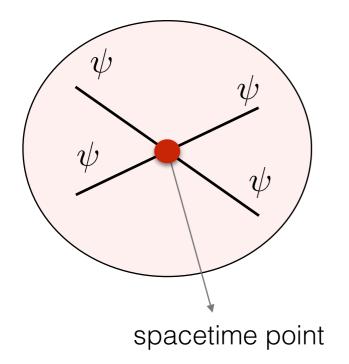
The Thirring quantum cellular automaton

Authors: Alessandro Bisio, Giacomo Mauro D'Ariano, Paolo Perinotti, and AT arXiv:1711.03920

Alessandro Tosini, QUIT group, Pavia University

Frascati, November 30, 2017

Four fermion interaction: 4th power of fermion fields as interaction

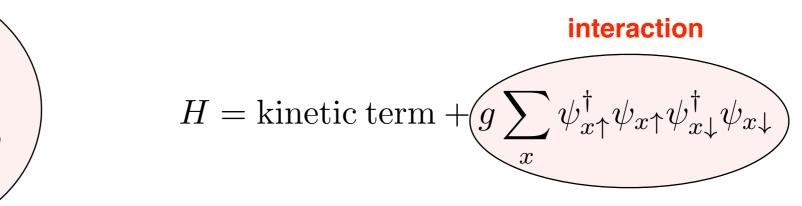


Four fermion interaction: 4th power of fermion fields as interaction

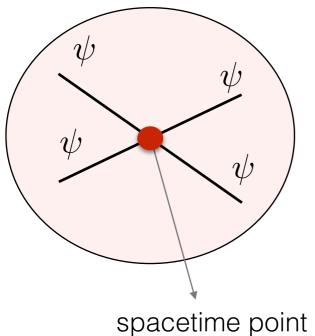
.....non relativistic example

Hubbard model: 1968 integrable model in 1+1 dimension

Hubbard, J., Proceedings of the Royal Society of London. **276** (1365): 238 (1963) E. H. Lieb and F. Y. Wu, Physical Review Letters **20**, 1445 (1968)

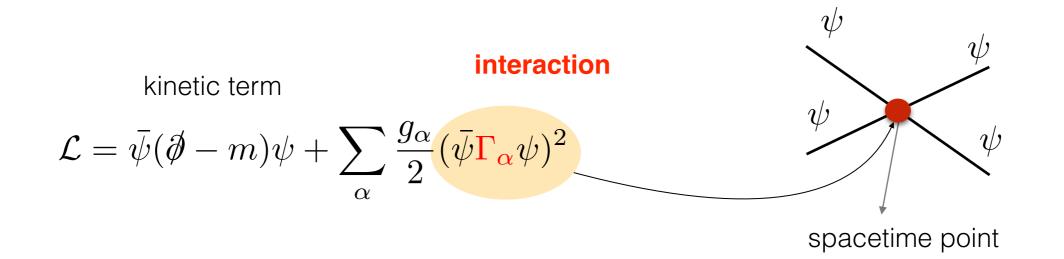


switches on when two fermions are at the same site *x*

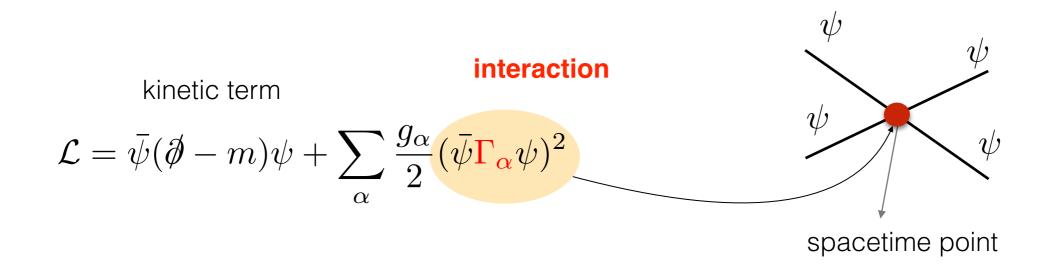


.....examples of relativistic QFTs with 4th power of fermion fields as interaction

.....examples of relativistic QFTs with 4th power of fermion fields as interaction



.....examples of relativistic QFTs with 4th power of fermion fields as interaction



Thirring: 1958, integrable model in 1+1 dim

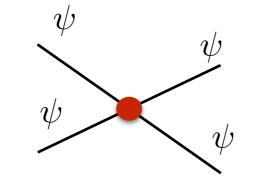
 $\Gamma_{\alpha} = \gamma_{\mu}$ W. E. Thirring, Annals of Physics 3, 91 (1958) S. Coleman, Phys. Rev. D 11, 2088 (1975)

Nambu & Jona-Lasinio: 1961, dynamical mass generation in 3+1 dim

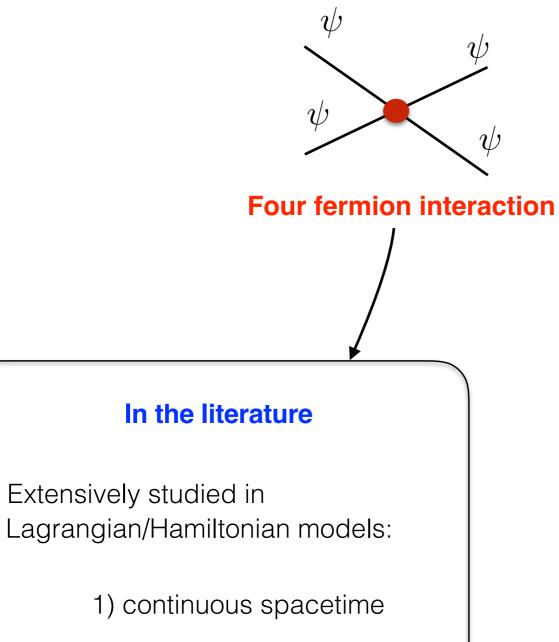
 $\begin{array}{ll} \Gamma_1=I & \mbox{Y. Nambu, and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)} \\ \Gamma_2=\gamma_5 & \mbox{Y. Nambu, and G. Jona-Lasinio, Phys. Rev. 124, 246 (1961)} \end{array}$

Gross-Neveu: 1974, asymptotic freedom, dynamical symmetry breaking (1+1 dim)

 $\Gamma_{lpha}=I$ D. J. Gross, and A. Neveu, Phys. Rev. D. **10**, 3235 (1974)



