The Thirring quantum cellular automaton

Authors:
Alessandro Bisio, Giacomo Mauro D'Ariano, Paolo Perinotti, and AT arXiv:1711.03920

Alessandro Tosini, QUIT group, Pavia University
Frascati, November 30, 2017

John
Templeton
Foundation

Four fermion interaction: 4th power of fermion fields as interaction

spacetime point

Four fermion interaction: 4th power of fermion fields as interaction
.............non relativistic example

Hubbard model: 1968 integrable model in 1+1 dimension
Hubbard, J., Proceedings of the Royal Society of London. 276 (1365): 238 (1963) E. H. Lieb and F. Y. Wu, Physical Review Letters 20, 1445 (1968)

examples of relativistic QFTs with 4th power of fermion fields as interaction

............examples of relativistic QFTs with 4th power of fermion fields as interaction

Thirring: 1958, integrable model in $1+1$ dim

$$
\Gamma_{\alpha}=\gamma_{\mu} \quad \begin{aligned}
& \text { W.E.Thiring, Annals of Physics 3, 91 (1958) } \\
& \text { S. Coleman, Phys. Rev. D 11, 2088 (1975) }
\end{aligned}
$$

Nambu \& Jona-Lasinio:1961, dynamical mass generation in 3+1 dim

$$
\begin{array}{ll}
\Gamma_{1}=I & \text { Y. Nambu, and GG. Jona-LLasinio, Phys. Rev. 122, } 345(\text { (1961) } \\
\Gamma_{2}=\gamma_{5} & \text { Y. Nambu, and G. Jona-Lasinio, Phys. Rev. 124, 246 (1961) }
\end{array}
$$

Gross-Neveu: 1974, asymptotic freedom, dynamical symmetry breaking (1+1 dim)

$$
\begin{array}{ll}
\Gamma_{\alpha}=I & \text { D. J. Gross, and A. Neveu, Phys. Rev. D. 10, } 3235 \text { (1974) }
\end{array}
$$

Four fermion interaction

Four fermion interaction

In the literature

Extensively studied in
Lagrangian/Hamiltonian models:

1) continuous spacetime
2) on the lattice

TIME is continuous

Four fermion interaction

In the literature

Extensively studied in
Lagrangian/Hamiltonian models:

1) continuous spacetime
2) on the lattice

TIME is continuous

In this talk

$$
U^{t}=\underbrace{U \cdots U U}_{t \text { times }}
$$

discrete TIME

Four fermion interaction

In the literature

Extensively studied in
Lagrangian/Hamiltonian models:

1) continuous spacetime
2) on the lattice

TIME is continuous

Outline

1. Cellular automata and their quantum counterpart (QCA)
2. QCA model of four-fermion interaction: the Thirring automaton
3. The analytical solution in the two particles sector

- set of possible scattering processes
- bound sates

Cellular automata and their quantum counterpart

S. Ulam and J. von Neumann cellular automata (late 1940s)

Original idea: model complex behaviour based on a simple rule

Cellular automata and their quantum counterpart

S. Ulam and J. von Neumann cellular automata (late 1940s)

Original idea: model complex behaviour based on a simple rule

- Lattice of cells
- Each cell in a finite number of states

E.g. 0 or 1

Cellular automata and their quantum counterpart

S. Ulam and J. von Neumann cellular automata (late 1940s)

Original idea: model complex behaviour based on a simple rule

- Lattice of cells
- Each cell in a finite number of states
- Discrete time evolution
- LOCAL update rule: the same for each cell

E.g. 0 or 1

Cellular automata and their quantum counterpart

S. Ulam and J. von Neumann cellular automata (late 1940s)

Original idea: model complex behaviour based on a simple rule

- Lattice of cells
- Each cell in a finite number of states
- Discrete time evolution
- LOCAL update rule: the same for each cell

E.g. 0 or 1

Steven Wolfram book "A new kind of science"
$2^{8}=256$ possible LOCAL rules

The rules generate 4 classes of phenomena Class 1: Static
Class 2: Periodic
Class 3: Chaotic
Class 4: "Mixed"

R.P. Feynman (1985)

Extend the idea to the quantum world: Universal quantum simulator
R. Feynman, International journal of theoretical physics 21, 467 (1982)
R. P. Feynman, Quantum mechanical computers, Optics News 11, 11 (1985)

R.P. Feynman (1985)

Extend the idea to the quantum world: Universal quantum simulator
R. Feynman, International journal of theoretical physics 21, 467 (1982)
R. P. Feynman, Quantum mechanical computers, Optics News 11, 11 (1985)

- Lattice X of quantum systems
- Systems are finite dimensional
- Discrete time evolution which is:

