From Quantum Cellular Automata to Doubly Special Relativity

Alessandro Bisio

Workshop Quantum Foundations
New frontiers in testing quantum mechanics from underground to the space

November 30th 2017
Laboratori Nazionali di Frascati

in collaboration with:

Giacomo Mauro D'Ariano
Paolo Perinotti

Alessandro Tosini
Nicola Mosco
Marco Erba

supported by
JOHN TEMPLETON FOUNDATION
SUPPORTING SCIENCE ~INVESTING IN THE BIG QUESTIONS

Quantum Theory

Von Neumann, 1932

Each physical system is associated with a Hilbert space

Unit vectors are associated with states of the system

Physical observables are represented by self adjoint operators

The Hilbert space of a composite system is the tensor product of the state spaces associated with the component systems

The probabilities of the outcomes are given by the Born rule

Reconstruction of Quantum Theory

Operational Probabilistic Theory

composition

> sequence

G. Ludwig, Foundations of Quantum Mechanics (Springer, New York, 1985).
L. Hardy, e-print arXiv:quant-ph/0101012.
G. Chiribella, G. M. D'Ariano, P. Perinotti, Phys. Rev. A 84, 012311 (2011)

Reconstruction of Quantum Theory

Operational Probabilistic Theory

composition

sequence

Space? Dynamics? Energy? Time?

G. Ludwig, Foundations of Quantum Mechanics (Springer, New York, 1985).
L. Hardy, e-print arXiv:quant-ph/0101012.
G. Chiribella, G. M. D'Ariano, P. Perinotti, Phys. Rev. A 84, 012311 (2011)

Reconstruction of Quantum Field Theory

Quantum computational theory of dynamics

Quantum Field Theory

What kind of computer?

Quantum Circuit

Rules of the game \Longleftrightarrow axioms

What kind of computer?

Rules of the game \Longleftrightarrow axioms
"[...] everything that happens in a finite volume of space and time would have to be exactly analyzable with a finite numbers of logical operations" R. Feynman

Each system interacts with a finite number of neighbors: locality
Reversible Quantum Computation: unitary evolution

What kind of computer?

Rules of the game \Longleftrightarrow axioms
"[...] everything that happens in a finite volume of space and time would have to be exactly analyzable with a finite numbers of logical operations" R. Feynman

Each system interacts with a finite number of neighbors: locality
Reversible Quantum Computation: unitary evolution
All the nodes are equivalent: homogeneity

What kind of computer?

Rules of the game \Longleftrightarrow axioms

"[...] everything that happens in a finite volume of space and time would have to be exactly analyzable with a finite numbers of logical operations" R. Feynman

Each system interacts with a finite number of neighbors: locality
Reversible Quantum Computation: unitary evolution
All the nodes are equivalent: homogeneity

What kind of computer?

Rules of the game \Longleftrightarrow axioms

"[...] everything that happens in a finite volume of space and time would have to be exactly analyzable with a finite numbers of logical operations" R. Feynman

Each system interacts with a finite number of neighbors: locality
Reversible Quantum Computation: unitary evolution
All the nodes are equivalent: homogeneity

What kind of computer?

on a
Cayley Graph

Rules of the game \Longleftrightarrow axioms

"[...] everything that happens in a finite volume of space and time would have to be exactly analyzable with a finite numbers of logical operations" R. Feynman

Each system interacts with a finite number of neighbors: locality
Reversible Quantum Computation: unitary evolution
All the nodes are equivalent: homogeneity

What kind of computer?

Quantum Circuit

Quantum Cellular

B. Schumacher, R.F. Werner e-print arXiv:0405174.

on a

Cayley Graph

Rules of the game \Longleftrightarrow axioms

"[...] everything that happens in a finite volume of space and time would have to be exactly analyzable with a finite numbers of logical operations" R. Feynman

Each system interacts with a finite number of neighbors: locality
Reversible Quantum Computation: unitary evolution
All the nodes are equivalent: homogeneity

What kind of computer?

