

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Bassano Vacchini

Dipartimento di Fisica Università degli Studi di Milano

INFN Sezione di Milano New frontiers in testing quantum mechanics from underground to the space Frascati, November 2017

- Reduced dynamics
- Collision models
- Non-Markovian master equations

Open quantum systems

Open quantum systems

Bipartite setting

 $H = H_{S} + H_{E} + H_{I}$ $H \in \mathcal{B}(\mathcal{H}_{S} \otimes \mathcal{H}_{E}) \qquad \rho_{SE} \in \mathcal{T}(\mathcal{H}_{S} \otimes \mathcal{H}_{E})$ **Reduced dynamics** $\rho_{S}(0) \mapsto \rho_{S}(t) = \Phi(t)\rho_{S}(0) \qquad \textbf{Correlations}$ $\rho_{SE}(t) \neq \rho_{S}(t) \otimes \rho_{E}(t)$

[Davies, 1976; Alicki & Lendi, 1987; Breuer & Petruccione, 2002; Rivas & Huelga, 2012]

Open quantum systems

Bipartite setting

[Davies, 1976; Alicki & Lendi, 1987; Breuer & Petruccione, 2002; Rivas & Huelga, 2012]

Reduced dynamics

Reduced quantum dynamical map

$\rho_S(0) \otimes \rho_E \longrightarrow \rho_{SE}(t) = U(t)\rho_S(0) \otimes \rho_E U(t)^{\dagger}$

Evolution equation

$$\begin{cases} \frac{d}{dt}\rho_{SE}(t) = -\frac{i}{\hbar}[H,\rho_{SE}(t)]\\ \rho_{SE}(0) \end{cases}$$

UNIVERSITÀ DEGLI STUDI DI MILANO Dipartimento di fisica

Reduced dynamics

Reduced quantum dynamical map

Evolution equation

$$\begin{cases} \frac{d}{dt}\rho_{SE}(t) = -\frac{i}{\hbar}[H,\rho_{SE}(t)] \\ \rho_{SE}(0) \end{cases} \implies \begin{cases} \frac{d}{dt}\rho_{S}(t) = ? \\ \rho_{S}(0) \end{cases}$$

INFN

Open quantum system dynamics

Quantum Markov process

$$\Phi(t)\Phi(s) = \Phi(t+s) \qquad t, s \ge 0$$

leading to

$$\Phi(t) = \exp(\mathcal{L}t)$$

$$\frac{d}{dt}\rho_S(t) = \mathcal{L}\rho_S(t)$$

break reversibility but retain CP

$$\mathcal{L}\rho = -i[H,\rho] + \sum_{k} \gamma_{k} \Big[A_{k}\rho A_{k}^{\dagger} - \frac{1}{2} \{ A_{k}^{\dagger}A_{k},\rho \} \Big]$$

GKLS generator also known as Lindblad form Workhorse for open quantum systems by 40 years now

[Kossakowski, RMP 1972; Gorini, Kossakowski & Sudarshan, JMP 1976; Lindblad, CMP 1976]

Composition law

$$\Phi(t,\tau)\Phi(\tau,s) = \Phi(t,s) \qquad t \ge \tau \ge s \ge 0$$

divisibility property of quantum dynamical map

CP-divisibility in that $\Phi(t,s)$ is CP $\forall t \ge s \ge 0$

[Breuer, Laine & Piilo, PRL 2009; Rivas, Huelga & Plenio, PRL 2010] [Luo & al., PRA 2012; Lorenzo & al., PRA 2013; Wolf et al. PRL 2008]

Composition law

$$\Phi(t,\tau)\Phi(\tau,s) = \Phi(t,s) \qquad t \ge \tau \ge s \ge 0$$

divisibility property of quantum dynamical map

CP-divisibility in that $\Phi(t,s)$ is **CP** $\forall t \ge s \ge 0$

Contractivity under trace distance

 $D(\rho_1(t+s), \rho_2(t+s)) \le D(\rho_1(t), \rho_2(t))$

monotonic decrease of trace distance between different initial states with elapsing time

[Breuer, Laine & Piilo, PRL 2009; Rivas, Huelga & Plenio, PRL 2010] [Luo & al., PRA 2012; Lorenzo & al., PRA 2013; Wolf et al. PRL 2008]

• Reduced dynamics

• Collision models

• Non-Markovian master equations

Model environment as collection of ancillas B interaction as sequence of collisions In-dependent A (A) (A) ... **(**A) . . . Inter-dependent S

In-dependent collisions → Markov

System collides with ancillas identical, initially independent and non interacting

$$\Phi(n)[\rho_S] = \mathcal{E}^n[\rho_S]$$

with

$$\mathcal{E}[\rho_S] = \operatorname{Tr}_A \mathcal{U}_{SA}[\rho_S \otimes \rho_A]$$

so that

$$\Phi(n+m) = \Phi(n)\Phi(m)$$

Continuous time limit \Rightarrow Lindblad master equation

[Rybar & al., JPB 2012]