LOCAL

UNITARY
Translation-invariant

R.P. Feynman (1985)

Extend the idea to the quantum world: Universal quantum simulator
R. Feynman, International journal of theoretical physics 21, 467 (1982)
R. P. Feynman, Quantum mechanical computers, Optics News 11, 11 (1985)

- Lattice X of quantum systems
- Systems are finite dimensional
- Discrete time evolution which is:

LOCAL
UNITARY
Translation-invariant

Quantum cellular automaton
$U: \mathcal{H}_{\mathrm{tot}} \rightarrow \mathcal{H}_{\mathrm{t} o t}$

QCA model of four-fermion interaction

Alessandro Bisio, Giacomo Mauro D’Ariano, Paolo Perinotti, and AT, arXiv:1711.03920 (2017)

The automaton unitary operator must describe \rightarrow Free massive Dirac field

QCA model of four-fermion interaction

Alessandro Bisio, Giacomo Mauro D’Ariano, Paolo Perinotti, and AT, arXiv:1711.03920 (2017)

The automaton unitary operator must describe \quad Free massive Dirac field

Structure of the QCA:
$U=V_{\text {int }} U_{\text {free }}$

$U_{\text {free }}$

$$
\begin{gathered}
\mathcal{H}_{x}=\mathbb{C}^{2 N} \\
\mathbb{C}^{2} \text { for each Fermion with spin }\binom{\psi_{x, \uparrow}}{\psi_{x, \downarrow}}
\end{gathered}
$$

QCA model of four-fermion interaction

Alessandro Bisio, Giacomo Mauro D’Ariano, Paolo Perinotti, and AT, arXiv:1711.03920 (2017)

Structure of the QCA:
$U=V_{\text {int }} U_{\text {free }}$

QCA model of four-fermion interaction

Alessandro Bisio, Giacomo Mauro D’Ariano, Paolo Perinotti, and AT, arXiv:1711.03920 (2017)

Structure of the QCA:
$U=V_{\text {int }} U_{\text {free }}$

QCA model of four-fermion interaction

Alessandro Bisio, Giacomo Mauro D’Ariano, Paolo Perinotti, and AT, arXiv:1711.03920 (2017)

Structure of the QCA:
$U=V_{\text {int }} U_{\text {free }}$

Two-massive fermions sector

Two-massive fermions sector

QCA for free Dirac field evolution

$$
U_{D}\binom{\psi_{x, \uparrow}}{\psi_{x, \downarrow}}=\left(\begin{array}{cc}
n T & -i m \\
-i m & n T^{\dagger}
\end{array}\right)\binom{\psi_{x, \uparrow}}{\psi_{x, \downarrow}}
$$

m: particle mass
T : shift operator $T \psi(x)=\psi(x+1)$

Two-massive fermions sector

Annals of Physics 354244 (2015)
QCA for free Dirac field evolution

$$
U_{D}\binom{\psi_{x, \uparrow}}{\psi_{x, \downarrow}}=\left(\begin{array}{cc}
n T & -i m \\
-i m & n T^{\dagger}
\end{array}\right)\binom{\psi_{x, \uparrow}}{\psi_{x, \downarrow}}
$$

m: particle mass
T : shift operator $T \psi(x)=\psi(x+1)$

Two-massive fermions sector

QCA for free Dirac field evolution

$$
U_{D}\binom{\psi_{x, \uparrow}}{\psi_{x, \downarrow}}=\left(\begin{array}{cc}
n T & -i m \\
-i m & n T^{\dagger}
\end{array}\right)\binom{\psi_{x, \uparrow}}{\psi_{x, \downarrow}}
$$

m: particle mass
T : shift operator $T \psi(x)=\psi(x+1)$

$$
V_{g}=e^{i g \sum_{x} \psi_{x \uparrow}^{\dagger} \psi_{x \uparrow} \psi_{x \downarrow}^{\dagger} \psi_{x \downarrow}}
$$

$$
V_{g}=\left\{\begin{array}{lll}
e^{i g}, & x_{1}=x_{2}, & x_{1}: \text { position of particle } 1 \\
1, & x_{1} \neq x_{2} & x_{2}: \text { position of particle } 2
\end{array}\right.
$$

Analytical solution

Analytical solution

Conserver quantities

Total energy: $\omega=\omega_{1}+\omega_{2}$
Total momentum: $p=\frac{1}{2}\left(p_{1}+p_{2}\right)$

$$
\begin{aligned}
& t=1 \frac{1+1|1|}{U_{D} \otimes U_{D}}
\end{aligned}
$$

$$
\begin{aligned}
& U_{g}=\left(U_{D} \otimes U_{D}\right) V_{g}
\end{aligned}
$$

how the two particles evolve? non linear op. => non-trivial

Analytical solution

Conserver quantities

$$
\begin{aligned}
& \text { Total energy: } \omega=\omega_{1}+\omega_{2} \\
& \text { Total momentum: } p=\frac{1}{2}\left(p_{1}+p_{2}\right)
\end{aligned}
$$