Quantum Circuit

1

Quantum Cellular

Automaton
B. Schumacher, R.F. Werner e-print arXiv:0405174.

on a

Cayley Graph

Rules of the game \Longleftrightarrow axioms

"[...] everything that happens in a finite volume of space and time would have to be exactly analyzable with a finite numbers of logical operations" R. Feynman

Each system interacts with a finite number of neighbors: locality
Reversible Quantum Computation: unitary evolution
All the nodes are equivalent: homogeneity

Towards free Quantum Field Theory

Cayley graph quasi-isometrically embeddable in flat space
\square
The group G must be virtually abelian \leadsto We restrict to the abelian case \mathbb{Z}^{3}

Towards free Quantum Field Theory

Cayley graph quasi-isometrically embeddable in flat space
The group G must be virtually abelian \leadsto We restrict to the abelian case \mathbb{Z}^{3}
$\underset{\substack{\text { Lield operators } \\ \text { site label }}}{\text { Linear evolution }} U \psi_{i}^{s} U^{\dagger}=\mathbf{U}_{\substack{s, r \\ \text { internal degree of freedom (e.g. spinorial index) }}}^{s} \psi_{j}^{r} \sim$ Quantum Walk

Towards free Quantum Field Theory

Cayley graph quasi-isometrically embeddable in flat space
The group G must be virtually abelian \longleftrightarrow We restrict to the abelian case \mathbb{Z}^{3}

Linear evolution $U \psi_{i}^{s} U^{\dagger}=\mathbf{U}_{i, j}^{s, r} \psi_{j}^{r} \longleftarrow \sim$ Quantum Walk

Isotropy: the evolution must be covariant under a group of graph automorphisms

Towards free Quantum Field Theory

Cayley graph quasi-isometrically embeddable in flat space
The group G must be virtually abelian \longleftrightarrow We restrict to the abelian case \mathbb{Z}^{3}

Linear evolution $U \psi_{i}^{s} U^{\dagger}=\mathbf{U}_{i, j}^{s, r} \psi_{j}^{r} \longleftarrow \longleftrightarrow$ Quantum Walk

Isotropy: the evolution must be covariant under a group of graph automorphisms

Minimize the number of degrees of freedom: $s=1,2$

Towards free Quantum Field Theory

Cayley graph quasi-isometrically embeddable in flat space

$$
\widehat{\sqrt{5}}
$$

The group G must be virtually abelian \leadsto We restrict to the abelian case \mathbb{Z}^{3}

Linear evolution $U \psi_{i}^{s} U^{\dagger}=\mathbf{U}_{i, j}^{s, r} \psi_{j}^{r} \longleftarrow \longleftrightarrow$ Quantum Walk

Isotropy: the evolution must be covariant under a group of graph automorphisms

Minimize the number of degrees of freedom: $s=1,2$

Weyl Quantum Walk

$$
\mathbf{U}=\sum_{h \in S} T_{h} \otimes \mathbf{U}_{h}
$$

G. M. D'Ariano, P. Perinotti, Phys. Rev. A 90, 062106 (2014).

Towards free Quantum Field Theory

Weyl Quantum Walk

G. M. D'Ariano, P. Perinotti, N. Mosco, A. Tosini Entropy 18, 228 (2016).

$$
\mathbf{U}=\sum_{h \in S} T_{h} \otimes \mathbf{U}_{h} \xrightarrow{\text { Fourier }} \mathbf{U}=\int_{\mathbf{B}} \mathrm{d}^{3} \mathbf{k}|\mathbf{k}\rangle\langle\mathbf{k}| \otimes \mathbf{U}(\mathbf{k})
$$

Towards free Quantum Field Theory

Weyl Quantum Walk

G. M. D'Ariano, P. Perinotti, N. Mosco, A. Tosini Entropy 18, 228 (2016).

$$
\mathbf{U}=\sum_{\substack{h \in S \\ \text { generators }}} T_{\substack{h}}^{\substack{\text { translations }}} \stackrel{\text { U. }}{\substack{\text { Fourier }}} \underset{\substack{\text { Brillouin zone } \\ \text { Momentum cutoff }}}{ } \mathrm{d}^{3} \mathbf{k}|\mathbf{k}\rangle\langle\mathbf{k}| \otimes \mathbf{U}(\mathbf{k})
$$

Towards free Quantum Field Theory

Weyl Quantum Walk
G. M. D'Ariano, P. Perinotti, N. Mosco, A. Tosini Entropy 18, 228 (2016).

