$
Even though the decay products are orthogonal, the filtered $|\mathrm{K}+\rangle$ and $|\mathrm{K}-\rangle$ states can still be non-orthoghonal.
Condition of orthoghonality:

$$
\begin{aligned}
\left|\mathrm{K}_{+}\right\rangle & \equiv\left|\widetilde{\mathrm{K}}_{+}\right\rangle \\
\left|\mathrm{K}_{-}\right\rangle & \equiv\left|\widetilde{\mathrm{K}}_{-}\right\rangle
\end{aligned}
$$

Neglect direct $C P$ violation. Similarly any $\Delta S=\Delta Q$ rule violation for $\left|K^{0}\right\rangle$ and $\left|\bar{K}^{0}\right\rangle$

Direct test of CPT symmetry in neutral kaon transitions

CPT symmetry test

Reference			$\mathcal{P} \mathcal{T}$-conjugate	
Transition	Decay products		Transition	Decay products
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\left(\ell^{-}, \pi \pi\right)$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\left(3 \pi^{0}, \ell^{-}\right)$	
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\left(\ell^{-}, 3 \pi \pi^{0}\right)$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\left(\pi \pi, \ell^{-}\right)$	
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\left(\ell^{+}, \pi \pi\right)$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\left(3 \pi^{0}, \ell^{+}\right)$	
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\left(\ell^{+}, 3 \pi \pi^{0}\right)$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\left(\pi \pi, \ell^{+}\right)$	

One can define the following ratios of probabilities:

$$
\begin{aligned}
& R_{1, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\mathrm{~K}_{+}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right] / P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{+}(\Delta t)\right] \\
& R_{2, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right] / P\left[\mathrm{~K}_{-}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right] \\
& R_{3, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\mathrm{~K}_{+}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right] / P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{+}(\Delta t)\right] \\
& R_{4, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right] / P\left[\mathrm{~K}_{-}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right]
\end{aligned}
$$

Any deviation from $\mathrm{R}_{\mathrm{i}, \mathrm{CPT}}=1$ constitutes a violation of CPT-symmetry

[^0]
Direct test of symmetries with neutral kaons

Reference	T-conjugate	$C P$-conjugate	$C P T$-conjugate
$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$
$\mathrm{~K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{~K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$
$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$
$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$
$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{~K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\mathrm{~K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}^{0}$
$\overline{\mathrm{~K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}^{0}$
$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$
$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$
$\mathrm{~K}_{+} \rightarrow \mathrm{K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{+}$
$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{+}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{-}$
$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{-}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$

Direct test of symmetries with neutral kaons

Conjugate= reference

Reference	T-conjugate	$C P$-conjugate	CPT-conjugate
$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$	$\xrightarrow[\sim]{\text { m }}$	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$
$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\underline{V}}^{0} \mathrm{~K}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$		$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$
$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	K, \ldots	- K	
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	\underline{K}	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$
$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\boldsymbol{V} \mathrm{V}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	K	\underline{V}	K, K

Direct test of symmetries with neutral kaons

Conjugate= reference

Reference	T-conjugate	$C P$-conjugate	CPT-conjugate
$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$		$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$
$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	m^{-0} - ${ }_{\text {n }}$
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\underline{K}^{0} \overline{\underline{K}}^{0}$	$\bar{K}^{0} \overline{\underline{Z}}^{0}$	$\overline{\underline{V}}^{0} \quad \mathbf{K}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$		$\rightarrow \mathrm{m}^{0}$	
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\underline{0}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	H-Y	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	K^{0},	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	K
$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$		$\underline{\square}_{+}$	$\underline{\square}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	$K, ~ K$, K	I
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	\underline{K}	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$		$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\mathrm{H}^{0} \mathrm{H}$
$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	-	$\pm{ }^{0}$	H
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	K K	,	
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	K	V	K

Direct test of symmetries with neutral kaons

Conjugate=	Reference	T-conjugate	$C P$-conjugate	CPT-conjugate
already in the table with conjugate as reference	$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$		$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$
	$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{K}}^{0} \longrightarrow \mathrm{~K}^{0}$	H^{-0}
	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$
	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$
	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\bar{K}^{0} \quad \overline{\underline{K}}^{0}$	$\bar{L}^{0} \quad \overline{\underline{K}}^{0}$	$\overline{\underline{V}}^{0}, \mathrm{~K}^{0}$
	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\xrightarrow[n]{n}$	$\mathrm{n}^{0} \mathrm{~m}^{0}$	$\mathrm{n} \rightarrow \mathrm{m}^{\text {n }}$
	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	H0 T	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$
	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	${ }^{\sim}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$
Two identical conjugates for one reference	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	K^{0}	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\underline{V}}^{0}$
	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\underline{\square}$		
	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	K	\underline{V} K	I
	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K} \rightarrow \mathrm{K}_{+}$	\underline{K}	$\mathrm{K} \longrightarrow \mathrm{K}_{+}$
	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	V0	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{H}}^{-1}$
	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	-	$4-4{ }^{0}$	H
	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\underline{1}$	\boldsymbol{V}	$\underline{\square}$
	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	K	K	K K

