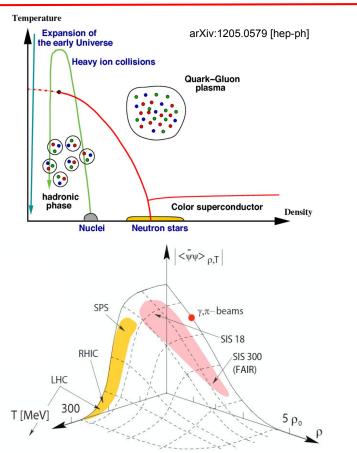
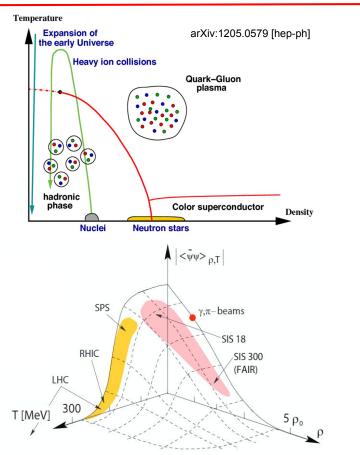
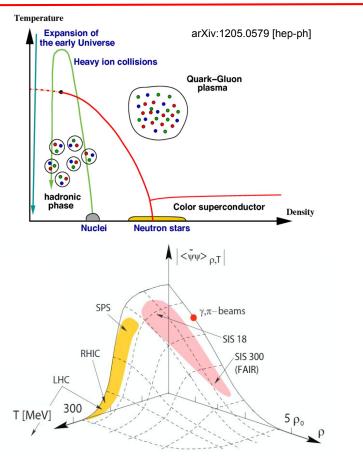


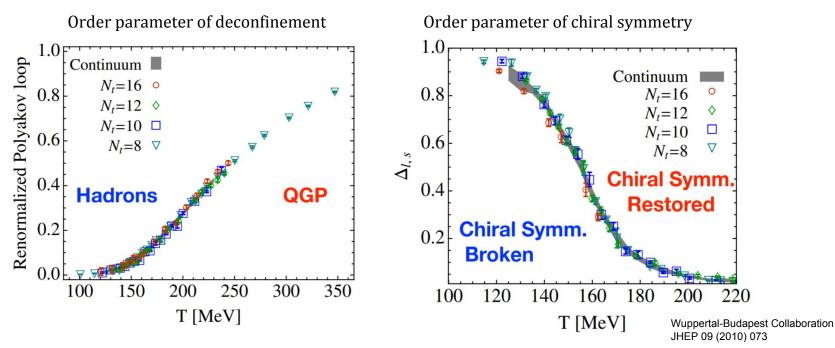
Chiral Symmetry Restoration in Heavy Ion Collisions (?) (with dileptons and other tools)


Otón Vázquez Doce Excellence Cluster Universe (TU-Munich) Workshop Quantum Foundations, Frascati (Roma), November 30, 2017


- High number of nucleons + small space + high energy
- The temperature in heavy ion collisions exceed 2×10^{12} K
- Heavy ion collision experiments allow to study a **deconfined phase of matter** and go back in time to the very early moments of the history of the Universe $T_c \sim 170 \text{ MeV} \text{ (T=1 MeV} \sim 10^{10} \text{ K)}$

