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Landauer’s Principle

…holds that "any logically irreversible manipulation of information, such 
as the erasure of a bit or the merging of two computation paths, must be 
accompanied by a corresponding entropy increase in non-information-
bearing degrees of freedom of the information-processing apparatus or its 
environment".

C. H. Bennet, “Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon”, Studies in History and Philosophy of Modern 
Physics 34, 501–510 (2003)

Endows information with strong evidence that it is a physical resource and 
not just some abstract entity*

(*BUT an important caveat: Landauer only pertains to logically irreversible 
processes - information can be processed in perfectly reversible ways 
also)



Landauer’s Principle

One of the most remarkable outcomes is the exorcism of Maxwell’s 
Demon 

Interestingly, Landauer’s principle holds for both classical and quantum 
systems and has been experimentally verified

E = kBT ln 2

It asserts that energy cost to the Demon of erasing the one bit of 
knowledge (where the atom is)  comes with an energy cost of

This sets the lower bound on the dissipated heat from the system into its 
environment ⌦

Q
↵
= Tr [HE (%E(t)� %E(0))]



Landauer’s Principle - The Experiments

A. Berut et al, “Experimental verification of Landauer’s 
principle linking information and thermodynamics” 
Nature 483, 187-189 (2012)

R. Gaudenzi et al, “Quantum-enhanced Landauer 
erasure and storage” arXiv:1703.04607
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Landauer’s Principle - The Details
“Entropic” Formulation

�hQi � �S = S(%S(0))� S(%S(t))

Recall the heat dissipated by the system into its environment is given by

Landauer and Bennetts formulations relate this quantity to the associate 
change in entropy of the system and provide us with the “entropic” bound 
that will be our focus

Where the entropy is given by the von Neumann entropy

D. Reeb and M. M. Wolf, “An improved landauer principle with finite-size corrections,” New J. Phys. 16, 103011 (2014)
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Landauer’s Principle
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J. Goold, M. Paternostro, and K. Modi, “Nonequilibrium quantum landauer principle,” Phys. Rev. Lett. 114, 060602 (2015)

“Thermodynamic” Formulation

However, while the entropic bound arises due to Landauer’s considerations, 
we can seek other paths to find alternative bounds on the dissipated heat

By considering the details of the dynamical map governing the evolution of 
the system a “Landauer-like” bound can be derived that involves only the 
Kraus operators and initial system state
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G. Guarnieri, S. Campbell, J. Goold, S. Pigeon, B. Vacchini, and M. Paternostro, “Full counting statistics approach to the quantum non-equilibrium 
landauer bound,” New J. Phys. 19 103038 (2017)



Landauer’s Principle
Full Counting Statistics Formulation

Using a two time measurement approach we can establish the conditional 
probability to record a given amount of heat being transferred from the 
system to its environment

G. Guarnieri, S. Campbell, J. Goold, S. Pigeon, B. Vacchini, and M. Paternostro, “Full counting statistics approach to the quantum non-equilibrium 
landauer bound,” New J. Phys. 19 103038 (2017)

Pt [Em, En] = Tr[⇧mU(t)⇧n⇢S(0)⌦ ⇢�⇧nU
†(t)⇧m]

P. Talkner, E. Lutz, and P. Hanggi, “Fluctuation theorems: Work is not an observable” Phys. Rev. E 75, 050102 (2007) 

pt(Q) =
X

En,Em

�(Q� (Em � En))Pt [Em, En]

⇥(⌘,�, t) ⌘ lnhe�⌘Qit = ln

Z
pt(Q)e�⌘QdQ

Thus the corresponding probability distribution is given

The cumulant generating function, with counting parameter η, is then



Landauer’s Principle
Full Counting Statistics Formulation

The cumulant of n-th order is simply obtained by differentiation

G. Guarnieri, S. Campbell, J. Goold, S. Pigeon, B. Vacchini, and M. Paternostro, “Full counting statistics approach to the quantum non-equilibrium 
landauer bound,” arXiv:1704.01078 in press New J. Phys.
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Hence n=1 corresponds to the average heat. The convexity of Θ requires

Thus combining these expressions we arrive at a new Landauer bound on 
the dissipated heat valid for arbitrary non-equilibrium processes

Remarkably for ⌘ ! � we recover the previous bound exactly.



Landauer’s Principle
Therefore we have three separate bounds on the dissipated heat emerging 
from fundamentally different viewpoints

�hQit � ��

⌘
⇥(⌘,�, t) ⌘ B⌘

Q(t) (⌘ > 0)

Each with its own advantages and insights that can be drawn.
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�hQi � �S = S(%S(0))� S(%S(t))

More importantly we are interested in assessing a point often overlooked 
when discussing Landauer:  

does the presence of quantumness change things?

It may then be natural to ask how these bounds relate to one another and 
their “relative” performance.
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We consider the excitation preserving XX model

We know that the dissipated heat will necessarily be affected by different 
initial states - but what role does the quantum nature play?



Dynamical Comparison
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For pure excited states the 
thermodynamic bound closely 
tracks the dissipated heat while 
the entropic bound appears 
largely useless

Changing the initial state we see 
that very different behaviours can 
be observed and that the entropic 
bound can be tighter

Clearly the initial state plays a crucial role in dictating the performance 
of these bounds, on the actual dissipated heat, and therefore in 
information erasure
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Which bound is better?
|0iS

|1iS

|0iE

|1iE

�

H

Choosing the point when <Q> is maximised we can determine which 
bound is tighter for the whole initial state parameter space
Higher temperatures tend to favour the thermodynamic bound
We see sharp boundaries between the relative performance of the 
bounds
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…but how do they really perform?
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� hQi < 0

It is important to caveat the previous plots with how tight either bound 
actually is: Remarkably, both bounds can be negative despite a 
positive dissipated heat
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We also see that the dissipated heat can be negative



Clausius’ Law
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It is easy to find that Clausius’ statement of the second law holds for

We know both bounds can be negative and therefore fail to accurately 
capture the behaviour of the heat

Clausius
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…why do we care again?
We have different formulations of non-equilibrium Landauer type bounds

In the context of information erasure the role that quantum coherence 
plays is not fully understood yet. Our results indicate it is not 
particularly relevant

Sharp crossovers between the 
bounds appear, and more 
interestingly quantum coherence 
appears to play an almost negligible 
role

Furthermore, the performance of 
these bounds sometimes fail to 
provide any meaningful information
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Many Thanks!
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