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…………non relativistic example

Hubbard model: 1968 integrable model in 1+1 dimension 
Hubbard, J., Proceedings of the Royal Society of London. 276 (1365): 238 (1963)
E. H. Lieb and F. Y. Wu, Physical Review Letters 20, 1445 (1968)

H = kinetic term + g
X

x

 †
x" x" 

†
x# x#

interaction

switches on  
when two fermions  

are at the same site x
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Thirring: 1958, integrable model in 1+1 dim

�↵ = �µ W. E. Thirring, Annals of Physics 3, 91 (1958)
S. Coleman, Phys. Rev. D 11, 2088 (1975) 

Gross-Neveu: 1974, asymptotic freedom, dynamical symmetry breaking (1+1 dim)

D. J. Gross, and A. Neveu, Phys. Rev. D. 10, 3235 (1974)�↵ = I

Nambu & Jona-Lasinio:1961, dynamical mass generation in 3+1 dim

Y. Nambu, and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)
Y. Nambu, and G. Jona-Lasinio, Phys. Rev. 124, 246 (1961)
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1. Cellular automata and their quantum counterpart (QCA) 

2. QCA model of four-fermion interaction: the Thirring automaton 

3. The analytical solution in the two particles sector

Outline

set of possible scattering processes 
bound sates
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Cellular automata and their quantum counterpart

model complex behaviour based on a simple ruleOriginal idea:

S. Ulam and J. von Neumann cellular automata (late 1940s)

28 = 256 possible LOCAL rules

Steven Wolfram book “A new kind of science”1d — first-neighbourhood — binary

The rules generate 4 classes of phenomena
   Class 1: Static 
   Class 2: Periodic 
   Class 3: Chaotic 
   Class 4: “Mixed”

‣ Lattice of cells 
‣ Each cell in a finite number of states

E.g. 0 or 1

t = 0 0 1 1 1 0 0 111

0 01 1 0 1 1 00t = 1

‣ Discrete time evolution 
‣ LOCAL update rule: the same for each cell
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Extend the idea to the quantum world: Universal quantum simulator

R.P. Feynman (1985)

R. Feynman, International journal of theoretical physics 21, 467 (1982) 

⎨⎧ ⎩

Htot

Quantum cellular automaton

U : Htot ! Htot

R. P. Feynman, Quantum mechanical computers, Optics News 11, 11 (1985)

X‣ Lattice       of quantum systems 
‣ Systems are finite dimensional 
‣ Discrete time evolution which is: 

LOCAL 
   UNITARY 
       Translation-invariant H
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A. Bisio, G. M. D'Ariano, A. Tosini,  
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QCA for free Dirac field evolution

A. Bisio, G. M. D'Ariano, A. Tosini,  
Annals of Physics 354 244 (2015)
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Total momentum: 

Conserver quantities

p = 1
2 (p1 + p2)

Total energy: ! = !1 + !2

non linear op. => non-trivial
how the two particles evolve?

U (p)
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We solved the Eigenvalue problem

solution of energy !
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⌦
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The method: modified Bethe ansatz

outside this region

H. Bethe, Zeitschrift für Physik 71:205–226 (1931)

y = x1 � x2 particles distance

0 1 2 3-1-2-3

free freeinteraction

y

Due to local interaction |�!i |�!
freei⌘

Ansatz:
sum over all free eigenstates  
with energy |�!i =

X

j

↵j |u!
j i !

|++ik
|++i�k

|��ik�⇡

|��i�(k�⇡)

|+�ik
|�+i�k

|+�ik�⇡

|�+i�(k�⇡)

Even:

Odd:

p = ⇡/4 m = 0.7

Continuous spectrum: degeneracy 4
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The cause is discrete time: periodic energy spectrum

First difference with the Hamiltonian case
which has degeneracy 2

Hamiltonian processes

“elastic bouncing”

“tunnelling”

|+ik1

|+ik2

|+ik1

|+ik2

|+ik1

|+ik2

|+ik1

|+ik2

New processes due to discrete time

+

which momentum exchange

|+ik1

|+ik2

|�ik1�⇡

|�ik2+⇡

|�ik2+⇡

|�ik1�⇡

|+ik1

|+ik2

Suggestive parallel with fermion doubling

Susskind, Leonard, Lattice fermions, Phys. Rev. D 16, 3031 (1977)
Known: Free fermions on lattice => “double particles”

New: Interacting fermions in discrete time:  
                               => “double scattering processes”
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Discrete spectrum and bound states

Bound states: configuration with a final state with vanishing  
probability distribution for large relative coordinate y 
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2) k has an imaginary part

rel. mom: k = 1
2 (k

0
1 � k02)� ik̃

0

Condition for bound state formation

k̃ > 0

T (p, k, g)= 0

relative coordinate

“molecule” made of two particles

Alessandro Bisio, Giacomo Mauro D’Ariano, Paolo Perinotti, and AT, arXiv:1711.03920 (2017) 
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“Bound” states with null coupling g

g = 0 U = Ufree)

!

p

Third difference with Hamiltonian models
Again due to discrete time

p = 0

p = 0,±⇡
2 ,⇡

…..still exist “bound” states
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Final comments
Result: discrete-time model of four Fermion interaction solved for two-particles

Proves the effects of discrete time in a many-body system

Thank you

more scattering processes than in the continuous-time case 
bound states with arbitrary total momentum 
stationary “bound” states even in the non-interacting case

R.P. Feynman: Universal quantum simulator
R. P. Feynman, Quantum mechanical computers, Optics News 11, 11 (1985)

Today:
Interacting many body systems 

provide universal quantum computation
A. M. Childs, D. Gosset, and Z. Webb, Science 339, 791
(2013).
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Can a quantum computation encompass relativistic quantum field theory?

Beny C., Osborne T.J., New J. Phys. 17 083005 (2015) Renormalization in a quantum informational scenario
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