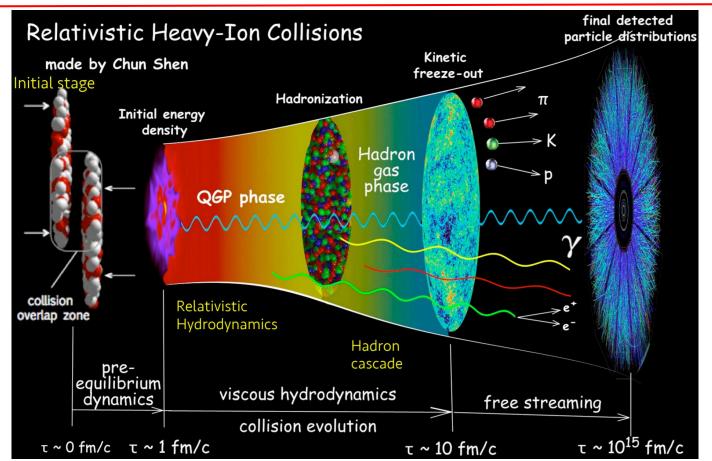

- High number of nucleons + small space + high energy
- The temperature in heavy ion collisions exceed 2×10^{12} K
- Heavy ion collision experiments allow to study a **deconfined phase of matter** and go back in time to the very early moments of the history of the Universe $T_c \sim 170 \text{ MeV} \text{ (T=1 MeV} \sim 10^{10} \text{ K)}$
- At high T/density: new state of strongly interacting matter.
- Lattice QCD calculation predict **chiral symmetry restoration at T** *≤* **deconfinement** phase transition

- High number of nucleons + small space + high energy
- The temperature in heavy ion collisions exceed 2×10^{12} K
- Heavy ion collision experiments allow to study a **deconfined phase of matter** and go back in time to the very early moments of the history of the Universe $T_c \sim 170 \text{ MeV} \text{ (T=1 MeV} \sim 10^{10} \text{ K)}$
- At high T/density: new state of strongly interacting matter.
- Lattice QCD calculation predict **chiral symmetry restoration at T** ≤ **deconfinement** phase transition
 - Constituent quark mass comes from QCD: 95% of the nucleons mass is due to the spontaneous Chiral Symmetry breaking



- High number of nucleons + small space + high energy
- The temperature in heavy ion collisions exceed 2×10¹² K
- Heavy ion collision experiments allow to study a **deconfined phase of matter** and go back in time to the very early moments of the history of the Universe $T_c \sim 170 \text{ MeV} \text{ (T=1 MeV} \sim 10^{10} \text{ K)}$
- At high T/density: new state of strongly interacting matter.
- Lattice QCD calculation predict **chiral symmetry restoration at T** ≤ **deconfinement** phase transition
 - Constituent quark mass comes from QCD: 95% of the nucleons mass is due to the spontaneous Chiral Symmetry breaking

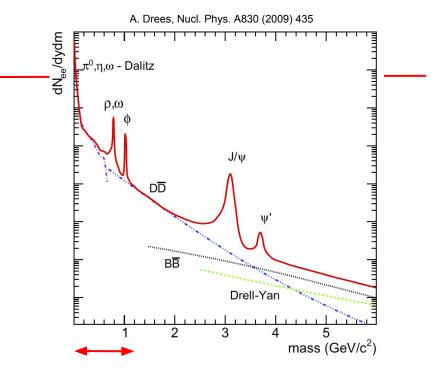
Heavy Ion Collisions at the LHC: μ_B =0: directly comparable with Lattice QCD



Lattice QCD predicts **two phase transitions to occur at similar temperatures**

- \circ **Deconfinement** \rightarrow Quark Gluon Plasma
- $\circ \quad \textbf{Chiral symmetry restoration} \rightarrow \textbf{effect on hadron masses}$

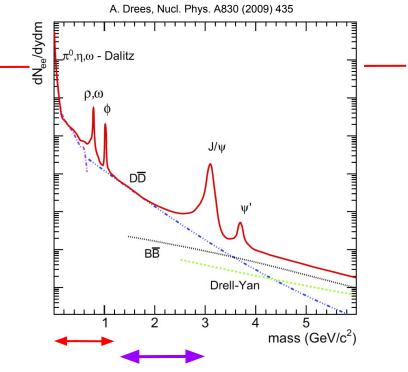
Heavy ion collisions



A. Drees, Nucl. Phys. A830 (2009) 435 dN_{ee}/dydm F **Dielectrons in HIC** _π⁰,η,ω - Dalitz ρ,ω Initial hard scattering: Drell-Yan (at LHC • important from $m_{\mu\rho} > 10 \text{ GeV/c}^2$) J/ψ Thermal virtual photons ۲ DD From QGP^q 0 From hadron gas 0 ΒB Drell-Yan Hadron decays • 3 mass (GeV/c²) $c\overline{c}$, $b\overline{b}$ decay

