

Commissioning of the ATLAS Detector with cosmic rays / single beam data

Attilio Andreazza INFN and Università di Milano for ATLAS-Italia

- Fall 2008 data taking
- •(sub)Systems review:
 - status
 - characterization/calibration with cosmics ray
- Putting all together
- Experience with calibration and data flow
- Thanks for help in selecting material:

Michele Bianco, Gianpaolo Carlino, Fabio Cerutti, Claudia Ciocca, Claudio Costa, Andrea Dotti, Domizia Orestano, Silvia Resconi...

Single beam data

- Few days starting on September 10th.
- Limited statistics but complementary information to cosmic rays:
 - mainly relevant for calorimetry
 - verification of timing and response uniformity

tituto Nazional Fisica Nuclear

Single beam data

- Few days starting on September 10th.
- Limited statistics but complementary information to cosmic rays:
 - mainly relevant for calorimetry
 - verification of timing and response uniformity

stituto Nazionale di Fisica Nucleare

Fall-2008 cosmic rays data

• Most significant cosmic rays run period

September 13th- October 26th.

- detector was ready for LHC startup in September 10th
- including the whole ID:
 - Si stopped by cooling accident on May 1st
 - repaired in July
 - tuning and calibration runs in August.
- 216 million events on tape:
 - Different magnetic field configurations
 - Alignment
 - ID performance
 - Combined reconstruction

Attilio Andreazza

Cosmics ray properties

N.B.: **blue** and **red** are two different tracking algorithms

Cosmics ray properties

N.B.: blue and red are two different tracking algorithms

Cosmics ray properties

N.B.: blue and red are two different tracking algorithms

DETECTOR STATUS AND STANDALONE CALIBRATIONS

Commissioning of the ATLAS Detector with Cosmics

phi strip

10

 10^{2}

10

MDT

- 99.8% operational
- **RPC**
 - 95.5% operational
 - 70% of trigger coverage for 2008 run
 - commissioning completed for 2009 run
- TGC
 - 99.8% operational
- CSC
 - 100% operational
 - but only in calibration mode
 - problem in ROD firmware fixed in 2009 (under test at CERN).

X [cm]

INFN Stituto Nazionale di Fisica Nucleare

MDT Performance

- MDT efficiency study
 - 683/1110 chambers analyzed:
 - missing statistics on EO and EM chambers due to limited acceptance for cosmics
- Faulty channels <1%
 - most of them involve clusters of tubes sharing HV or FE boards
 - are being repaired for 2009 running
 - expected final dead channels 0.11%
- Chamber resolution
 - single hit resolution <100 μm
 (comparable with test beam data)
 - for curvature measurement:
 - optical alignment recovers most of distortions
 - residual systematics fixed with tracks

11

RPC performance

- Efficiency
 - cross checked with several methods
 - most inefficiencies are related to HV
 - typical strip efficiency is 98% at the nominal working point
 - 90% on average due to bad channels in 2008 run.
 - Similar values (92% average) have been measured on TGC.
- Point resolution
 - Computed with respect to MDT tracks
 - Value comparable to expectation from digital readout.

Calorimetry status

• LAr

- Dead readout regions <0.95%
- Under repair during shutdown
- individual dead channels
 0.02%
- Not to be repaired

• Tile

- 0.8% defective LVPS
- 1.4% FE inefficiencies
- Under repair for 2009 run: side
 A finished 100% efficient

250

200

Cluster Energy (0.3 < |η| < 0.4)

LArMuID

3x3

2295

0.6041

31.23 / 34

 12.69 ± 1.02

 46.05 ± 2.07

4.509e+04 ± 976

 228.7 ± 1.9

LArMuID

3x3

Entries

 χ^2 / ndf

Prob

Width

MPV

Area

 σ_{G}

Pre-september cosmics data

- Sensitivity to minimum ionizing particles already tested before the September run.
- Response uniformity <2% (LAr)

Single beam calibrations: timing EMBC: relative time by slot (average over 32 FTs)

- Beam halo particles cross different detector elements.
- Correction for •

20

10

0

0

-20

-30

-4900

Time[ns]

- Time Of Flight,
- Electronic response
- Offset between different partitions can • be measured and corrected.
- Synchronization <2 ns •

Attilio Andreazza

-4000

Bologna 07/05/2009

Inner detector status

• Pixel detector

- 98.5% of detector operational
- during cosmics run:
 - 98% of barrel
 - 85% of disks

• SCT

- 99% of barrel operational
- 97% of endcap operational
- Difference between Si barrel and Si endcaps maily due to leaky cooling loops
 - cooling system operated continuously from August till end of December run
- Measured intrinsic detector efficiency >99.5%
- TRT
 - 98% of channels operational
 - 2% dead from assembly and installation