Inter-dependent collisions & additional layer of ancillas & step dependent swap probability

→ non Markov

System interacts with ancillas both directly and via memory memory itself interacts with ancillas

Continuous time limit \Rightarrow general memory kernel master equation

[Lorenzo, Ciccarello, Palma, PRA 2016; Lorenzo, Ciccarello, Palma, Vacchini, OSID 2017]

UNIVERSITÀ DEGLI STUDI DI MILANO

Collision models

Model environment as double layer of ancillas

System interacts with memory M

Memory swaps with B ancillas

System interacts with \bigcirc ancillas directly

Model environment as double layer of ancillas

System interacts with memory

 $\rho_S \to \mathcal{G}[\rho_S] = \mathrm{Tr}_M \mathcal{U}_{SM}[\rho_{SM}]$

Memory swaps with **B** ancillas

$$\rho_{SM} \to p_n \rho_{SM} + (1 - p_n) \rho_{SB}$$

System interacts with \triangle ancillas

$$\rho_S \to \mathcal{E}[\rho_S] = \operatorname{Tr}_A \mathcal{V}_{SA}[\rho_{SA}]$$

Probabilistic swap to be connected to jump distribution

 $p \rightarrow f$

System interacts with memory again

 $\rho_S \to \mathcal{F}[\rho_S] = \mathrm{Tr}_B \mathcal{U}_{SB}[\rho_{SB}]$

Evolution of statistical operator System+memory transformed stepwise

$$\rho_{SM}^{(1)} = \mathcal{U}_{SM}[\rho_{SM}^{(0)}]$$

$$\rho_{SM}^{(2)} = p_1 \ \mathcal{U}_{SM}[\rho_{SM}^{(1)}] + q_1 \ \mathcal{U}_{SM} \tilde{\mathcal{E}}[\rho_{SM}^{(1)}]$$

$$\rho_{SM}^{(3)} = p_2 \ \mathcal{U}_{SM}[\rho_{SM}^{(2)}] + q_2 \ \mathcal{U}_{SM} \widetilde{\mathcal{Z}}[\rho_{SM}^{(2)}]$$

$$= p_2 p_1 \mathcal{U}_{SM}^3 [\rho_{SM}^{(0)}] + q_2 q_1 \mathcal{U}_{SM} \widetilde{\mathcal{E}} \mathcal{U}_{SM} \widetilde{\mathcal{E}} \mathcal{U}_{SM}[\rho_{SM}^{(0)}]$$

$$+ (p_2 q_1 \mathcal{U}_{SM}^2 \widetilde{\mathcal{E}} \mathcal{U}_{SM} + q_2 p_1 \mathcal{U}_{SM} \widetilde{\mathcal{E}} \mathcal{U}_{SM}^2)[\rho_{SM}^{(0)}]$$

with

$$\tilde{\mathcal{E}}[\rho_{SM}] = \mathcal{E}[\mathrm{Tr}_M \rho_{SM}] \otimes \eta_M$$

partial trace + continuous limit lead to closed evolution equation

UNIVERSITÀ DEGLI STUDI DI MILANO Dipartimento di fisica

- Reduced dynamics
- Collision models
- Non-Markovian master equations

Reconsider Lindblad equation in view of "trajectories"

$$\mathcal{L}\rho = -i[H,\rho] + \sum_{k} \gamma_{k} \Big[L_{k}\rho L_{k}^{\dagger} - \frac{1}{2} \{ L_{k}^{\dagger}L_{k},\rho \} \Big]$$
$$\mathcal{L}\rho = R\rho + \rho R^{\dagger} + \sum_{k} \gamma_{k}L_{k}\rho L_{k}^{\dagger} \qquad R = -iH - \frac{1}{2} \sum_{k} \gamma_{k}L_{k}^{\dagger}L_{k}$$
$$\mathcal{R}(t)\rho = \exp(tR)\rho \exp(tR^{\dagger}) \qquad \mathcal{J}\rho = \sum \gamma_{k}L_{k}\rho L_{k}^{\dagger}$$

k

INFN BRITH

Reconsider Lindblad equation in view of "trajectories"

$$\mathcal{L}\rho = -i[H,\rho] + \sum_{k} \gamma_{k} \Big[L_{k}\rho L_{k}^{\dagger} - \frac{1}{2} \{ L_{k}^{\dagger}L_{k},\rho \} \Big]$$
$$\mathcal{L}\rho = R\rho + \rho R^{\dagger} + \sum_{k} \gamma_{k}L_{k}\rho L_{k}^{\dagger} \qquad R = -iH - \frac{1}{2} \sum_{k} \gamma_{k}L_{k}^{\dagger}L_{k}$$
$$\mathcal{R}(t)\rho = \exp(tR)\rho\exp(tR^{\dagger}) \qquad \mathcal{J}\rho = \sum_{k} \gamma_{k}L_{k}\rho L_{k}^{\dagger}$$