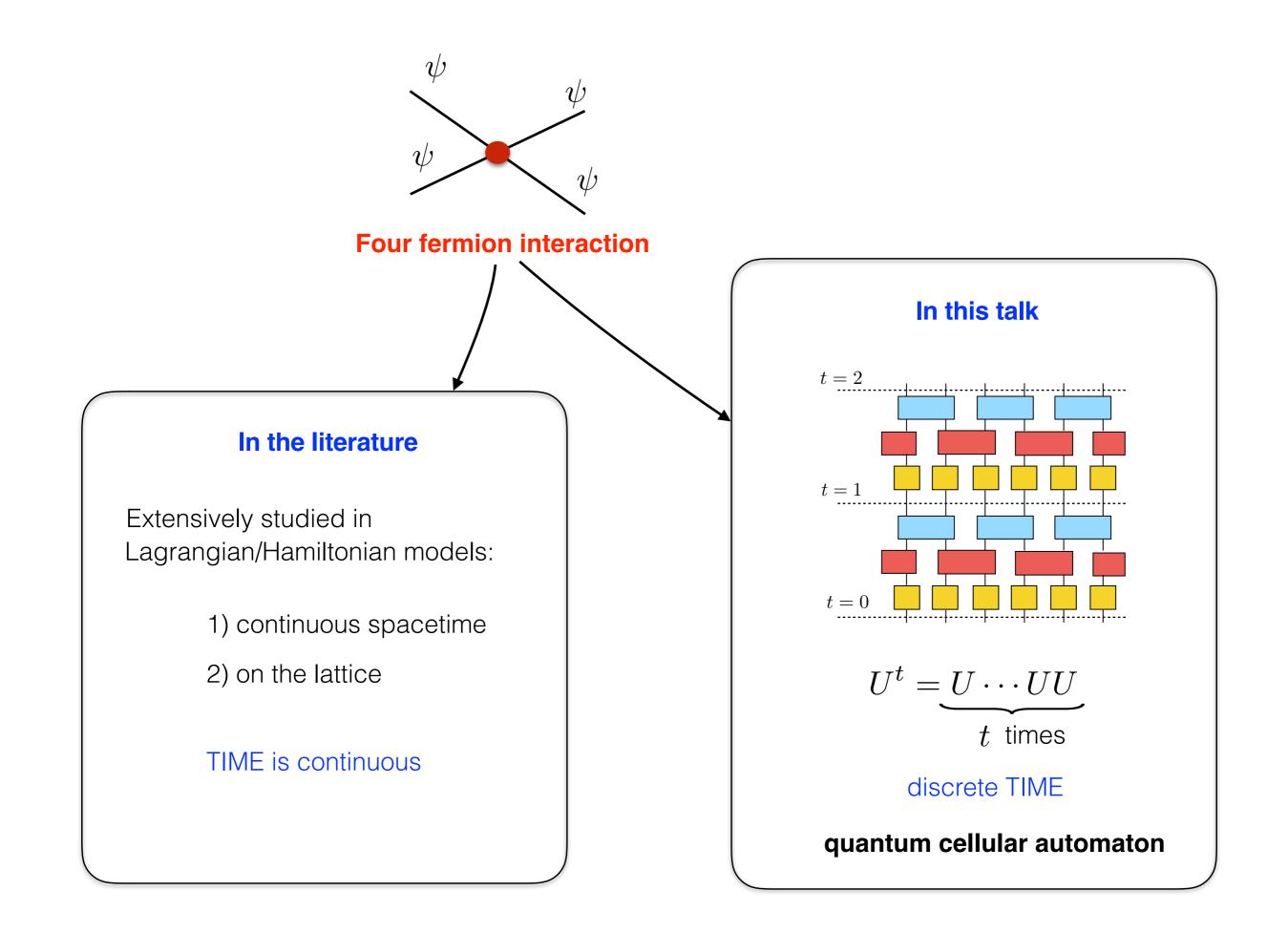
Four fermion interaction



2) on the lattice

TIME is continuous





Outline

- 1. Cellular automata and their quantum counterpart (QCA)
- 2. QCA model of four-fermion interaction: the Thirring automaton
- 3. The analytical solution in the two particles sector
 - set of possible scattering processes
 - o bound sates

S. Ulam and J. von Neumann cellular automata (late 1940s)

Original idea: model *complex behaviour* based on a *simple rule*

S. Ulam and J. von Neumann cellular automata (late 1940s)

Original idea: model *complex behaviour* based on a *simple rule*

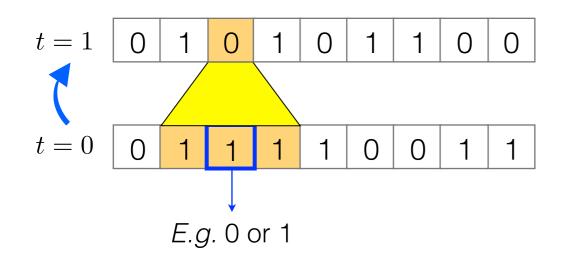
- ► Lattice of cells
- ▶ Each cell in a finite number of states

$$t = 0$$
 0 1 1 1 1 0 0 1 1
E.g. 0 or 1

S. Ulam and J. von Neumann cellular automata (late 1940s)

Original idea: model *complex behaviour* based on a *simple rule*

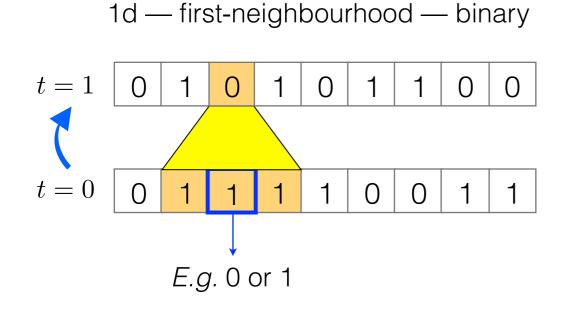
- ▶ Lattice of cells
- ▶ Each cell in a finite number of states
- Discrete time evolution
- ▶ LOCAL update rule: the same for each cell



S. Ulam and J. von Neumann cellular automata (late 1940s)

Original idea: model *complex behaviour* based on a *simple rule*

- ▶ Lattice of cells
- ▶ Each cell in a finite number of states
- Discrete time evolution
- ▶ LOCAL update rule: the same for each cell



Steven Wolfram book "A new kind of science" $2^8 = 256$ possible LOCAL rules

The rules generate 4 classes of phenomena

Class 1: Static Class 2: Periodic Class 3: Chaotic Class 4: "Mixed"

R.P. Feynman (1985)

Extend the idea to the quantum world: Universal quantum simulator

R. Feynman, International journal of theoretical physics **21**, 467 (1982)

R. P. Feynman, *Quantum mechanical computers*, Optics News 11, 11 (1985)

R.P. Feynman (1985)

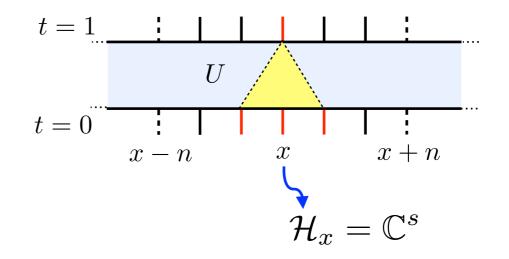
Extend the idea to the quantum world: Universal quantum simulator

R. Feynman, International journal of theoretical physics 21, 467 (1982)

R. P. Feynman, *Quantum mechanical computers*, Optics News 11, 11 (1985)

Discrete time evolution which is:

LOCAL UNITARY Translation-invariant



R.P. Feynman (1985)

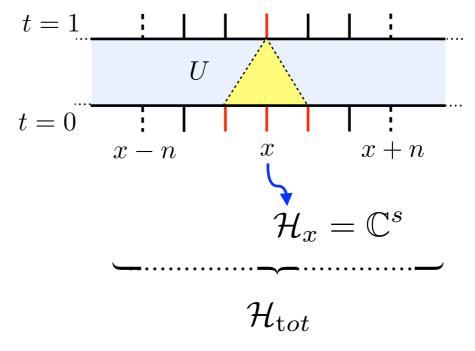
Extend the idea to the quantum world: Universal quantum simulator

R. Feynman, International journal of theoretical physics 21, 467 (1982)

R. P. Feynman, *Quantum mechanical computers*, Optics News 11, 11 (1985)

- \blacktriangleright Lattice X of quantum systems
- Systems are finite dimensional
- Discrete time evolution which is:

LOCAL UNITARY Translation-invariant

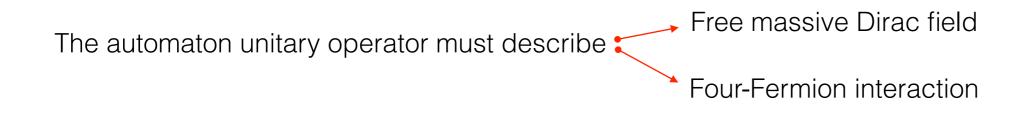


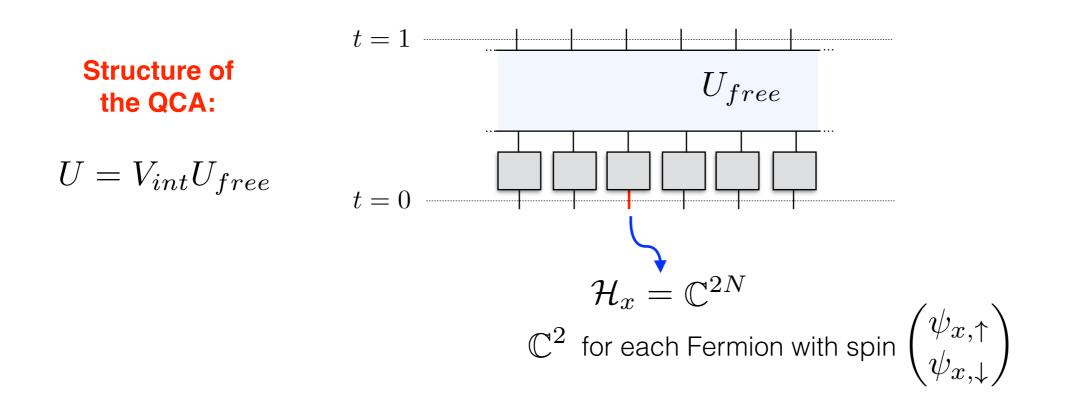
Quantum cellular automaton

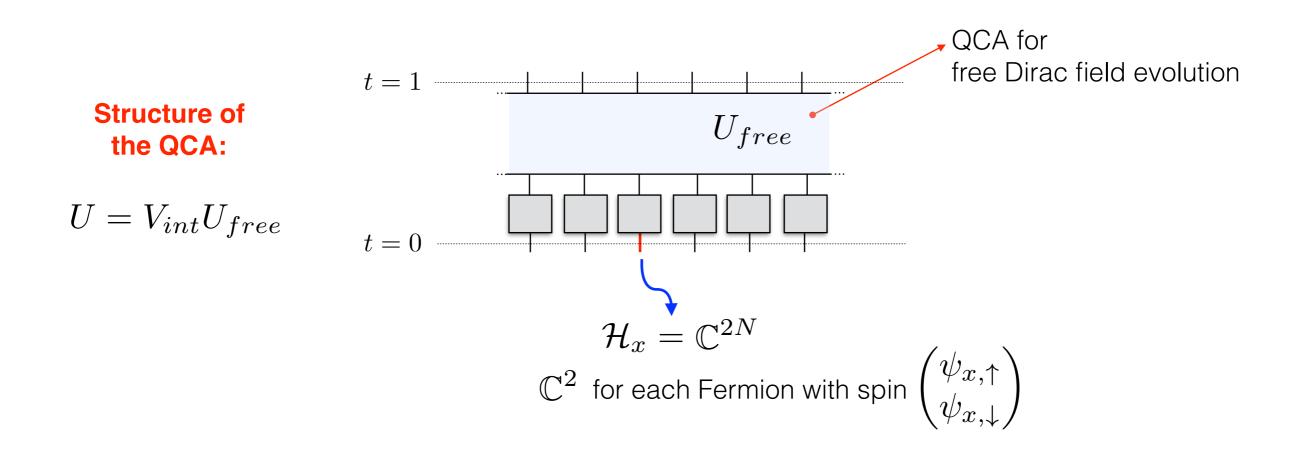
 $U: \mathcal{H}_{tot} \to \mathcal{H}_{tot}$

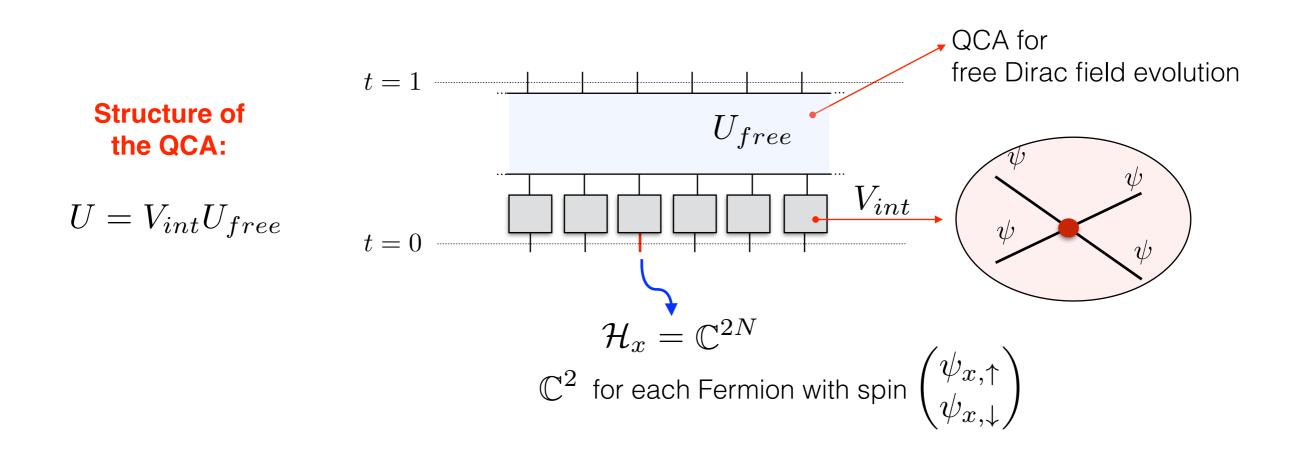
Alessandro Bisio, Giacomo Mauro D'Ariano, Paolo Perinotti, and AT, arXiv:1711.03920 (2017)

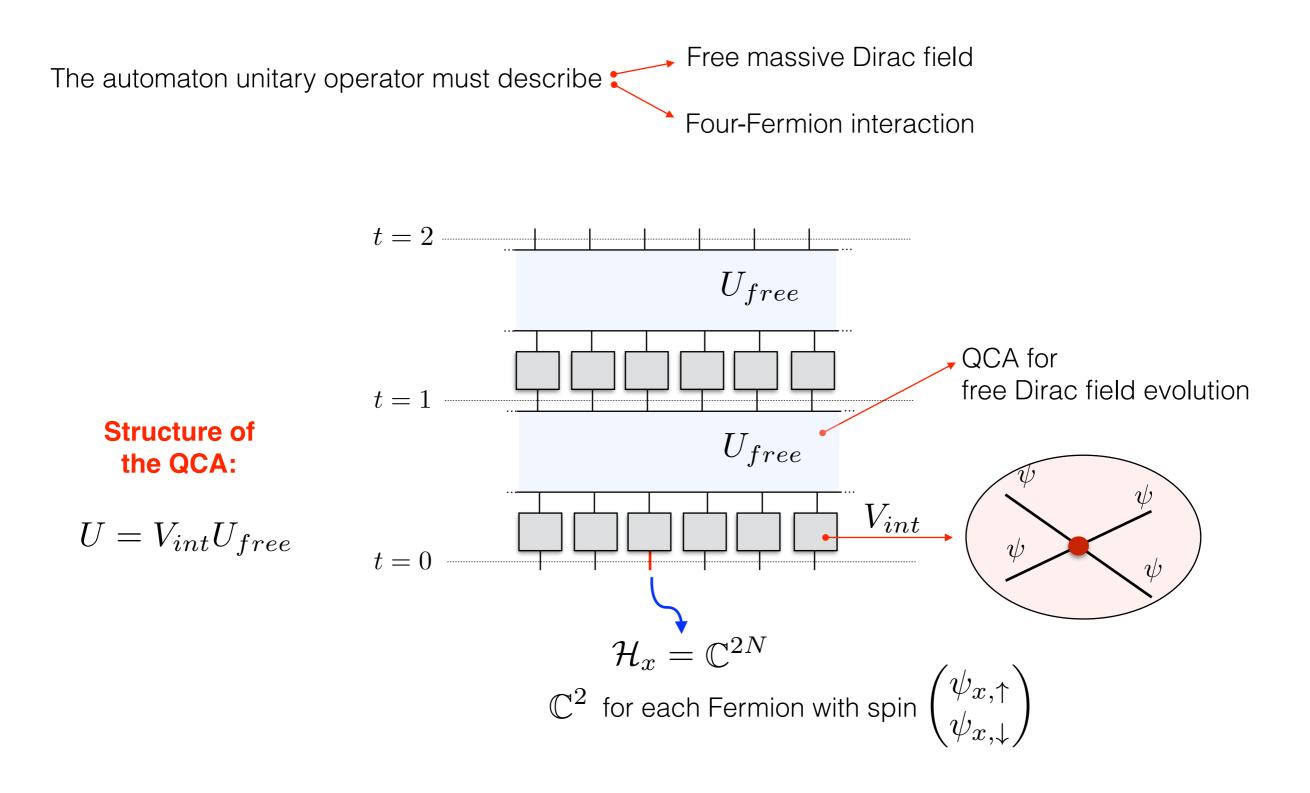
The automaton unitary operator must describe Free massive Dirac field Four-Fermion interaction