$$
\mathbf{U}=\sum_{h \in S} T_{h} \otimes \mathbf{U}_{h} \xrightarrow{\text { Fourier }} \mathbf{U}=\int_{\mathbf{B}} \mathrm{d}^{3} \mathbf{k}|\mathbf{k}\rangle\langle\mathbf{k}| \otimes \mathbf{U}(\mathbf{k})
$$

$$
\stackrel{k \ll 1}{\rightleftarrows} \sigma^{\mu} k_{\mu} \psi=0 \quad \text { Weyl equation }
$$

Towards free Quantum Field Theory

Weyl Quantum Walk

$$
\mathbf{U}=\sum_{h \in S} T_{h} \otimes \mathbf{U}_{h} \xrightarrow{\text { Fourier }} \mathbf{U}=\int_{\mathbf{B}} \mathrm{d}^{3} \mathbf{k}|\mathbf{k}\rangle\langle\mathbf{k}| \otimes \mathbf{U}(\mathbf{k})
$$

G. M. D’Ariano, P. Perinotti, Phys. Rev. A 90, 062106 (2014).

$(1+1)$-dimensional Dirac Quantum Walk

$$
\begin{aligned}
& \mathbf{U}=\left(\begin{array}{cc}
n S & -i m \\
-i m & n S^{\dagger}
\end{array}\right) \begin{array}{c}
S \psi(x)=\psi(x+1) \\
n^{2}+m^{2}=1, \quad 0 \leqslant m \leqslant 1
\end{array} \longrightarrow \text { mass } \quad \begin{array}{c}
\text { bounded rest }
\end{array} \\
& \xrightarrow{m, k \rightarrow 0} i \partial_{t} \psi(k, t)=\left(\begin{array}{cc}
-k & m \\
m & k
\end{array}\right) \psi(k, t) \quad \text { Dirac equation }
\end{aligned}
$$

$$
\cos ^{2}\left(\omega_{A}\right)=\left(1-m^{2}\right) \cos ^{2}(k) \stackrel{m, k \rightarrow 0}{\rightleftarrows} \omega_{A}^{2}-k^{2}=m^{2}
$$

Relativistic dispersion relation

Futher generalization to $3+1$ dimensions and to free Maxwell's equations is possible

AB, G. M. D'Ariano, A. Tosini, Annals of Physics 354, 244 (2015). AB, G. M. D'Ariano, P. Perinotti, Annals of Physics 368, 177 (2016).

Towards free Quantum Field Theory

Weyl Quantum Walk

$\mathbf{U}=\sum_{h \in S} T_{h} \otimes \mathbf{U}_{h} \xrightarrow{\text { Fourier }} \mathbf{U}=\int_{\mathbf{B}} \mathrm{d}^{3} \mathbf{k}|\mathbf{k}\rangle\langle\mathbf{k}| \otimes \mathbf{U}(\mathbf{k})$
$\stackrel{k \ll 1}{ } \sigma^{\mu} k_{\mu} \psi=0 \quad$ Weyl equation
G. M. D'Ariano, P. Perinotti, Phys. Rev. A 90, 062106 (2014).

$(1+1)$-dimensional Dirac Quantum Walk

$$
\begin{aligned}
& \mathbf{U}=\left(\begin{array}{cc}
n S & -i m \\
-i m & n S^{\dagger}
\end{array}\right) \begin{array}{l}
S \psi(x)=\psi(x+1) \\
n^{2}+m^{2}=1,0 \leqslant m \leqslant 1 乙 \text { mass }
\end{array} \\
& \stackrel{m, k \rightarrow 0}{\Longrightarrow} i \partial_{t} \psi(k, t)=\left(\begin{array}{cc}
-k & m \\
m & k
\end{array}\right) \psi(k, t) \quad \text { Dirac equation }
\end{aligned}
$$

$$
\cos ^{2}\left(\omega_{A}\right)=\left(1-m^{2}\right) \cos ^{2}(k) \stackrel{m, k \rightarrow 0}{\rightleftharpoons} \omega_{A}^{2}-k^{2}=m^{2}
$$

Futher generalization to $3+1$ dimensions and to free Maxwell's equations is possible

AB, G. M. D'Ariano, A. Tosini, Annals of Physics 354, 244 (2015). AB, G. M. D’Ariano, P. Perinotti, Annals of Physics 368, 177 (2016).