Direct test of symmetries with neutral kaons

Conjugate= reference	Reference	T-conjugate	$C P$-conjugate	CPT-conjugate	4 distinct tests of T symmetry
	$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{TH}^{\text {+ }}$	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	
already in the table with conjugate as reference	$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\bar{K}^{0} \longrightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{K}}^{0} \longrightarrow \mathrm{~K}^{0}$		
	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	
	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	
	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\underline{K}^{0} \quad \bar{K}^{0}$	$\mathrm{K}^{0} \overline{\mathrm{~K}}^{0}$	$\overline{\underline{V}}^{0} \quad \mathrm{~K}^{0}$	
	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$		$\mathrm{m}^{0} \mathrm{TN}^{0}$	$\mathrm{H}^{0} \rightarrow \mathrm{~N}^{(1)}$	
	$\begin{aligned} & \overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+} \\ & \overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0} \\ & \mathrm{~K}_{-} \rightarrow \overline{\mathrm{K}}^{0} \end{aligned}$	+	$\begin{aligned} & \mathrm{K}_{+} \rightarrow \mathrm{K}^{0} \\ & \mathrm{~K}_{-} \rightarrow \mathrm{K}^{0} \end{aligned}$	of CP symmetry
Two identical conjugates for one reference	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	K^{0}	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{\text {a }}$	$\overline{\mathrm{k}}^{0}$	4 distinct tests of CPT symmetry
	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$				
	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	K, K	K, K	K,	
	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K} \rightarrow \mathrm{K}_{+}$	\underline{K}	$\mathrm{K} \rightarrow \mathrm{K}_{4}$	
	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	-	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	F- H	
	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$		-	+0.40	
	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	\underline{K}	\underline{V}	$\underline{+}$	
	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	\underline{Y}	\underline{V}	K	

Quantum entanglement as a tool

- The in<->out states inversion required in a DIRECT test of CPT (or T) can be performed exploiting the properties of the quantum entanglement.
- In maximally entangled systems the complete knowledge of the system as a whole is encoded in the state, no information on single subsystems is available.
- Once a measurement is performed on one subsystem, then the information is immediately transferred to its partner, which is prepared in the orthogonal state
- $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \phi\right) \sim 3 \mathrm{mb} ; \mathrm{W}=\mathrm{m}_{\phi}=1019.4 \mathrm{MeV} \operatorname{BR}\left(\phi \rightarrow \mathrm{K}^{0} \underline{K}^{0}\right) \sim 34 \%$ $\sim 10^{6} / \mathrm{pb}^{-1} \mathrm{KK}$ pairs produced in an antisymmetric quantum state with JPC = 1-- :

Entanglement in neutral kaon pairs

-EPR correlations at a ϕ-factory can be exploited to study transitions involving orthogonal "CP states" K_{+}and K_{-}

$$
\begin{aligned}
|i\rangle & =\frac{1}{\sqrt{2}}\left[\left|K^{0}(\vec{p})\right\rangle\left|\bar{K}^{0}(-\vec{p})\right\rangle-\left|\bar{K}^{0}(\vec{p})\right\rangle\left|K^{0}(-\vec{p})\right\rangle\right] \\
& =\frac{1}{\sqrt{2}}\left[\left|K_{+}(\vec{p})\right\rangle\left|K_{-}(-\vec{p})\right\rangle-\left|K_{-}(\vec{p})\right\rangle\left|K_{+}(-\vec{p})\right\rangle\right]
\end{aligned}
$$

-decay as filtering measurement -entanglement -> preparation of state

Entanglement in neutral kaon pairs

-EPR correlations at a ϕ-factory can be exploited to study transitions involving orthogonal "CP states" K_{+}and K_{-}

Entanglement in neutral kaon pairs

-EPR correlations at a ϕ-factory can be exploited to study transitions involving orthogonal "CP states" K_{+}and K_{-}