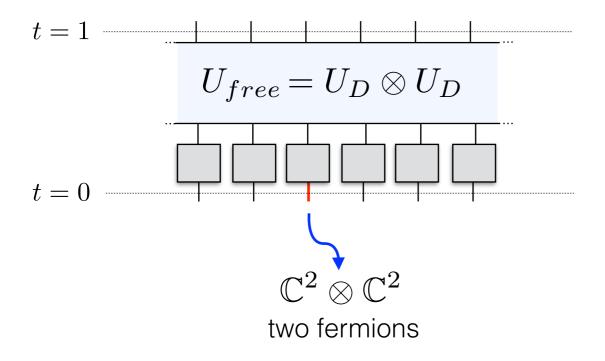


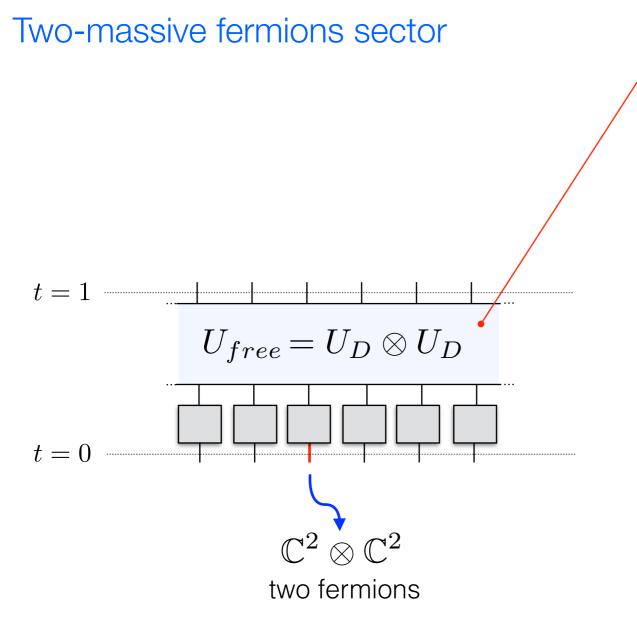






Two-massive fermions sector



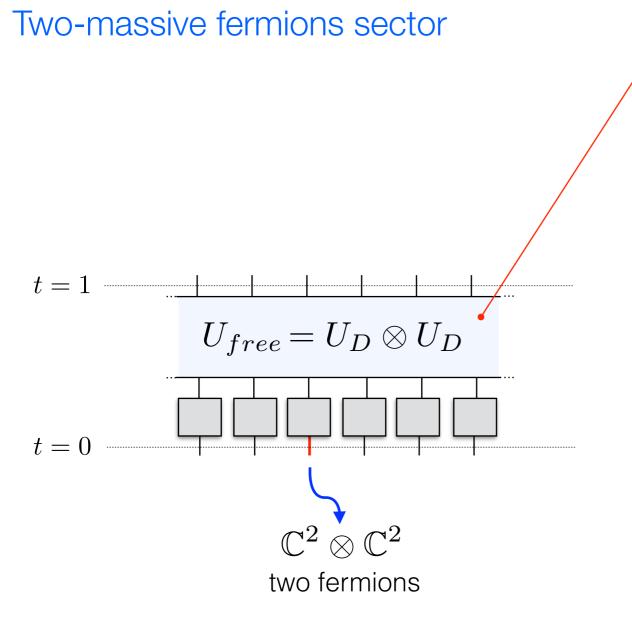


A. Bisio, G. M. D'Ariano, A. Tosini, Annals of Physics 354 244 (2015)

QCA for free Dirac field evolution

$$U_D \begin{pmatrix} \psi_{x,\uparrow} \\ \psi_{x,\downarrow} \end{pmatrix} = \begin{pmatrix} nT & -im \\ -im & nT^{\dagger} \end{pmatrix} \begin{pmatrix} \psi_{x,\uparrow} \\ \psi_{x,\downarrow} \end{pmatrix}$$

m: particle mass *T*: shift operator $T\psi(x) = \psi(x+1)$



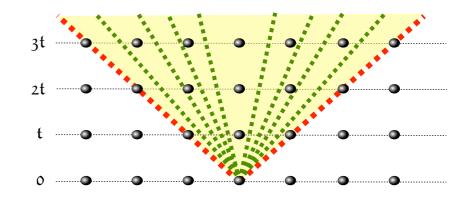
A. Bisio, G. M. D'Ariano, A. Tosini, Annals of Physics 354 244 (2015)

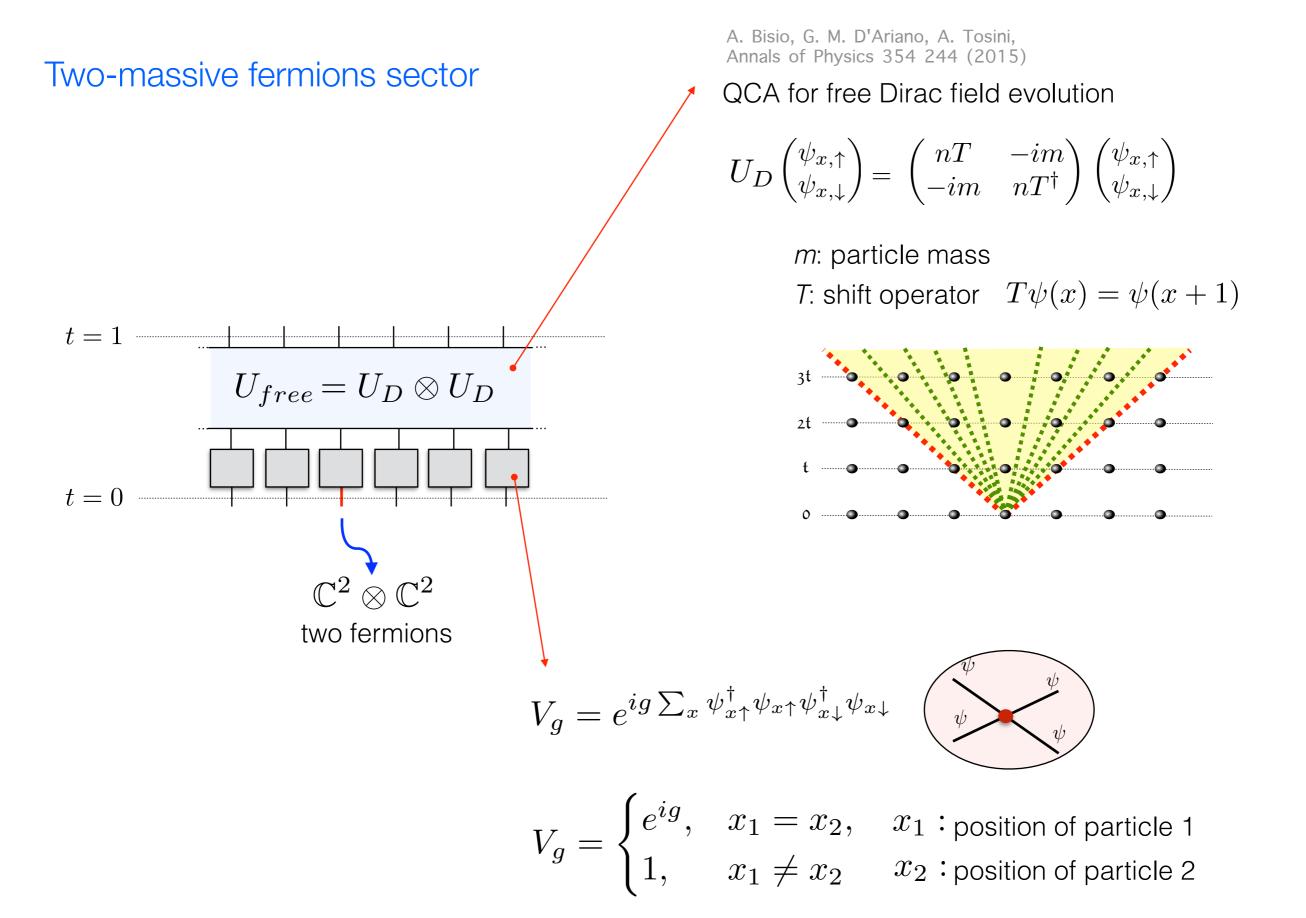
QCA for free Dirac field evolution

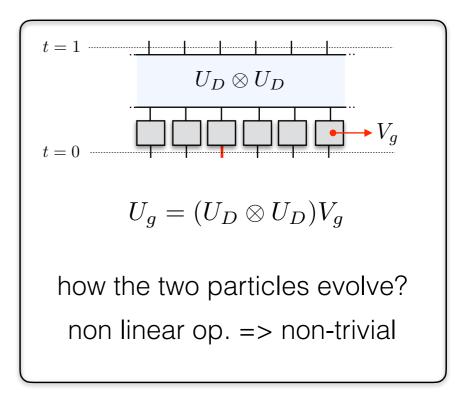
$$U_D \begin{pmatrix} \psi_{x,\uparrow} \\ \psi_{x,\downarrow} \end{pmatrix} = \begin{pmatrix} nT & -im \\ -im & nT^{\dagger} \end{pmatrix} \begin{pmatrix} \psi_{x,\uparrow} \\ \psi_{x,\downarrow} \end{pmatrix}$$

m: particle mass

T: shift operator $T\psi(x) = \psi(x+1)$

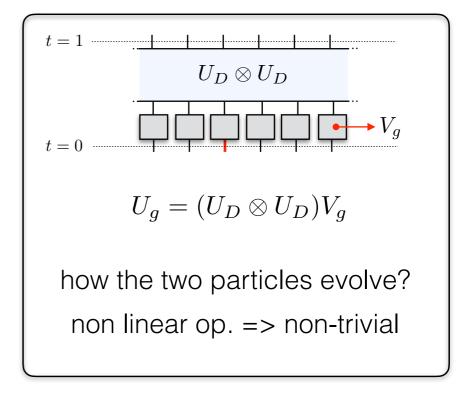






Conserver quantities

Total energy: $\omega = \omega_1 + \omega_2$ Total momentum: $p = \frac{1}{2}(p_1 + p_2)$