8

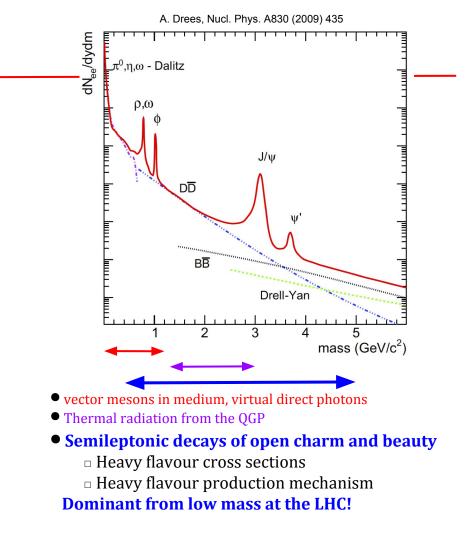
Dielectrons in HIC


- Initial hard scattering: Drell-Yan (at LHC important from m_{ee} > 10 GeV/c²)
- Thermal virtual photons • From QGP $q \xrightarrow{q^*}_{q} q^* = q \xrightarrow{q^*}_{q^*} q$
 - From hadron gas
- Hadron decays
- $c\overline{c}$, $b\overline{b}$ decay $V_{\overline{v}}$

- In-medium **modification of vector mesons**
 - Connected to chiral symmetry restoration?
- **Thermal radiation**: quasi-real virtual photons (p_T >1GeV/c)

Dielectrons in HIC

- Initial hard scattering: Drell-Yan (at LHC important from m_{ee} > 10 GeV/c²)
- Thermal virtual photons • From QGP $q \xrightarrow{q^{*}} q^{e^{+}} q \xrightarrow{q^{-}} g \xrightarrow{q^{e^{+}}} q$
 - From hadron gas
- Hadron decays
- $c\overline{c}$, $b\overline{b}$ decay V_{e}



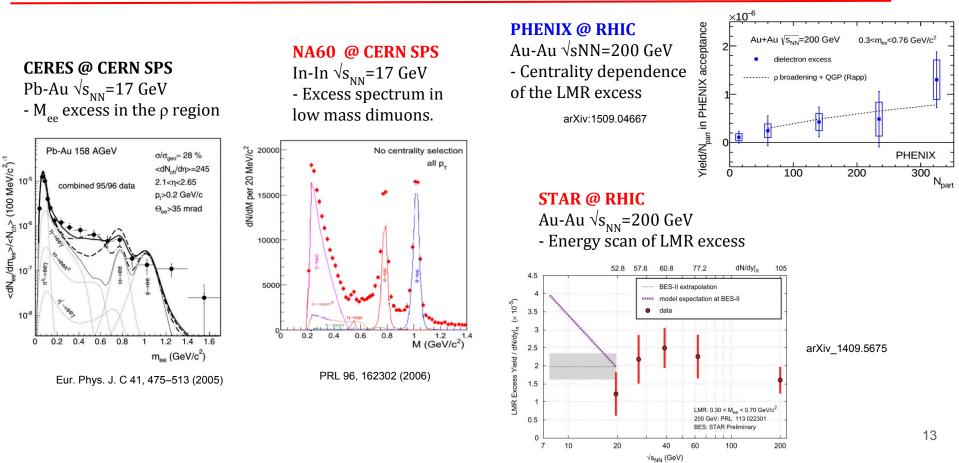
- vector mesons in medium, virtual direct photons
- Thermal radiation from the QGP

 $dN/dm_{ee} \sim exp(-m_{ee}/T)$ (no Doppler shift from expanding medium)

Dielectrons in HIC

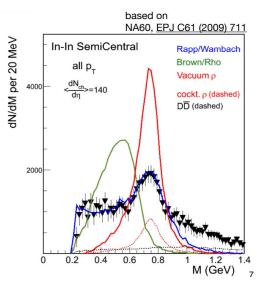
- Initial hard scattering: Drell-Yan (at LHC important from m_{ee} > 10 GeV/c²)
- Thermal virtual photons • From QGP $q \xrightarrow{q^*} q^* = q$
 - From hadron gas
- Hadron decays
- $c\overline{c}$, $b\overline{b}$ decay

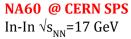
- Requirement: carry hadron spectral properties from (T, ρ_B) to detectors
 relate to hadrons in medium
 leave medium without final state interaction
- Dileptons from vector meson decays