-decay as filtering measurement -entanglement -> preparation of state

Entanglement in neutral kaon pairs

-EPR correlations at a ϕ-factory can be exploited to study transitions involving orthogonal "CP states" K_{+}and K_{-}

$\|i\rangle$	$=\frac{1}{\sqrt{2}}\left[\left\|K^{0}(\vec{p})\right\rangle\left\|\bar{K}^{0}(-\vec{p})\right\rangle-\left\|\bar{K}^{0}(\vec{p})\right\rangle\left\|K^{0}(-\vec{p})\right\rangle\right]$
	$=\frac{1}{\sqrt{2}}\left[\left\|K_{+}(\vec{p})\right\rangle\left\|K_{-}(-\vec{p})\right\rangle-\left\|K_{-}(\vec{p})\right\rangle\left\|K_{+}(-\vec{p})\right\rangle\right]$

-decay as filtering measurement -entanglement -> preparation of state

$K_{-} \rightarrow \bar{K}^{0} \quad$ CPT-conjugated process

Entanglement in neutral kaon pairs

-EPR correlations at a ϕ-factory can be exploited to study transitions involving orthogonal "CP states" K_{+}and K_{-}

$\|i\rangle$	$=\frac{1}{\sqrt{2}}\left[\left\|K^{0}(\vec{p})\right\rangle\left\|\bar{K}^{0}(-\vec{p})\right\rangle-\left\|\bar{K}^{0}(\vec{p})\right\rangle\left\|K^{0}(-\vec{p})\right\rangle\right]$
	$=\frac{1}{\sqrt{2}}\left[\left\|K_{+}(\vec{p})\right\rangle\left\|K_{-}(-\vec{p})\right\rangle-\left\|K_{-}(\vec{p})\right\rangle\left\|K_{+}(-\vec{p})\right\rangle\right]$

-decay as filtering measurement -entanglement -> preparation of state

Note: CP and T conjugated process $K_{-} \rightarrow \bar{K}^{0} \quad$ CPT-conjugated process $\bar{K}^{0} \rightarrow K_{-} \quad K_{-} \rightarrow K^{0}$

Direct test of CPT symmetry in neutral kaon transitions

Two observable ratios of double decay intensities

$$
\begin{aligned}
& R_{2, \mathrm{CPT}}^{\exp }(\Delta t) \equiv \frac{I\left(\ell^{-}, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi \pi, \ell^{-} ; \Delta t\right)} \\
& R_{4, \mathrm{CPT}}^{\exp }(\Delta t) \equiv \frac{I\left(\ell^{+}, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi \pi, \ell^{+} ; \Delta t\right)}
\end{aligned}
$$

for $\Delta t>0$

$$
R_{2, \mathrm{CPT}}^{\exp }(\Delta t)=R_{2, \mathrm{CPT}}(\Delta t) \times D_{\mathrm{CPT}}
$$

$$
R_{4, \mathrm{CPT}}^{\exp }(\Delta t)=R_{4, \mathrm{CPT}}(\Delta t) \times D_{\mathrm{CPT}}
$$

for $\Delta t<0$

$$
R_{2, \mathrm{CPT}}^{\exp }(\Delta t)=R_{1, \mathrm{CPT}}(|\Delta t|) \times D_{\mathrm{CPT}}
$$

$$
R_{4, \mathrm{CPT}}^{\exp }(\Delta t)=R_{3, \mathrm{CPT}}(|\Delta t|) \times D_{\mathrm{CPT}}
$$

with $\mathrm{D}_{\mathrm{CPT}}$ constant $\quad D_{\mathrm{CPT}}=\frac{\mathrm{BR}\left(\mathrm{K}_{\mathrm{L}} \rightarrow 3 \pi^{0}\right)}{\mathrm{BR}\left(\mathrm{K}_{\mathrm{S}} \rightarrow \pi \pi\right)} \frac{\Gamma_{L}}{\Gamma_{S}}$

Direct test of CPT symmetry in neutral kaon transitions

Explicitly in standard Wigner Weisskopf approach for $\Delta t>0$:

$$
\begin{aligned}
R_{2, \mathrm{CPT}}^{\exp }(\Delta t) & =\frac{P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\mathrm{~K}_{-}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right]} \times D_{\mathrm{CPT}} \\
& \simeq|1-2 \delta|^{2}\left|1+2 \delta e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathrm{CPT}} \\
R_{4, \mathrm{CPT}}^{\exp }(\Delta t) & =\frac{P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\mathrm{~K}_{-}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right]} \times D_{\mathrm{CPT}} \\
& \simeq|1+2 \delta|^{2}\left|1-2 \delta e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathrm{CPT}}
\end{aligned}
$$