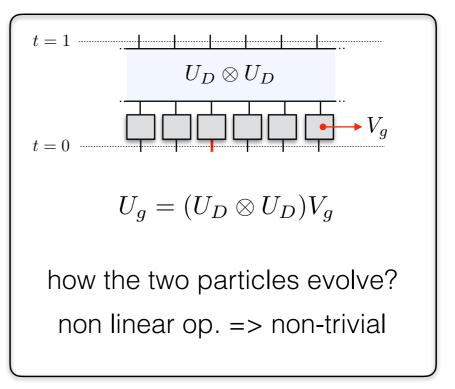


Conserver quantities

Total energy: $\omega = \omega_1 + \omega_2$ Total momentum: $p = \frac{1}{2}(p_1 + p_2)$

We solved the Eigenvalue problem

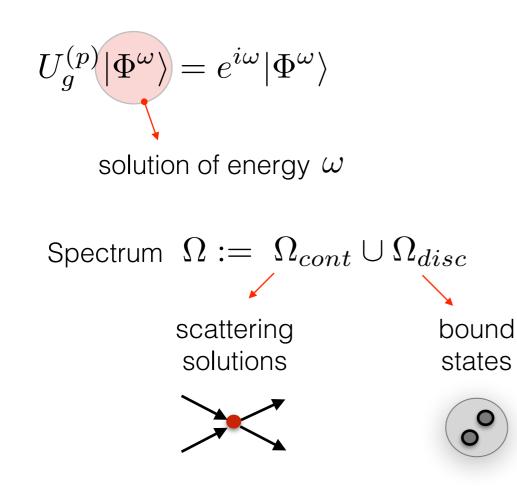
$$U_{g}^{(p)}|\Phi^{\omega}\rangle = e^{i\omega}|\Phi^{\omega}\rangle$$
 solution of energy ω

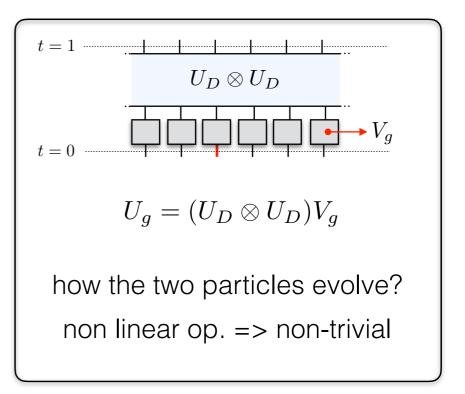


Conserver quantities

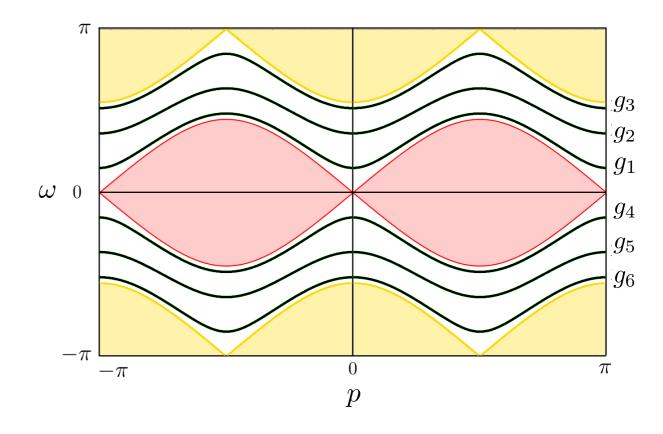
Total energy: $\omega = \omega_1 + \omega_2$ Total momentum: $p = \frac{1}{2}(p_1 + p_2)$

We solved the Eigenvalue problem



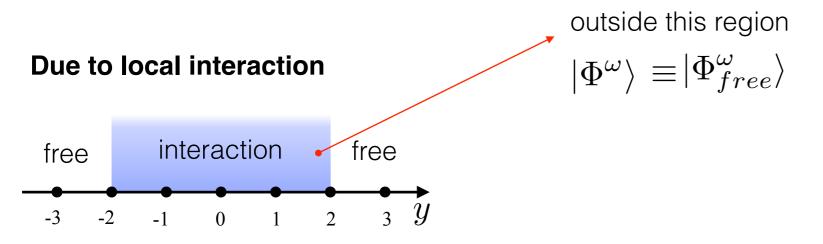


We find the following spectrum



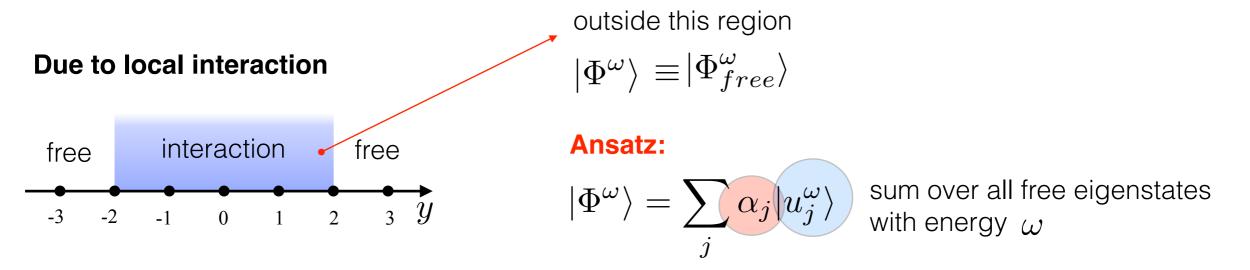
The method: modified Bethe ansatz H. Bethe, Zeitschrift für Physik 71:205–226 (1931)

 $y = x_1 - x_2$ particles distance



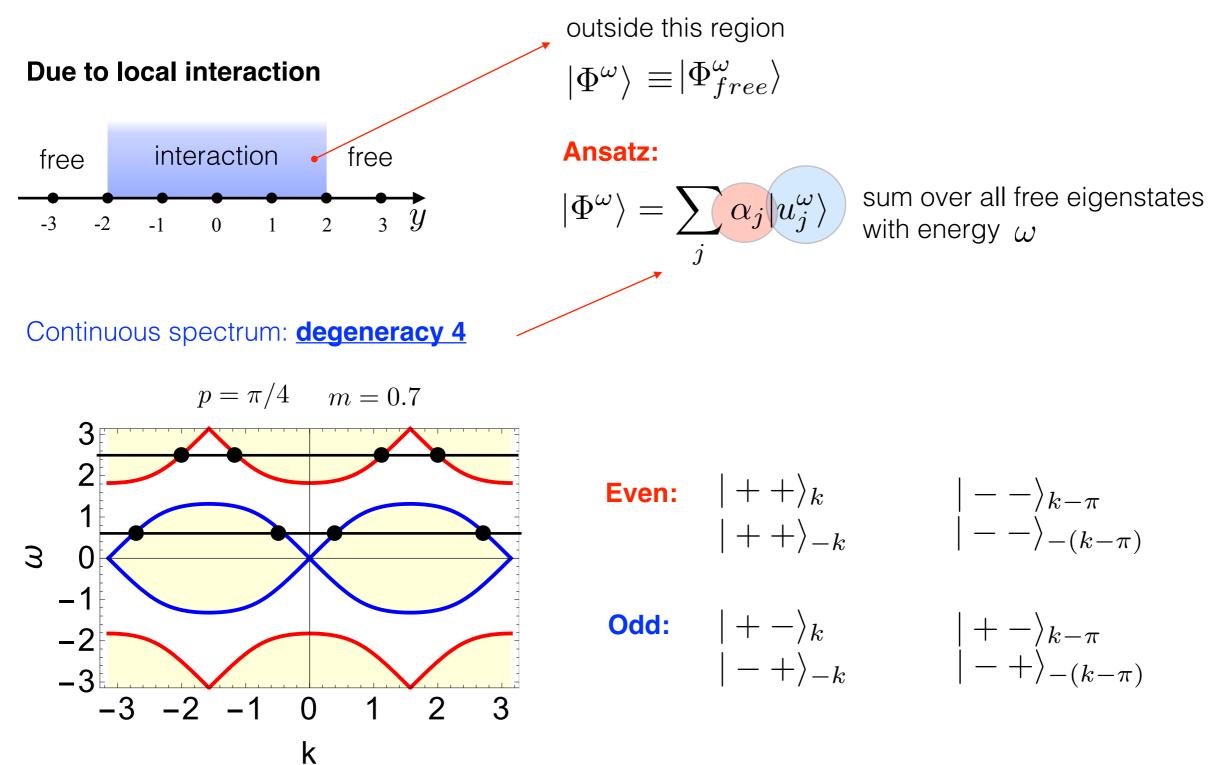
The method: modified Bethe ansatz H. Bethe, Zeitschrift für Physik 71:205–226 (1931)