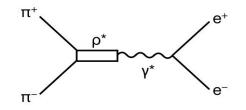

	m [MeV]	Ftot [MeV]	τ [fm]	BR→ee	_
ρ	770	150	1.3	4.7×10 ⁻⁵	
ω	782	8.6	23	7.2×10 ⁻⁵	
ф	1020	4.4	44	3.0×10 ⁻⁴	

<u>Best candidate: ρ meson</u>

- short lived (compare to τ medium = 10 fm/c)
- decay (and regeneration) in medium
- $\boldsymbol{\cdot}$ properties of in-medium $\boldsymbol{\rho}$ and of medium itself not well known

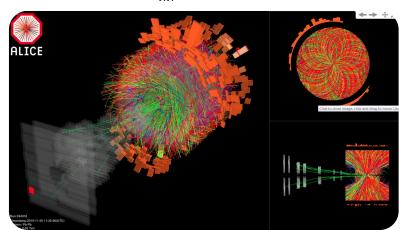

Dileptons before the LHC

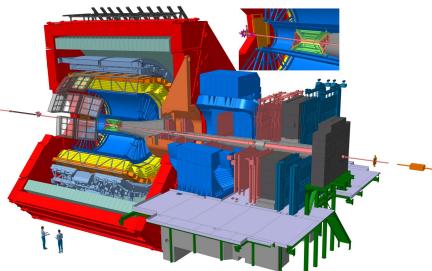



Dileptons before the LHC

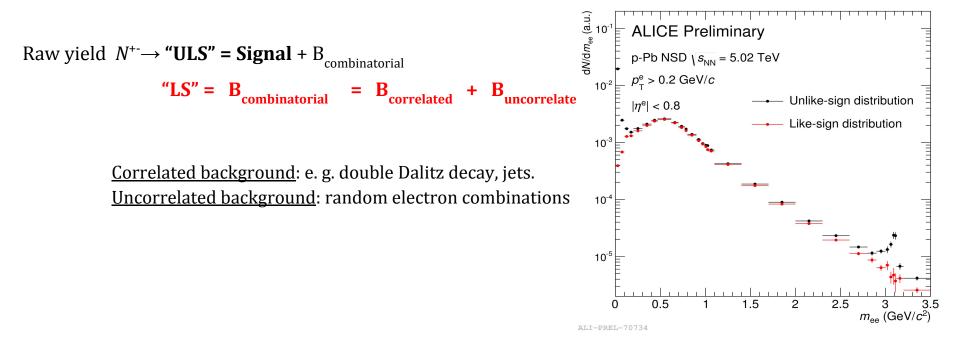
- Low mass enhancement due to $\pi\pi$ annihilation? Spectral shape dominated by ρ meson
 - Vacuum ρ
 - Vacuum values of width and mass
 - ο In-medium ρ
 - Brown-Rho scaling
 - Dropping masses as chiral symmetry is restored
 - Rapp-Wambach melting resonances
 - hadronic collision broadening of spectral function
 - small contribution from the QGP (qq annihilation) in the form of thermal radiation
 - Only indirectly related to CSR
 - Data consistent with broadening
- From STAR+PHENIX @ RHIC:
 - No strong E dependence: ρ coupling to baryons (total baryon density nearly constant)
 - \bullet Low mass region dielectron elliptic flow consistent with hadron v_2 (late emission).

The ALICE experiment at the LHC

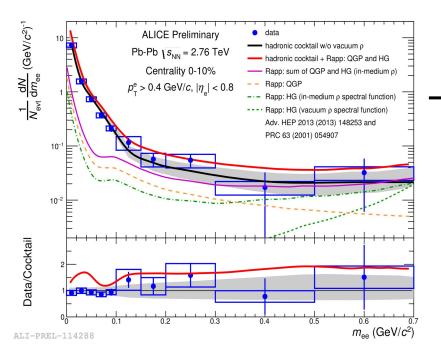


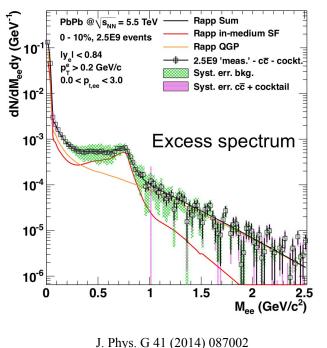

A Large Ion Collider Experiment

Investigate the QGP properties in Pb-Pb collisions at the LHC


Collected data by ALICE during Run-1 and Run-2

- pp collisions \sqrt{s} = 2.76 TeV, 5.02 TeV, 7 TeV, 8 TeV, 13 TeV .
- p-Pb collisions $\sqrt{s_{NN}} = 5.02$ TeV, 8.16 TeV **Pb-Pb** collisions $\sqrt{s_{NN}} = 2.76$ TeV, 5.02TeV