We solved the Eigenvalue problem

$$
U_{g}^{(p)}\left|\Phi^{\omega}\right\rangle=e^{i \omega}\left|\Phi^{\omega}\right\rangle
$$

Analytical solution

Conserver quantities

$$
\begin{aligned}
& \text { Total energy: } \omega=\omega_{1}+\omega_{2} \\
& \text { Total momentum: } p=\frac{1}{2}\left(p_{1}+p_{2}\right)
\end{aligned}
$$

We solved the Eigenvalue problem

$t=1 \cdots$
$\quad U_{g}=\left(U_{D} \otimes U_{D}\right) V_{g}$
now the two particles evolve?
non linear op. $=>$ non-trivial

$$
U_{g}^{(p)}\left|\Phi^{\omega}\right\rangle=e^{i \omega}\left|\Phi^{\omega}\right\rangle
$$

We find the following spectrum

The method: modified Bethe ansatz н. Bethe, Zeitschifitt tür physik 71:205-226 (1931)

$$
y=x_{1}-x_{2} \quad \text { particles distance }
$$

The method: modified Bethe ansatz н. Bethe, Zeitschrift tür rhysik 71:205-226 (1931)

$$
y=x_{1}-x_{2} \quad \text { particles distance }
$$

The method: modified Bethe ansatz н. Bethe, Zetischrift tür rhysik 71:205-226 (1931)
$y=x_{1}-x_{2} \quad$ particles distance

Continuous spectrum: degeneracy 4

Even: | $\|++\rangle_{k}$ | $\|--\rangle_{k-\pi}$ |
| :--- | :--- |
| $\|++\rangle_{-k}$ | $\|--\rangle_{-(k-\pi)}$ |

Odd:
.......physical content

.physical content

First difference with the Hamiltonian case which has degeneracy 2

The cause is discrete time: periodic energy spectrum
.physical content

First difference with the Hamiltonian case which has degeneracy 2

The cause is discrete time: periodic energy spectrum

Hamiltonian processes
"elastic bouncing"

"tunnelling"

First difference with the Hamiltonian case which has degeneracy 2

The cause is discrete time: periodic energy spectrum

Hamiltonian processes

New processes due to discrete time which momentum exchange

Suggestive parallel with fermion doubling
Known: Free fermions on lattice => "double particles" Susskind, Leonard, Lattice fermions, Phys. Rev. D 16, 3031 (1977)
New: Interacting fermions in discrete time:
=> "double scattering processes"

First difference with the Hamiltonian case which has degeneracy 2

The cause is discrete time: periodic energy spectrum

New processes due to discrete time which momentum exchange

Discrete spectrum and bound states

Bound states: configuration with a final state with vanishing probability distribution for large relative coordinate y
"molecule" made of two particles

Discrete spectrum and bound states

Bound states: configuration with a final state with vanishing probability distribution for large relative coordinate y
$\left|\Phi^{\omega}(y)\right\rangle=\left\{\begin{array}{l}e^{-i k y}(\cdots)-e^{i k y} T(\cdots) \quad y \geq 0 \\ \text { antisymm } \quad y<0\end{array}\right.$

1) k real $=>$ scattering solutions (no bound states)
"molecule" made of two particles

Discrete spectrum and bound states

Bound states: configuration with a final state with vanishing probability distribution for large relative coordinate y
$\left|\Phi^{\omega}(y)\right\rangle=\left\{\begin{array}{l}e^{-i k y}(\cdots)-e^{i k y} T(\cdots) \quad y \geq 0 \\ \text { antisymm } \quad y<0\end{array}\right.$

1) k real => scattering solutions (no bound states)
2) k has an imaginary part
rel. mom: $k=\frac{1}{2}\left(k_{1}^{\prime}-k_{2}^{\prime}\right)-i \tilde{k}$
"molecule" made of two particles

Discrete spectrum and bound states

Bound states: configuration with a final state with vanishing probability distribution for large relative coordinate y

1) k real $=>$ scattering solutions (no bound states)
2) k has an imaginary part
rel. mom: $k=\frac{1}{2}\left(k_{1}^{\prime}-k_{2}^{\prime}\right)-i \tilde{k}$
"molecule" made of two particles