 $y = x_1 - x_2$ particles distance

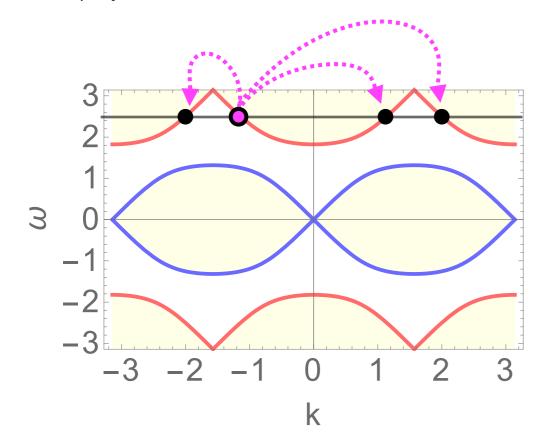


The method: modified Bethe ansatz H. Bethe, Zeitschrift für Physik 71:205–226 (1931)

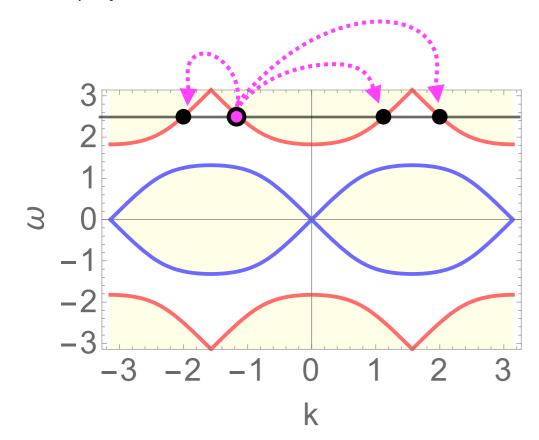
 $y = x_1 - x_2$ particles distance



.....physical content



.....physical content



First difference with the Hamiltonian case which has degeneracy 2

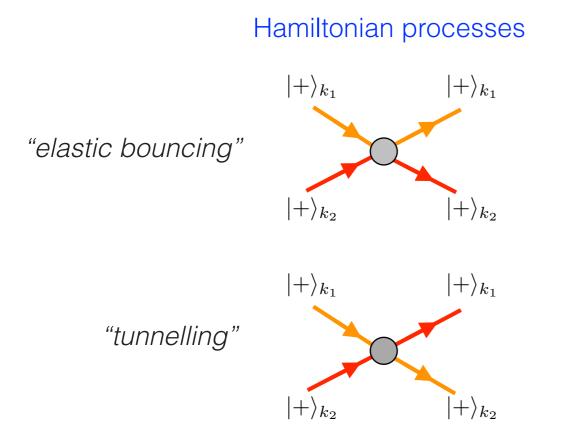
The cause is *discrete time*: periodic energy spectrum

.....physical content

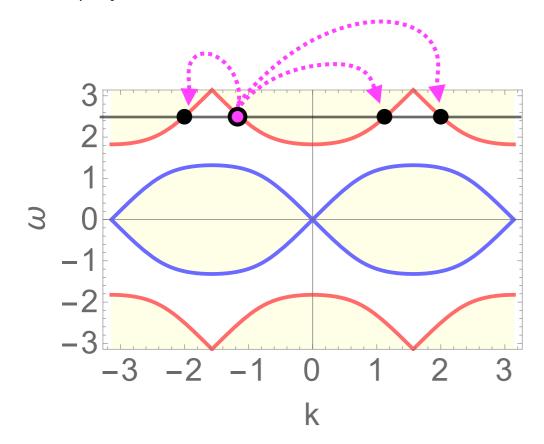


First difference with the Hamiltonian case which has degeneracy 2

The cause is *discrete time*: periodic energy spectrum



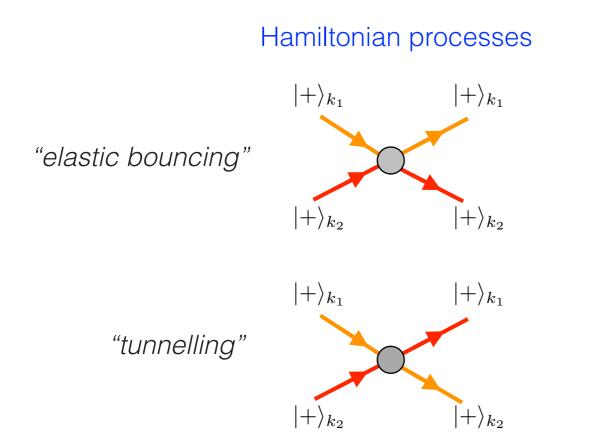
.....physical content



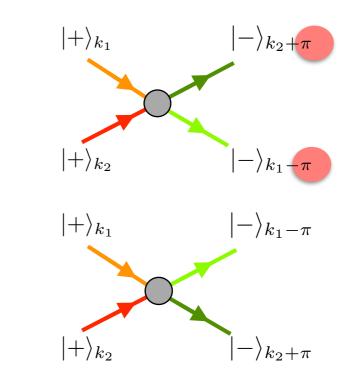
First difference with the Hamiltonian case which has degeneracy 2

┿

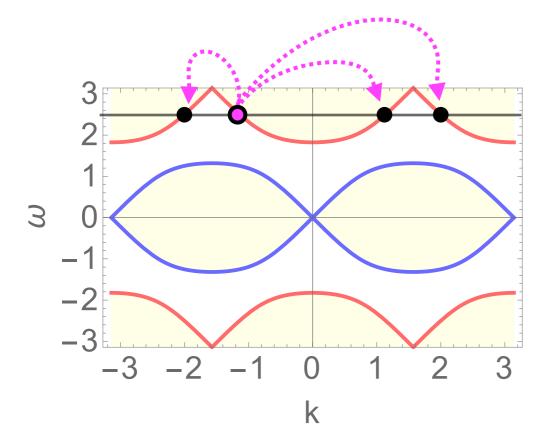
The cause is *discrete time*: periodic energy spectrum



New processes due to discrete time which momentum exchange



.....physical content



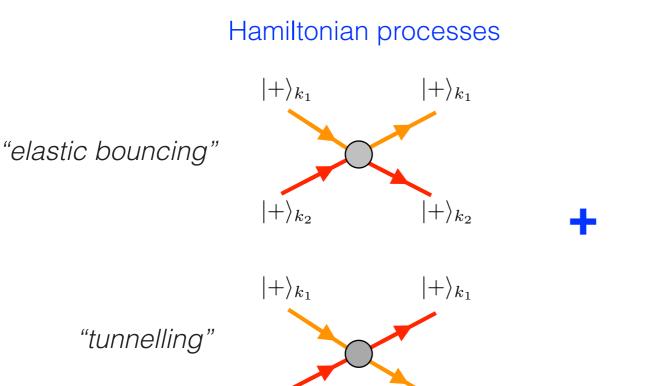
Suggestive parallel with fermion doubling