Dyson expansion of exact solution

$$\Phi(t)\rho = \rho(t) = \mathcal{R}(t)\rho(0) + \sum_{n=1}^{\infty} \int_0^t dt_n \dots \int_0^{t_2} dt_1$$
$$\times \mathcal{R}(t-t_n)\mathcal{J}\mathcal{R}(t_n-t_{n-1})\dots \mathcal{J}\mathcal{R}(t_1)\rho(0)$$

INFN

 $\frac{d}{dt}\rho = -i[H,\rho] + \sum \gamma_k \left[L_k \rho L_k^{\dagger} - \frac{1}{2} \{ L_k^{\dagger} L_k, \rho \} \right]$ $\Phi(t)\rho = \mathcal{R}(t)\rho + \sum_{n=1}^{\infty} \int_0^t dt_n \dots \int_0^{t_2} dt_1 \mathcal{R}(t-t_n) \dots \mathcal{J}\mathcal{R}(t_1)\rho$ $\rho(t)=$ ρ(0)

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

NFN

[Budini, PRA 2004, B.V., PRA(R) 2013, Chuscinski & Kossakowski, PRA 2016]

$$\Phi(t)\rho = g(t)\mathcal{G}(t)\rho + \sum_{n=1}^{\infty} \int_{0}^{t} dt_{n} \dots \int_{0}^{t_{2}} dt_{1}$$
$$\times f(t-t_{n})\mathcal{F}(t-t_{n})\mathcal{E}\dots\mathcal{E}g(t_{1})\mathcal{G}(t_{1})\rho$$

$$\frac{d}{dt}\rho(t) = \int_0^t d\tau \mathcal{K}(t-\tau)\rho(\tau)$$

memory kernel master equation

$$\widehat{\mathcal{K}}(u) = \frac{1}{\widehat{g\mathcal{G}}(u)} \widehat{f\mathcal{F}}(u) \mathcal{E} - \left(\frac{1}{\widehat{g\mathcal{G}}(u)} - u\right)$$

Connection to classical memory kernel

$$\frac{d}{dt}T_{nm}(t) = \int_0^t d\tau \sum_k \left[\frac{W_{nk}(\tau)T_{km}(t-\tau) - W_{kn}(\tau)T_{nm}(t-\tau)}{\hat{W}_{nk}(u) = \pi_{nk}\hat{f}_k(u)/\hat{g}_k(u)} \right]$$

Natural correspondence

waiting time distribution \Rightarrow collection of time evolutions stochastic matrix \Rightarrow CPT map

 $\begin{aligned} \pi &\to \mathcal{E} & \mathsf{CPT map} \\ f(t) &\to f(t)\mathcal{F}(t) & \mathcal{F}(t)\mathsf{CPT maps} \\ g(t) &\to g(t)\mathcal{G}(t) & \mathcal{G}(t)\mathsf{CPT maps, s.t. }\mathcal{G}(0) = \mathbf{1} \end{aligned}$

Relevance of operator ordering

$$u\hat{\rho}(u) - \rho(0) = \left\{ \mathcal{O}\left[\pi\frac{\hat{f}(u)}{\hat{g}(u)}\right] - \mathcal{O}\left[\frac{1}{\hat{g}(u)} - u\right] \right\} \hat{\rho}(u)$$

Different possible choices of operator kernel leading to different possible dynamics

$$\mathcal{O}\left[\pi\frac{\widehat{f}(u)}{\widehat{g}(u)}\right] \to \frac{1}{\widehat{g\mathcal{G}}(u)}\widehat{f\mathcal{F}}(u)\mathcal{E}$$

$$\widehat{\mathcal{K}}(u) = \frac{1}{\widehat{g\mathcal{G}}(u)} \widehat{f\mathcal{F}}(u) \mathcal{E} - \left(\frac{1}{\widehat{g\mathcal{G}}(u)} - u\right)$$

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

[B.V., PRL 2016]

UNIVERSITÀ DEGLI STUDI DI MILANO

Memory kernels

Equations appearing in collision model & micromaser dynamics

Channeltron Detectors

Atomic Beam

[Cresser, PRA 1992; Herzog, PRA 1995; Cresser, QS Optics 1996; B.V., PRL 2016]

Conclusions & outlook

- Reduced open quantum system dynamics
- Second Se
- Continuous limit and memory kernel master equation

Conclusions & outlook

- Reduced open quantum system dynamics
- Second Se
- Secontinuous limit and memory kernel master equation
- What is the generality of collision models?
- What is their use in describing memory effects?
- What is their use in describing thermodynamic effects?

Acknowledgements

Unimi S. Campbell G. Guarnieri & S. Cialdi M. Paris

Collaborations H.-P. Breuer M. Paternostro M. Palma F. Ciccarello S. Lorenzo

other kind of power