For comparison the ratio of survival probabilities: Vanishes for $\Delta \Gamma->0$

$$
\begin{aligned}
\frac{I\left(\ell^{-}, \ell^{+} ; \Delta t\right)}{I\left(\ell^{+}, \ell^{-} ; \Delta t\right)} & =\frac{P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right]}{P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right]} \\
& \simeq|1-4 \delta|^{2}\left|1+\frac{8 \delta}{1+e^{+i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}}\right|^{2}
\end{aligned} \begin{aligned}
& \text { As an illustration of the different } \\
& \text { sensitivity: it vanishes up to } \\
& \text { second order in CPTV and } \\
& \text { decoherence parameters } \alpha, \beta, \gamma \\
& \text { (Ellis, Mavromatos et al. PRD1996) }
\end{aligned}
$$

Impact of the approximations

In general K_{+}and K_{-} (and K0 and KO) can be non-orthogonal

Direct CP (CPT) violation

$$
\eta_{\pi \pi}=\epsilon_{L}+\epsilon_{\pi \pi}^{\prime}
$$

$$
\eta_{3 \pi^{0}}=\epsilon_{S}+\epsilon_{3 \pi^{0}}^{\prime}
$$

CPT cons. and CPT viol. $\Delta S=\Delta Q$ violation

$$
x_{+}, x_{-}
$$

Orthoghonal
bases $\quad\left\{\mathrm{K}_{+}, \widetilde{\mathrm{K}}_{-}\right\} \quad\left\{\widetilde{\mathrm{K}}_{+}, \mathrm{K}_{-}\right\} \quad\left\{\widetilde{\mathrm{K}}_{0}, \mathrm{~K}_{\overline{0}}\right\}$ and $\left\{\widetilde{\mathrm{K}}_{\overline{0}}, \mathrm{~K}_{0}\right\}$

Explicitly for $\Delta t>0$:

$$
\begin{aligned}
R_{2, \mathrm{CPT}}^{\exp }(\Delta t) & =\frac{P\left[\widetilde{\mathrm{~K}}_{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\widetilde{\mathrm{~K}}_{-}(0) \rightarrow \mathrm{K}_{\overline{0}}(\Delta t)\right]} \times D_{\mathrm{CPT}} \\
& =\left|1-2 \delta+2 x_{+}^{\star}-2 x_{-}^{\star}\right|^{2}\left|1+\left(2 \delta+\epsilon_{3 \pi^{0}}^{\prime}-\epsilon_{\pi \pi}^{\prime}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathrm{CPT}}
\end{aligned}
$$

$$
R_{4, \mathrm{CPT}}^{\exp }(\Delta t)=\frac{P\left[\widetilde{\mathrm{~K}}_{\overline{0}}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\widetilde{\mathrm{~K}}_{-}(0) \rightarrow \mathrm{K}_{0}(\Delta t)\right]} \times D_{\mathrm{CPT}}
$$

$$
=\left|1+2 \delta+2 x_{+}+2 x_{-}\right|^{2}\left|1-\left(2 \delta+\epsilon_{3 \pi^{0}}^{\prime}-\epsilon_{\pi \pi}^{\prime}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathrm{CPT}}
$$

Impact of the approximations

$$
\begin{aligned}
\frac{R_{2, \mathrm{CPT}}^{\exp }(\Delta t)}{R_{4, \mathrm{CPT}}^{\exp }(\Delta t)} & \simeq\left(1-8 \Re \delta-8 \Re x_{-}\right)\left|1+2\left(\eta_{3 \pi^{0}}-\eta_{\pi \pi}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \\
& =\left(1-8 \Re \delta-8 \Re x_{-}\right)\left|1+2\left(2 \delta+\epsilon_{3 \pi^{0}}^{\prime}-\epsilon_{\pi \pi}^{\prime}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2}
\end{aligned}
$$

The double ratio constitutes one of the most robust observables for the proposed CPT test. In the limit $\Delta \mathrm{t} \geqslant \mathrm{T}_{\mathrm{S}}$ it exhibits a pure and genuine CPT violating effect, even without assuming negligible contaminations from direct $C P$ violation and/or $\Delta S=\Delta Q$ rule violation.