Known: Free fermions on lattice => "double particles" Susskind, Leonard, Lattice fermions, Phys. Rev. D 16, 3031 (1977)

New: Interacting fermions in discrete time: => "double scattering processes"

First difference with the Hamiltonian case which has degeneracy 2

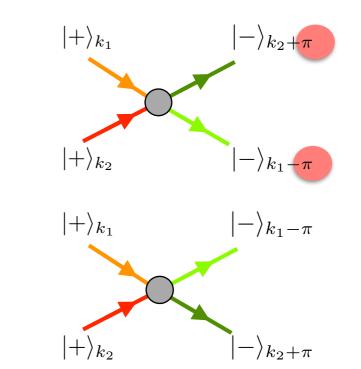
The cause is *discrete time*: periodic energy spectrum



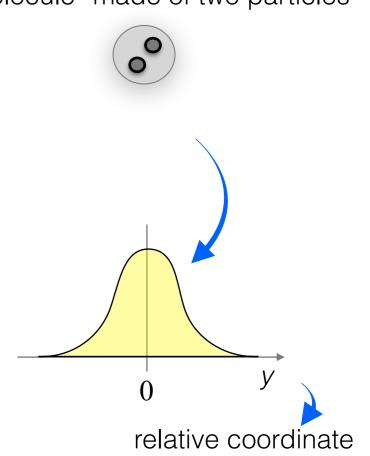
 $|+\rangle_{k_2}$

 $+\rangle_{k_2}$

New processes due to discrete time which momentum exchange



Bound states: configuration with a final state with vanishing probability distribution for large relative coordinate *y*



"molecule" made of two particles

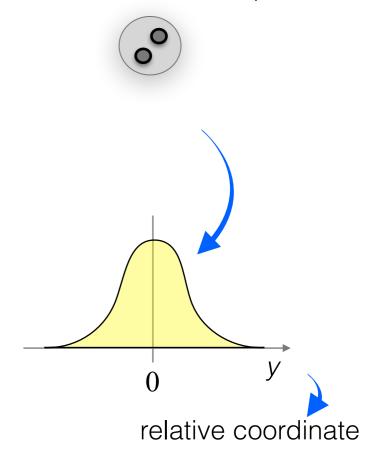
Alessandro Bisio, Giacomo Mauro D'Ariano, Paolo Perinotti, and AT, arXiv:1711.03920 (2017)

Bound states: configuration with a final state with vanishing probability distribution for large relative coordinate *y*

$$|\Phi^{\omega}(y)\rangle = \begin{cases} e^{-iky}(\cdots) - e^{iky}T(\cdots) & y \ge 0\\ \text{antisymm} & y < 0 \end{cases}$$

1) *k* real => scattering solutions (no bound states)

"molecule" made of two particles



Alessandro Bisio, Giacomo Mauro D'Ariano, Paolo Perinotti, and AT, arXiv:1711.03920 (2017)

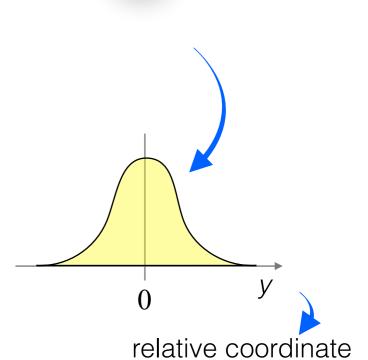
Bound states: configuration with a final state with vanishing probability distribution for large relative coordinate y

$$|\Phi^{\omega}(y)\rangle = \begin{cases} e^{-iky}(\cdots) - e^{iky}T(\cdots) & y \ge 0\\ \text{antisymm} & y < 0 \end{cases}$$

1) *k* real => scattering solutions (no bound states)

2) *k* has an imaginary part

rel. mom:
$$k = \frac{1}{2}(k'_1 - k'_2) - i\tilde{k}$$



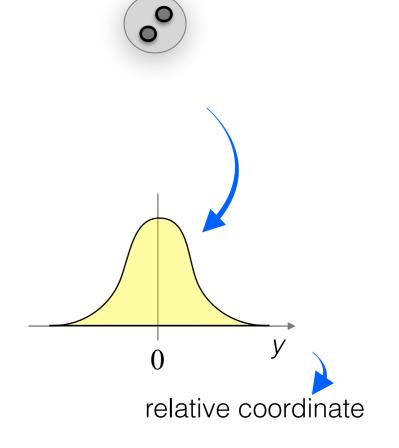
"molecule" made of two particles

Alessandro Bisio, Giacomo Mauro D'Ariano, Paolo Perinotti, and AT, arXiv:1711.03920 (2017)

Bound states: configuration with a final state with vanishing probability distribution for large relative coordinate *y*

$$\begin{split} e^{-\tilde{k}n} & e^{\tilde{k}n} \\ |\Phi^{\omega}(y)\rangle = \begin{cases} e^{-iky}(\cdots) - e^{iky}T(\cdots) & y \ge 0 \\ \text{antisymm} & y < 0 \end{cases} \end{split}$$

"molecule" made of two particles



1) *k* real => scattering solutions (no bound states)

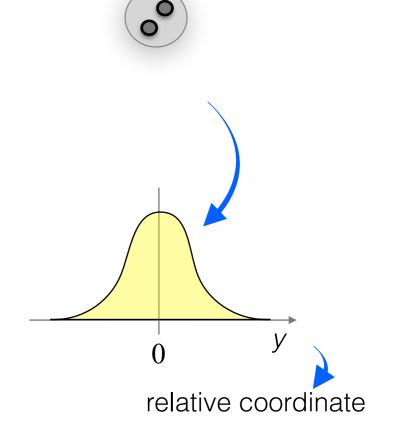
2) *k* has an imaginary part

rel. mom:
$$k = \frac{1}{2}(k'_1 - k'_2) - i\tilde{k}$$

Bound states: configuration with a final state with vanishing probability distribution for large relative coordinate *y*

$$\begin{split} e^{-\tilde{k}n} & e^{\tilde{k}n} \\ |\Phi^{\omega}(y)\rangle = \begin{cases} e^{-iky}(\cdots) - e^{iky}T(\cdots) & y \ge 0 \\ \text{antisymm} & y < 0 \end{cases} \end{split}$$

"molecule" made of two particles



1) *k* real => scattering solutions (no bound states)

2) *k* has an imaginary part

rel. mom:
$$k = \frac{1}{2}(k'_1 - k'_2) - i\tilde{k}$$

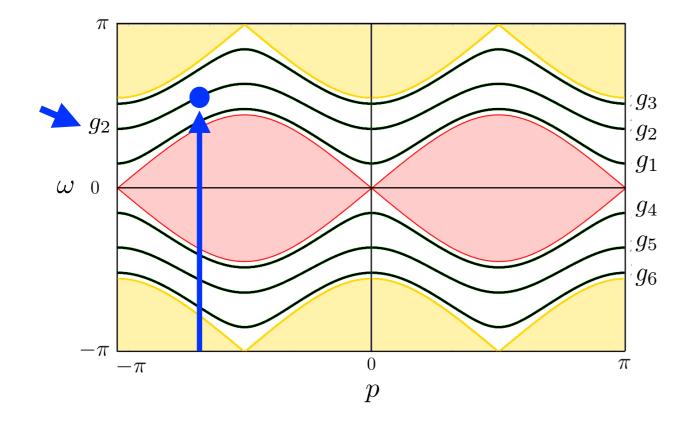
Condition for bound state formation

$$\widetilde{k} > 0$$
$$T(p, k, g) = 0$$

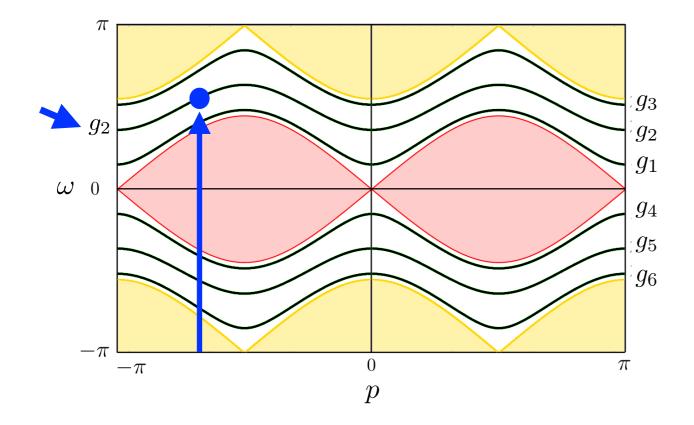
$$\begin{array}{c} & \psi \\ \psi \\ \psi \\ \psi \\ \psi \\ \end{array} \end{array} \quad V_g = e^{ig \sum_x \psi^{\dagger}_{x\uparrow} \psi_{x\uparrow} \psi^{\dagger}_{x\downarrow} \psi_{x\downarrow}}$$