QCA and Lorentz transformations

QCA and Lorentz transformations

Quantum Cellular Automata $\quad \underset{\sim}{m, k \rightarrow 0}$ Free Quantum Field Theory
 Lorentz invariant equations

The observer is the same! Boosted observer?

QCA and Lorentz transformations

Quantum Cellular Automata

Free Quantum Field Theory Lorentz invariant equations

The observer is the same! Boosted observer?

1D Dirac QW dispersion relation

$$
\cos ^{2}(\omega)=\left(1-m^{2}\right) \cos ^{2}(k) \rightarrow\binom{\text { classical kinematics }}{\text { emergent from the automaton }}
$$

> non Lorentz invariant
> Lorentz transformation
> $\binom{\omega^{\prime}}{k^{\prime}}=\gamma\left(\begin{array}{cc}1 & -\beta \\ -\beta & 1\end{array}\right)\binom{\omega}{k}$
> $\gamma:=\frac{1}{\sqrt{1-\beta^{2}}}$

Violations of Lorentz invariance at ultra-relativistic scales

different

 transformation
Deformed relativity

A simple speculation In whose reference frame is the Planck from Quantum Gravity energy the threshold for new phenomena?

Preserve relativity principle
Lorentz group

Deformed relativity

A simple speculation In whose reference frame is the Planck from Quantum Gravity energy the threshold for new phenomena?

Preserve relativity principle
Lorentz group
AND invariant energy scale

Modify the action of Lorentz group

non-linear action in momentum space
$D_{\beta}^{D}:=D-1 \circ D$
$L_{\beta}=\gamma\left(\begin{array}{cc}1 & -\beta \\ -\beta & 1\end{array}\right)$
momentum space
is more fundamental
\mathcal{D} is a non-linear map

- $J_{\mathcal{D}}(0,0)=I$
- singular point

- invertible
G. Amelino-Camelia, Physics Letters B 510, 255 (2001).
J. Magueijo, L. Smolin, Phys. Rev. Lett. 88, 190403 (2002).

Deformed relativity

A simple speculation In whose reference frame is the Planck from Quantum Gravity energy the threshold for new phenomena?

Preserve relativity principle
Lorentz group

Modify the action of Lorentz group

non-linear action in momentum space
$L_{\beta}^{D}:=\mathcal{D}^{-1} \circ L_{\beta} \circ \mathcal{D}$,
$L_{\beta}=\gamma\left(\begin{array}{cc}1 & -\beta \\ -\beta & 1\end{array}\right)$
momentum space is more fundamental
\mathcal{D} is a non-linear map

- $J_{\mathcal{D}}(0,0)=I$
- $\begin{gathered}\text { singular } \\ \text { point }\end{gathered} \Longleftrightarrow \underset{\text { invariant }}{\text { energy }}$
- invertible
G. Amelino-Camelia, Physics Letters B 510, 255 (2001).
J. Magueijo, L. Smolin, Phys. Rev. Lett. 88, 190403 (2002).

Deformed relativity and QW

Dirac QW dispersion relation

$$
\begin{aligned}
\cos ^{2}(\omega)=\left(1-m^{2}\right) \cos ^{2}(k) \leadsto & \frac{\sin ^{2}(\omega)}{\cos ^{2}(k)}-\tan ^{2}(k)=m^{2} \\
& \tilde{\omega}^{2}-\tilde{k}^{2}=m^{2}
\end{aligned}
$$

A. Bibeau-Delisle, AB, G. M. D'Ariano, P. Perinotti, A. Tosini, EPL 109, 50003 (2015). AB, G. M. D’Ariano, P. Perinotti, Phil. Trans. R. Soc. A 37420150232 (2016), AB, G. M. D’Ariano, P. Perinotti, Phys. Rev. A 94, 042120 (2016).