Discrete spectrum and bound states

Bound states: configuration with a final state with vanishing probability distribution for large relative coordinate y

$$
\left|\Phi^{\omega}(y)\right\rangle=\left\{\begin{array}{l}
e^{-\tilde{k} n} \quad e^{\tilde{k} n} \\
\text { antisymm } \\
\text { armer } \quad y<0
\end{array} e^{i k y} T(\cdots) \quad y \geq 0\right.
$$

1) k real $=>$ scattering solutions (no bound states)
2) k has an imaginary part
"molecule" made of two particles

Condition for bound state formation

$$
\begin{gathered}
\tilde{k}>0 \\
T(p, k, g)=0
\end{gathered}
$$

$$
V_{g}=e^{i g \sum_{x} \psi_{x \uparrow}^{\dagger} \psi_{x \uparrow} \uparrow \psi_{x \downarrow}^{\dagger} \psi_{x \downarrow}}
$$

Result: for any value of the coupling g and total momentum p there exists a unique bound state

Result: for any value of the coupling g and total momentum p there exists a unique bound state

$$
V_{g}=e^{i g \sum_{x} \psi_{x \uparrow}^{\dagger} \psi_{x \uparrow} \psi_{x \downarrow}^{\dagger} \psi_{x \downarrow}}
$$

Result: for any value of the coupling g and total momentum p there exists a unique bound state

Second difference with the Hamiltonian case

where for some total momenta p there are no bound states

Two observations on bound states

Two observations on bound states

Perfectly localized bound states

Two observations on bound states

Perfectly localized bound states

"Bound" states with null coupling \mathbf{g}

Two observations on bound states

Perfectly localized bound states

"Bound" states with null coupling \mathbf{g}

$$
g=0 \Rightarrow U=U_{\text {free }}
$$

.still exist "bound" states

$$
p=0, \pm \frac{\pi}{2}, \pi
$$

Third difference with Hamiltonian models
Again due to discrete time

Final comments

Result: discrete-time model of four Fermion interaction solved for two-particles Proves the effects of discrete time in a many-body system

- more scattering processes than in the continuous-time case
- bound states with arbitrary total momentum
o stationary "bound" states even in the non-interacting case

Final comments

Result: discrete-time model of four Fermion interaction solved for two-particles Proves the effects of discrete time in a many-body system

- more scattering processes than in the continuous-time case
- bound states with arbitrary total momentum
o stationary "bound" states even in the non-interacting case

Today:

1) Quantum simulators
R.P. Feynman: Universal quantum simulator
R. P. Feynman, Quantum mechanical computers, Optics News 11, 11 (1985)

Interacting many body systems provide universal quantum computation A. M. Childs, D. Gosset, and Z. Webb, Science 339, 791 (2013).

Final comments

Result: discrete-time model of four Fermion interaction solved for two-particles
Proves the effects of discrete time in a many-body system

- more scattering processes than in the continuous-time case
- bound states with arbitrary total momentum
o stationary "bound" states even in the non-interacting case

Today:

1) Quantum simulators
R.P. Feynman: Universal quantum simulator
R. P. Feynman, Quantum mechanical computers, Optics News 11, 11 (1985)

Interacting many body systems provide universal quantum computation A. M. Childs, D. Gosset, and Z. Webb, Science 339, 791 (2013).

2) Fundamental physics

Can a quantum computation encompass relativistic quantum field theory?
The free case has been studied PRA, 90(6):062106, (2014) Annals of Physics 368, 177 (2016)
EPL 109 (5), 50003 (2015) PRA, 94(4):042120, (2016)
Renormalization in a quantum informational scenario Beny C., Osborne T.J., New J. Phys. 17083005 (2015)
The four fermion interaction is a precious lab for interacting systems

Final comments

Result: discrete-time model of four Fermion interaction solved for two-particles
Proves the effects of discrete time in a many-body system

- more scattering processes than in the continuous-time case
- bound states with arbitrary total momentum
o stationary "bound" states even in the non-interacting case

Today:

1) Quantum simulators
R.P. Feynman: Universal quantum simulator
R. P. Feynman, Quantum mechanical computers, Optics News 11, 11 (1985)

Interacting many body systems provide universal quantum computation A. M. Childs, D. Gosset, and Z. Webb, Science 339, 791 (2013).

2) Fundamental physics

Can a quantum computation encompass relativistic quantum field theory?
The free case has been studied PRA, 90(6):062106, (2014) Annals of Physics 368, 177 (2016)
EPL 109 (5), 50003 (2015) PRA, 94(4):042120, (2016)
Renormalization in a quantum informational scenario Beny C., Osborne T.J., New J. Phys. 17083005 (2015)
The four fermion interaction is a precious lab for interacting systems