Result: for any value of the coupling *g* and total momentum *p* there exists a unique bound state

Result: for any value of the coupling *g* and total momentum *p* there exists a unique bound state

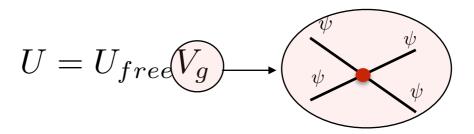


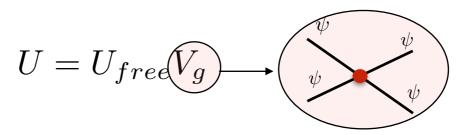
Result: for any value of the coupling *g* and total momentum *p* there exists a unique bound state



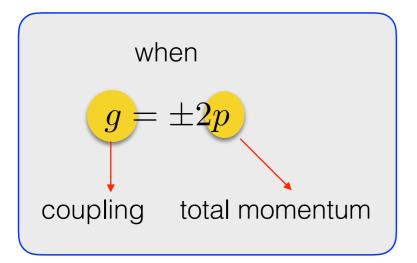
Second difference with the Hamiltonian case

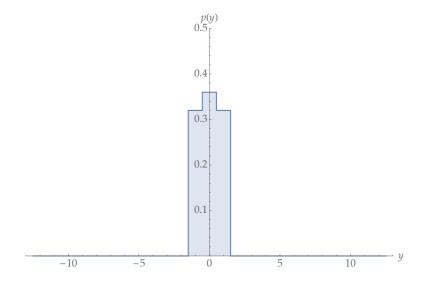
where for some total momenta **p** there are no *bound states*

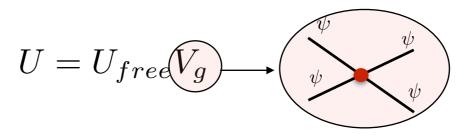




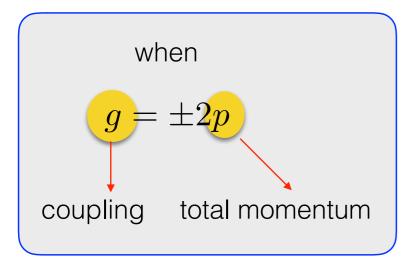
Perfectly localized bound states



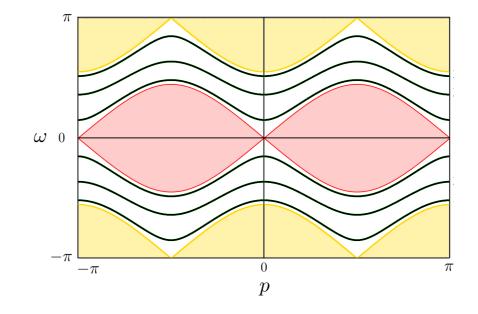


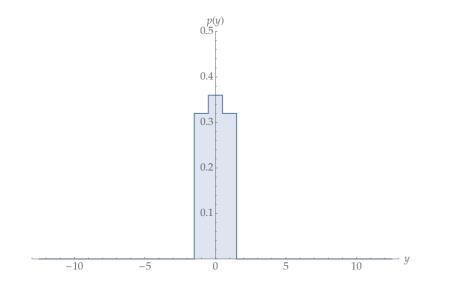


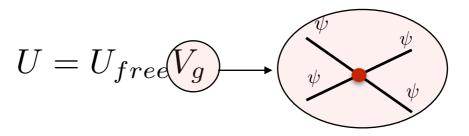
Perfectly localized bound states



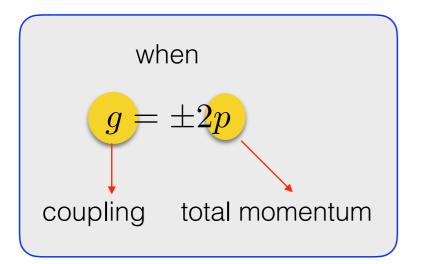
$$g = 0 \Rightarrow U = U_{free}$$

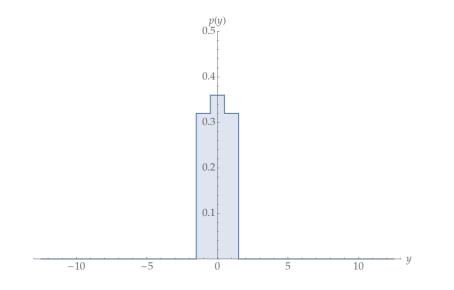






Perfectly localized bound states

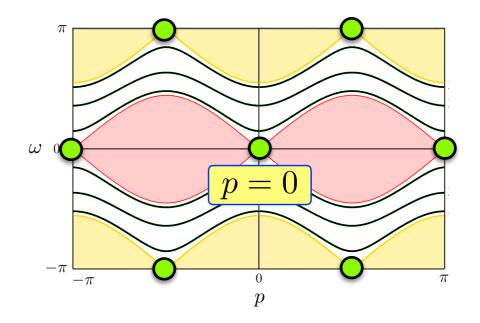




"Bound" states with null coupling g

$$g = 0 \Rightarrow U = U_{free}$$

.....still exist "bound" states
 $p = 0, \pm \frac{\pi}{2}, \pi$



Third difference with Hamiltonian models Again due to *discrete time*

Result: discrete-time model of four Fermion interaction *solved* for two-particles

Proves the effects of discrete time in a many-body system

- o more scattering processes than in the continuous-time case
- bound states with arbitrary total momentum
- o stationary "bound" states even in the non-interacting case

Result: discrete-time model of four Fermion interaction *solved* for two-particles

Proves the effects of discrete time in a many-body system

- o more scattering processes than in the continuous-time case
- bound states with arbitrary total momentum
- o stationary "bound" states even in the non-interacting case

1) Quantum simulators

R.P. Feynman: Universal quantum simulator

R. P. Feynman, *Quantum mechanical computers*, Optics News 11, 11 (1985)

Today:

Interacting many body systems provide universal quantum computation

A. M. Childs, D. Gosset, and Z. Webb, Science 339, 791 (2013).

Result: discrete-time model of four Fermion interaction *solved* for two-particles

Proves the effects of discrete time in a many-body system

- o more scattering processes than in the continuous-time case
- o bound states with arbitrary total momentum
- o stationary "bound" states even in the non-interacting case

1) Quantum simulators

Today:

Interacting many body systems provide universal quantum computation

R. P. Feynman, *Quantum mechanical computers*, Optics News **11**, 11 (1985)

R.P. Feynman: Universal quantum simulator

A. M. Childs, D. Gosset, and Z. Webb, Science 339, 791 (2013).

2) Fundamental physics

Can a quantum computation encompass relativistic quantum field theory?

The free case has been studied PRA, 90(6):062106, (2014) Annals of Physics 368, 177 (2016) EPL 109 (5), 50003 (2015) PRA, 94(4):042120, (2016)

Renormalization in a quantum informational scenario Beny C., Osborne T.J., New J. Phys. 17 083005 (2015)

The four fermion interaction is a precious lab for interacting systems

Result: discrete-time model of four Fermion interaction *solved* for two-particles

Proves the effects of discrete time in a many-body system

- o more scattering processes than in the continuous-time case
- o bound states with arbitrary total momentum
- o stationary "bound" states even in the non-interacting case

1) Quantum simulators

Today:

R.P. Feynman: *Universal quantum simulator*

R. P. Feynman, *Quantum mechanical computers*, Optics News **11**, 11 (1985)

Interacting many body systems provide universal quantum computation

A. M. Childs, D. Gosset, and Z. Webb, Science 339, 791 (2013).

2) Fundamental physics

Can a quantum computation encompass relativistic quantum field theory?

The free case has been studied PRA, 90(6):062106, (2014) Annals of Physics 368, 177 (2016) EPL 109 (5), 50003 (2015) PRA, 94(4):042120, (2016)

Renormalization in a quantum informational scenario Beny C., Osborne T.J., New J. Phys. 17 083005 (2015)

The four fermion interaction is a precious *lab* for interacting systems

Thank you