Deformed relativity and QW

Dirac QW dispersion relation

$$
\begin{aligned}
& \cos ^{2}(\omega)=\left(1-m^{2}\right) \cos ^{2}(k) \\
& \tilde{\omega}^{2}-\tilde{k}^{2}=m^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{D}\binom{\omega}{k}=\binom{\frac{\sin (\omega)}{\cos (k)}}{\tan (k)} \\
& -\frac{\pi}{2} \leqslant k \leqslant \frac{\pi}{2}
\end{aligned}
$$

A. Bibeau-Delisle, AB, G. M. D'Ariano, P. Perinotti, A. Tosini, EPL 109, 50003 (2015). AB, G. M. D'Ariano, P. Perinotti, Phil. Trans. R. Soc. A 37420150232 (2016). AB, G. M. D’Ariano, P. Perinotti, Phys. Rev. A 94, 042120 (2016).

Deformed relativity and QW: 3 spatial dimensions

Weyl QW dispersion relation

$$
\begin{aligned}
& n_{\mu}(k) \sigma^{\mu} \psi(k)=0 \\
& n(k):=\left(\begin{array}{c}
\sin \omega \\
s_{x} c_{y} c_{z}+c_{x} s_{y} s_{z} \\
c_{x} s_{y} c_{z}-s_{x} c_{y} s_{z} \\
c_{x} c_{y} s_{z}+s_{x} s_{y} c_{z}
\end{array}\right) \quad \begin{array}{c}
c_{i}=\cos \left(\frac{k_{i}}{\sqrt{3}}\right) \\
s_{i}=\sin \left(\frac{k_{i}}{\sqrt{3}}\right)
\end{array}
\end{aligned}
$$

AB, G. M. D'Ariano, P. Perinotti, Foundations of Physics, 47, 8,1065(2017). AB, G. M. D’Ariano, P. Perinotti, Phil. Trans. R. Soc. A 37420150232 (2016). AB, G. M. D’Ariano, P. Perinotti, Phys. Rev. A 94, 042120 (2016).

Deformed relativity in position space

The model is defined in the momentum space

Transformations in the position space?

Operational toy model of spacetime

A. Bibeau-Delisle, AB, G. M. D’Ariano, P. Perinotti, A. Tosini, EPL 109, 50003 (2015). AB, G. M. D'Ariano, P. Perinotti, Phil. Trans. R. Soc. A 37420150232 (2016). AB, G. M. D’Ariano, P. Perinotti, Phys. Rev. A 94, 042120 (2016).

Deformed relativity in position space

The model is defined in the momentum space

Transformations in the position space?

Operational toy model of spacetime

Relative Locality

A. Bibeau-Delisle, AB, G. M. D'Ariano, P. Perinotti, A. Tosini, EPL 109, 50003 (2015). AB, G. M. D’Ariano, P. Perinotti, Phil. Trans. R. Soc. A 37420150232 (2016). AB, G. M. D’Ariano, P. Perinotti, Phys. Rev. A 94, 042120 (2016).

Deformed relativity in position space

Relative locality \Rightarrow Observer-dependent spacetime

"before"

spacetime \mathcal{S}
"objective arena"
flat momentum space \mathcal{M}
phase space

$$
\mathcal{P}=\mathcal{T}^{*} \mathcal{S}
$$

"after"
phase space

$$
\mathcal{P} \neq \mathcal{T}^{*} \mathcal{S}
$$

no canonical projection that gives a description of
processes in spacetime
R. Schutzhold, W. G. Unruh, JETP Lett. 78, 431 (2003).
G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, L. Smolin, Phys. Rev. D 84, 084010 (2011).
A. Bibeau-Delisle, AB, G. M. D'Ariano, P. Perinotti, A. Tosini, EPL 109, 50003 (2015). AB, G. M. D’Ariano, P. Perinotti, Phil. Trans. R. Soc. A 37420150232 (2016).

AB, G. M. D’Ariano, P. Perinotti, Phys. Rev. A 94, 042120 (2016).

A final overlook

Main idea

Quantum
theory
"Quantum computational field theory"

A final overlook

Main idea

Quantum theory
"Quantum computational field theory"

Quantum "ab initio" theory of dynamics

QCA model

Free Quantum Field Theory

A final overlook

Main idea

Quantum theory
"Quantum computational field theory"

Quantum "ab initio" theory of dynamics

QCA model

Free Quantum Field Theory

Deformed relativity

momentum space DSR