$$
\mathrm{DR}_{\mathrm{CPT}}=\frac{R_{2, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}{R_{4, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}=1-8 \Re \delta-8 \Re x_{-}
$$

There exists a connection with charge semileptonic asymmetries of K_{S} and K_{L}

$$
\mathrm{DR}_{\mathrm{CPT}}=\frac{R_{2, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}{R_{4, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}=\frac{1+A_{L}}{1-A_{L}} \times \frac{1-A_{S}}{1+A_{S}} \simeq 1+2\left(A_{L}-A_{S}\right)
$$

Direct test of CPT in transitions with neutral kaons

for visualization purposes, plots with

$$
\operatorname{Re}(\delta)=3.3 \quad 10^{-4} \quad \operatorname{Im}(\delta)=1.6 \quad 10^{-5}
$$

Direct test of CPT in transitions with neutral kaons

for visualization purposes, plots with

$$
\operatorname{Re}(\delta)=3.3 \quad 10^{-4} \operatorname{Im}(\delta)=1.6 \quad 10^{-5}
$$

Modifications due to direct CP violation effects (unrealistically amplified ~x100)

Direct test of CPT in transitions with neutral kaons

for visualization purposes, plots with

$$
\operatorname{Re}(\delta)=3.3 \quad 10^{-4} \quad \operatorname{Im}(\delta)=1.6 \quad 10^{-5}
$$

Direct test of CPT in transitions with neutral kaons

for visualization purposes, plots with

$$
\operatorname{Re}(\delta)=3.3 \quad 10^{-4} \operatorname{Im}(\delta)=1.6 \quad 10^{-5}
$$

Modifications due to direct CP violation effects (unrealistically amplified $\sim x 100$)

Direct test of Time Reversal symmetry with neutral kaons

Two observable ratios of double decay intensities

$$
\begin{aligned}
& R_{2, \mathcal{T}}^{\exp }(\Delta t) \equiv \frac{I\left(\ell^{-}, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi \pi, \ell^{+} ; \Delta t\right)} \\
& R_{4, \mathcal{T}}^{\exp }(\Delta t) \equiv \frac{I\left(\ell^{+}, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi \pi, \ell^{-} ; \Delta t\right)}
\end{aligned}
$$

Direct test of Time Reversal symmetry with neutral kaons

Explicitly in standard Wigner Weisskopf approach for $\Delta t>0$:

$$
\begin{aligned}
R_{2, \mathcal{T}}^{\exp }(\Delta t) & =\frac{P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\mathrm{~K}_{-}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right]} \times D_{\mathcal{T}, 2} \\
& =(1-4 \Re \epsilon)\left|1+2 \epsilon e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathcal{C P} \mathcal{T}} \\
R_{4, \mathcal{T}}^{\exp }(\Delta t) & =\frac{P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\mathrm{~K}_{-}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right]} \times D_{\mathcal{T}, 4} \\
& =(1+4 \Re \epsilon)\left|1-2 \epsilon e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathcal{C P} \mathcal{T}}
\end{aligned}
$$

Direct test of Time Reversal symmetry with neutral kaons

plots with CPV Res and Ime values

Direct test of CPT in transitions with neutral kaons at KLOE

$$
\begin{aligned}
& R_{2, \mathrm{CPT}}^{\exp }(\Delta t) \equiv \frac{I\left(\ell^{-}, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi \pi, \ell^{-} ; \Delta t\right)} \\
& R_{4, \mathrm{CPT}}^{\exp }(\Delta t) \equiv \frac{I\left(\ell^{+}, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi \pi, \ell^{+} ; \Delta t\right)}
\end{aligned}
$$

CPT test with the double ratio $\mathrm{DR}_{\mathrm{CPT}}$:

$$
\frac{R_{2, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}{R_{4, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}=1-8 \Re \delta-8 \Re x_{-}
$$

$R_{2} / R_{4}=1$

- $\mathrm{K}_{\mathrm{L}}->3 \pi^{0} \mathrm{vtx}$ reconstr. with GPS-like technique
- Analysis in progress: efficiency correction from data control samples
- KLOE-2 can reach a precision $\mathrm{O}\left(10^{-3}\right)$ on $\mathrm{R}_{2} / \mathrm{R}_{4}$