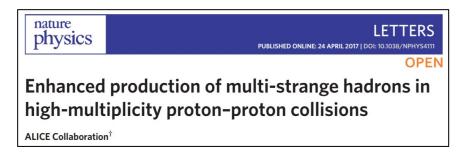




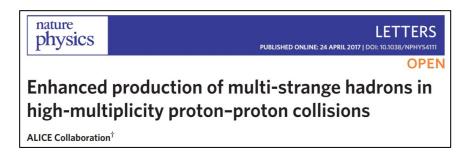
LHC Run-1 data (2011): 18 M events 0-10% cent.

Data vs hadronic cocktail + (QGP+HG) radiation

- $\circ \quad \ \ \text{Cocktail without vacuum } \rho \text{ and } \omega$
- \circ ~ HG include in-medium modified ρ and ω spectral function
- QGP: expanding fireball model with T_C = 170 MeV
 R. Rapp, Adv. High Energy Phys. 2013 (2013) 148253
 R. Rapp, Phys. Rev. C63 (2001) 054907
- No sensitivity yet for possible thermal radiations from QGP and hadron gas
- Run-2 analysis and especially Run-3 (upgrades) will allow significant measurements


Upgrade of the central tracking system (ITS and TPC)

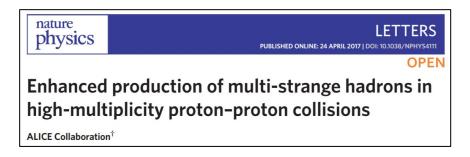
- Reduced material budget(x4)
- improved vertex resolution (x3)
- higher readout rate (x100 for the TPC)
- Increase low $m_{\rm T}$ acceptance with low B (0.2 T) run
- Vertex-cut reduce heavy flavour contribution


• Precise measurement of the effective temperature at early times become feasible

• Access to ρ in-medium spectral function \rightarrow Unique measurement at $\mu_{_B}{\sim}0$

Exponential fit for m_{ee} >1.1GeV/ c^2 dN/d $m_{ee} \sim e^{-m/T}$ slope **precision ±10% stat ±10-20% syst** pp collisions @13TeV: baseline...and high multiplicity events effects

pp collisions @13TeV: baseline...and high multiplicity events effects


First dielectron analysis of high multiplicity events in pp

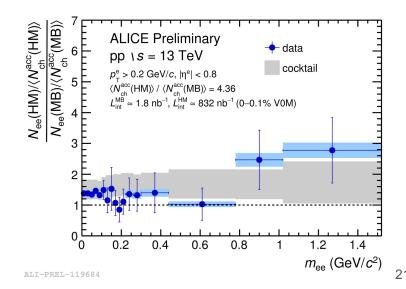
New phenomena in high multiplicity pp events?

- Production / destruction of ρ meson, direct photons, open heavy flavour...?
- Idea: produce a ratio of (uncorrected) dielectron spectra:

 $\frac{N_{\rm ee}({\rm HM})/\langle N_{\rm ch}({\rm HM})\rangle}{N_{\rm ee}({\rm MB})/\langle N_{\rm ch}({\rm MB})\rangle}$

• Naive expectation (for light flavour): signal $\sim N_{ch}$

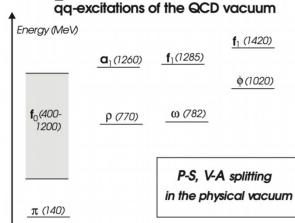
First dielectron analysis of high multiplicity events in pp


New phenomena in high multiplicity pp events?

