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Landauer’s Principle
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...holds that "any logically irreversible manipulation of information, such
as the erasure of a bit or the merging of two computation paths, must be
accompanied by a corresponding entropy increase in non-information-

bearing degrees of freedom of the information-processing apparatus or its
environment’.

Endows information with strong evidence that it is a physical resource and
not just some abstract entity”

(*BUT an important caveat: Landauer only pertains to logically irreversible

processes - information can be processed in perfectly reversible ways
also)

C. H. Bennet, “Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon”, Studies in History and Philosophy of Modern
Physics 34, 501-510 (2003)



Landauer’s Principle
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Demon

It asserts that energy cost to the Demon of erasing the one bit of
knowledge (where the atom is) comes with an energy cost of

E = kBT In 2
This sets the lower bound on the dissipated heat from the system into its

environment
(Q) =Tr[He (0(t) — 0p(0))]

Interestingly, Landauer’s principle holds for both classical and quantum
systems and has been experimentally verified



Landauer’s Principle - The Experiments
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Figure 1 | The erasure protocol used in the experiment. One bit of
information stored in a bistable potential is erased by first lowering the central
barrier and then applying a tilting force. In the figures, we represent the
transition from the initial state, 0 (left-hand well), to the final state, 1 (right-hand
well). We do not show the obvious 1 — 1 transition. Indeed the procedure is such
that irrespective of the initial state, the final state of the particle is always 1. The
potential curves shown are those measured in our experiment (Methods).

A. Berut et al, “Experimental verification of Landauer’s
principle linking information and thermodynamics”
Nature 483, 187-189 (2012)
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FIG. 1. Quantum-enhanced Landauer erasure and
storage of a molecular bit. (a) Schematics of the Landauer
erasure process employing a quantum nanomagnet. In order
to erase the spin bit, the effective barrier separating the two
binary states is lowered by inducing quantum tunneling of
magnetization (QTM). A small bias magnetic field is then
used to initialise the spin in the desired state within a time
Trel and store the new information. The Landauer principle
fixes the minimal dissipated heat Q and work W involved in
the cycle. (b) Sketch of the Feg easy-axis molecular magnet.

In the absence of magnetic field, the double-well potential
favors the two S. = +10 easy-axis spin eigenstates.

R. Gaudenzi et al, “Quantum-enhanced Landauer
erasure and storage” arXiv:1703.04607
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Landauer’s Principle - The Details
"Entropic” Formulation

Recall the heat dissipated by the system into its environment is given by

(Q) =Tr[Hg (0(t) — 0r(0))]

Landauer and Bennetts formulations relate this quantity to the associate
change in entropy of the system and provide us with the “entropic” bound
that will be our focus

B(Q) =2 AS = 5(es(0)) = S(es(t))

Where the entropy is given by the von Neumann entropy

D. Reeb and M. M. Wolf, “An improved landauer principle with finite-size corrections,” New J. Phys. 16, 103011 (2014)



Landauer’s Principle
“Thermodynamic” Formulation

However, while the entropic bound arises due to Landauer’s considerations,
we can seek other paths to find alternative bounds on the dissipated heat

(Q) =Tr[Hg (0(t) — 0r(0))]

By considering the details of the dynamical map governing the evolution of
the system a “Landauer-like” bound can be derived that involves only the
Kraus operators and initial system state

BIQ)>B=—In|Tr

Kraus operators s.t.:

Y KIKi=1 and 0s(t) =Y Kios(0)K]

J. Goold, M. Paternostro, and K. Modi, “Nonequilibrium quantum landauer principle,” Phys. Rev. Lett. 114, 060602 (2015)

G. Guarnieri, S. Campbell, J. Goold, S. Pigeon, B. Vacchini, and M. Paternostro, “Full counting statistics approach to the quantum non-equilibrium
landauer bound,” New J. Phys. 19 103038 (2017)



Landauer’s Principle
Full Counting Statistics Formulation

Using a two time measurement approach we can establish the conditional
probability to record a given amount of heat being transferred from the

system to its environment
P, [En, E,) = Tr[IL,U(t)I,, ps(0) ® pgll, UT(t)IL,,]
Thus the corresponding probability distribution is given

p(Q)= Y  8(Q— (Em— En))Pi[Ep, Ey]

b B

The cumulant generating function, with counting parameter n, is then
O(n, B,t) = In(e”"9), = ln/pt(Q)e_”QdQ