List of other KLOE CP/CPT/QM tests with neutral kaons

Mode	Test	Param.	KLOE measurement	Updated results for end 2017
$\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}$	CP	BR	$(1.963 \pm 0.012 \pm 0.017) \times 10^{-3}$	
$\mathrm{K}_{\mathrm{s}} \rightarrow 3 \pi^{0}$	CP	BR	$<2.6 \times 10^{-8}$	
$\mathbf{K}_{\text {S }} \rightarrow$ Jev	CP	A_{S}	$(1.5 \pm 10) \times 10^{-3}$	
$\mathbf{K}_{\text {S }} \rightarrow$ Jev	CPT	$\operatorname{Re}\left(\mathrm{x}_{\text {_ }}\right.$)	$(-0.8 \pm 2.5) \times 10^{-3}$	
$\mathbf{K}_{\text {S }} \rightarrow \pi \mathrm{e} v$	CPT	$\operatorname{Re}(\mathrm{y})$	$(0.4 \pm 2.5) \times 10^{-3}$	
All $K_{\text {S,L }}$ BRs, η 's etc... (unitarity)	$\begin{gathered} \text { CP } \\ \text { CPT } \end{gathered}$	$\begin{aligned} & \hline \operatorname{Re}(\varepsilon) \\ & \operatorname{Im}(\delta) \end{aligned}$	$\begin{gathered} (159.6 \pm 1.3) \times 10^{-5} \\ (0.4 \pm 2.1) \times 10^{-5} \end{gathered}$	Expected updated results fo 2018
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	QM	ζ_{00}	$(0.1 \pm 1.0) \times 10^{-6}$	
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	QM	$\zeta_{\text {SL }}$	$(0.3 \pm 1.9) \times 10^{-2}$	
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	α	$(-10 \pm 37) \times 10^{-17} \mathrm{GeV}$	
$\mathbf{K}_{S} \mathbf{K}_{L} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	β	$(1.8 \pm 3.6) \times 10^{-19} \mathrm{GeV}$	
$\mathbf{K}_{S} \mathbf{K}_{L} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	γ	$\begin{aligned} & (0.4 \pm 4.6) \times 10^{-21} \mathrm{GeV} \\ & \text { compl. pos. hyp. } \\ & (0.7 \pm 1.2) \times 10^{-21} \mathrm{GeV} \end{aligned}$	
$\mathbf{K}_{\mathbf{S}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	$\operatorname{Re}(\omega)$	$(-1.6 \pm 2.6) \times 10^{-4}$	
$\mathbf{K}_{S} \mathbf{K}_{L} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	$\operatorname{Im}(\omega)$	$(-1.7 \pm 3.4) \times 10^{-4}$	
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	$\Delta \mathrm{a}_{0}$	$(-6.2 \pm 8.8) \times 10^{-18} \mathrm{GeV}$	
$\mathbf{K}_{\mathbf{S}} \mathbf{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	$\Delta \mathrm{a}_{\mathrm{z}}$	$(-0.7 \pm 1.0) \times 10^{-18} \mathrm{GeV}$	
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	$\Delta \mathrm{a}_{\mathrm{x}}$	$(3.3 \pm 2.2) \times 10^{-18} \mathrm{GeV}$	
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	$\Delta \mathrm{a}_{\mathrm{Y}}$	$(-0.7 \pm 2.0) \times \mathbf{1 0}^{-18} \mathbf{~ G e V}$	

A. Di Domenico

Workshop on quantum foundations - LNF - 29 November - 1 December 2017

Conclusions

- The entangled neutral kaon system at a ϕ-factory is an excellent laboratory for the study of discrete symmetries and fundamental principles of QM.
- The analysis of the full KLOE data set is being completed:
- a new measurement of the KS semileptonic charge asymmetry
- the analysis for first test of T and CPT in neutral kaon transitions processes is ongoing.
- It is possible to directly test CPT in transition processes for the first time between neutral kaon states. The proposed CPT test is model independent and fully robust.
- VERY CLEAN CPT TEST. Possible spurious effects are well under control, e.g. direct CP violation, $\Delta S=\Delta Q$ rule violation, decoherence effects.
- Several CPTV and/or decoherence parameters have been measured at KLOE, in same cases with a precision reaching the interesting Planck's scale region;
- All results are consistent with no CPT symmetry violation and no decoherence;
- The KLOE-2 experiment at the upgraded DAFNE is currently taking data with the plan to collect $\mathrm{L}>5 \mathrm{fb}^{-1}$ by end of March 2018;
- All these tests are going to be improved at KLOE-2; a statistical sensitivity of $\mathrm{O}\left(10^{-3}\right)$ could be reached on the newly proposed observables.

[^0]: J. Bernabeu, A.D.D., P. Villanueva, JHEP 10 (2015) 139