- Production / destruction of ρ meson, direct photons, open heavy flavour...?
- Idea: produce a ratio of (uncorrected) dielectron spectra:

 $\frac{\textit{N}_{ee}(\rm{HM})/\langle\textit{N}_{ch}(\rm{HM})\rangle}{\textit{N}_{ee}(\rm{MB})/\langle\textit{N}_{ch}(\rm{MB})\rangle}$

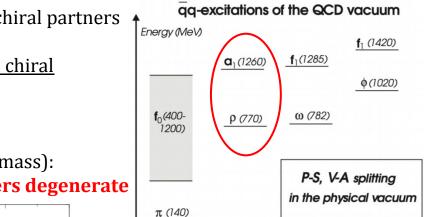
• Naive expectation (for light flavour): signal $\sim N_{ch}$


- Intermediate mass: in agreement with D-meson enhancement from pp @ 7 TeV
- Low mass: ratio > 1 due to change of hadron p_T spectrum and acceptance cut
- Analysis of more data (x5) is ongoing

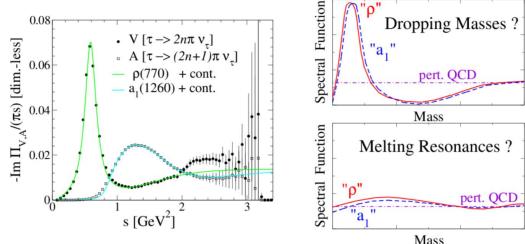
Chiral Symmetry Restoration: Chiral partners

 Chiral Symmetry breaking causes mass difference for chiral partners (e.g. 500 MeV between ρ and a1)

Chiral Symmetry Restoration: Chiral partners



- Chiral Symmetry breaking causes mass difference for chiral partners (e.g. 500 MeV between ρ and a1)
 - ρ broadening confirmed at RHIC, but <u>do not need chiral</u> <u>symmetry to cause "collisional" broadening</u>
 - Evidence for restoration at most indirect


Energy (MeV)			f ₁ (1420)
	a ₁ (1260)	f ₁ (1285)	ф <i>(1020)</i>
f ₀ (400- 1200)	ρ (770)	ω (782)	
		P-S, V-A splitting in the physical vacuum	

Chiral Symmetry Restoration: Chiral partners

- Chiral Symmetry breaking causes mass difference for chiral partners (e.g. 500 MeV between ρ and a1)
 - ρ broadening confirmed at RHIC, but <u>do not need chiral</u> <u>symmetry to cause "collisional" broadening</u>
 - Evidence for restoration at most indirect
- Whatever the scenario is for ρ (broadening, dropping mass):
 When Chiral Symmetry is restored: chiral partners degenerate

24

ICF Excellence Cluster qq-excitations of the QCD vacuum Chiral Symmetry breaking causes mass difference for chiral partners Energy (MeV) $(\rho \sigma 500 \text{ MeV between } \alpha \text{ and } a1)$ f1 (1420) (1020) Vacuum T=100 MeV T=140 MeV 0.08 о.06 0.06 0.04 0.04 Vector Vector Vector Axial-vector Axial-vector Axial-vector 0.02 vitting Il vacuum 0.00 ++++++++++ 0.08 T=150 MeV T=160 MeV T=170 MeV ο.06 8. π/(S)/π S Vector Vector Vector Axial-vector Axial-vector Axial-vector 0.02 0.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 .0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 .0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 s (GeV2) $s(GeV^2)$ s (GeV2) 3 Spectr pert. QCD "a 25 s [GeV²] Mass

Chiral Symmetry Restoration: Chiral partners

Low-mass dielectrons measurements are been performed with ALICE at the LHC in all collision systems:

- <u>Pb-Pb Run-1:</u>
 - \circ ~ No sensitivity for excess in the ρ region yet
- <u>Run-2 analysis ongoing.</u>
 - Employ MVA methods to improve signal efficiencies and purities
 - **Study dielectron production for the first time in pp High Multiplicity events.**

ALICE will implement major tracking <u>hardware upgrades</u>: ITS and TPC from the upcoming Run-3

- Independent & complementary measurement of temperature in different mass regions
- Precise measurement of the **effective temperature at early times** become feasible
- Access to ρ in-medium spectral function \rightarrow Unique measurement at $\mu_{\rm B} \sim 0$