P. Talkner, E. Lutz, and P. Hanggi, “Fluctuation theorems: Work is not an observable” Phys. Rev. E 75, 050102 (2007)

G. Guarnieri, S. Campbell, J. Goold, S. Pigeon, B. Vacchini, and M. Paternostro, “Full counting statistics approach to the quantum non-equilibrium
landauer bound,” New J. Phys. 19 103038 (2017)



Landauer’s Principle
Full Counting Statistics Formulation

The cumulant of n-th order is simply obtained by differentiation

Q") = (~1)" 500, 8.8) -0

Hence n=1 corresponds to the average heat. The convexity of @ requires
O, B,t) = no-O(n, B,t)
n,P,t) = 77877 T, P, n=0

Thus combining these expressions we arrive at a new Landauer bound on
the dissipated heat valid for arbitrary non-equilibrium processes

B(Q), > —g@(n,ﬁ,t) — BL(t) (7> 0)

Remarkably for 7 — 3 we recover the previous bound exactly.

G. Guarnieri, S. Campbell, J. Goold, S. Pigeon, B. Vacchini, and M. Paternostro, “Full counting statistics approach to the quantum non-equilibrium
landauer bound,” arXiv:1704.01078 in press New J. Phys.



Landauer’s Principle

Therefore we have three separate bounds on the dissipated heat emerging
from fundamentally different viewpoints

B(Q) =2 AS = 5(es(0)) = S(es(t))

B(Q) = B=—n (Tr > Klos(O)K. ) 5@ =~ 08,0 = BY(H) (>0

Each with its own advantages and insights that can be drawn.

It may then be natural to ask how these bounds relate to one another and
their “relative” performance.

More importantly we are interested in assessing a point often overlooked
when discussing Landauer:

does the presence of quantumness change things?



The model

We consider the excitation preserving XX model
H=J0s®Rop+0sR0%)

We know that the dissipated heat will necessarily be affected by different
initial states - but what role does the quantum nature play?

0= (15 ) a=w(aVio)

8%
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Changing the initial state we see
that very different behaviours can
be observed and that the entropic
bound can be tighter

- Jt

—Or pure excited states the

thermodynamic bound closely
tracks the dissipated heat while
the entropic bound appears

argely useless
10

: B(Q)
0.8
0.6
04 AS(W\':O)
02 —

05 10°-15 <20 25 30"

Clearly the initial state plays a crucial role in dictating the performance
of these bounds, on the actual dissipated heat, and therefore In

Information erasure
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Choosing the point when <Q> is maximised we can determine which
oound is tighter for the whole initial state parameter space

Higher temperatures tend to favour the thermodynamic bound

We see sharp boundaries between the relative pertormance of the
bounds....but



...but how do they really perform? i
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It Is Important to caveat the previous plots with how tight either bound
actually is: Remarkably, both bounds can be negative despite a

positive dissipated heat
We also see that the dissipated heat can be negative



0= (157 3 )omvlevia) Clausius’ Law *_':#:G

It is easy to find that Clausius’ statement of the second |law holds for B
2 1 ]
B(Q) >0 o < 5 [1+ tanh(B)]

We know both bounds can be negative and therefore tail to accurately
capture the behaviour of the heat 0f
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...Wwhy do we care again?

We have different formulations of non-equilibrium Landauer type bounds

Q) > 5 = S(es(0) - S(es() 4@ >5-n (1T rlesor| ) AQ) 2 OB =BY) (1> 0)
5

Sharp crossovers between the 8.451_

bounds appear, and more 0'3'

interestingly quantum coherence

. 0.2
appears to play an almost negligible

0.1

role P
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03l -urthermore, the performance of
0'2_ these bounds sometimes fail to
0'1 orovide any meaningful information
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n the context of information erasure the role that guantum coherence
olays is not fully understood yet. Our results indicate it is not
particularly relevant




Many Thanks!

Steve Campbell, Giacomo Guarnieri, Mauro Paternostro, and Bassano Vacchini,
“Non-equilibrium quantum bounds to Landauer’s principle: Tightness and effectiveness”
Phys. Rev. A 96, 042109 (2017)

Giacomo Guarnieri, Steve Campbell, John Goold, Simon Pigeon, Bassano Vacchini, and Mauro Paternostro,
“Full counting statistics approach to the quantum non-equilibrium Landauer bound,”
New J. Phys. 19 103038 (2017)