Commissioning of the ATLAS Detector with Cosmics

Lorentz angle determination

- Drift in silicon is affected by E×B effect
- Charge is (de)focused along the Lorentz angle direction:

 $\tan \alpha_{L} = \mu_{H} B$

- Point displacement: thickness×tan(α_L)/2
 - $\approx 30 \,\mu\text{m}$ for pixels
 - $= \approx 10 \ \mu m \text{ for SCT}$
- measurement using cluster size vs. incidence angle α : cluster size = $a(\tan \alpha - \tan \alpha_L) + b / \sqrt{\cos \alpha}$

 $\bigotimes \vec{B}$

TRT threshold behavior

- TRT provides "bubble chamber" quality tracking...
- ...and transition radiation for high momentum particles.
- Observed the on-set of transition radiation for high p muons!

PUTTING ALL TOGETHER

residuals

F Ó

? real track

reco-track

- Put together all ID subsystems by minimizing residuals
- Different strategies tested:
 - global χ^2 (6*N*×6*N* matrix)
 - local χ^2 (*N* 6×6 matrices)
 - robust (specific residuals distribution)
- Limited statistic/not uniform coverage:
 - N cannot be all Si objects
 - limit to macro structures layers, half shells, staves...

tituto Nazionale Fisica Nucleare

Track parameter resolution

- Precision on determination of track parameters can be obtained:
 - splitting the track in two segments
 - compare extrapolation at the interaction point of the segments.

• Resolution already acceptable for LHC startup!

Commissioning of the ATLAS Detector with Cosmics

Muon energy loss in calorimeters

- Comparing standalone muon and ID tracks, it is possible to measure energy loss in the calorimeter:
- Measurement consistent with expectations:

 $\Delta P_{\text{ID-Muon}} \approx 3 \text{ GeV/c}$

Tag and probe efficiency

- Tag and probe will be the basic tool for efficiency measurement
- First test of this approach on real data:
 - existing lower track \rightarrow look for upper track
 - existing upper track \rightarrow look for lower track

(Missing)E_T measurement

- Significant improvements in the measurement of transverse energy in events with **random triggers**:
 - energy calibration
 - correction for running conditions (HV, hardware problems...)
 - bad-channels masking
 - noise description

 1st processing
 offline correction

 2nd processing
 --- Monte Carlo

- Still maintaining two algorithms:
 - **base** (cells with $E > 2\sigma$)
 - topological clustering

Identify cosmics fakes

offline!

Fake jets from cosmics

- Cosmics muon can provide fake high energy jets:
 - physical (showering)
 - instrumental
 (not pointing geometry)
 - well reproduced by Monte Carlo

Fake jets from cosmics

- Cosmics muon can provide fake high energy jets:
 - physical (showering)
 - instrumental
 - (not pointing geometry)
 - well reproduced by Monte Carlo

- Identify cosmics fakes offline!
 - charge deposition only in EM or HAC calorimetry
 - localized charge deposition

Fake jets from cosmics

- Cosmics muon can provide fake high energy jets:
 - physical (showering)
 - instrumental(not pointing geometry)
 - well reproduced by Monte Carlo

- Identify cosmics fakes offline!
 - charge deposition only in EM or HAC calorimetry
 - localized charge deposition
 - almost no fakes after cleaning

Attilio Andreazza

Attilio Andreazza

EXPERIENCE WITH CALIBRATIONS AND DATA FLOW

Commissioning of the ATLAS Detector with Cosmics

Processing and calibration data flow

Attilio Andreazza

On-line monitoring

- Data taking activity requires immediate feedback
 - unacceptably high trigger rate
 - take proper action in case of inefficiencies
- All detector use on-line monitoring system as fast reaction tool.

24h calibration loop

- After data taking some devoted stream are user for calibrations:
 - general purpose express stream
 - in cosmics replaced by "extended" ESDs
 - specialized streams (alignment, muons...)
- During data taking, expected to provide calibrations within 24 h
 - in some cases mainly monitoring
- Not fully in place for 2008 running:
 - in many cases single run statistics not enough
- but most algorithms exercised

Commissioning of the ATLAS Detector with Cosmics

Muon system calibration

- Specialized stream based on LVL2 muon trigger:
 - 60M events in 2008 run
 - 25M in current data taking (since 30/04)
- Data stream distributed to Tier2 for processing:
 - MDT: Rome, LMU, Ann Harbor, MPI
 - RPC: Naples
- Data distribution and processing are in place
- Calibrations for reprocessing from offline analysis:
 - LVL2 pointing geometry biases the acceptance
 - limited coverage of endcap chambers

ituto Nazionale Fisica Nucleare

Reprocessing

- Reprocessing task are shared by all ATLAS Tier1s
- Key feature of the ATLAS computing model
- Significant computing challenge:
 - massive retrieve of raw data from tape
 - multiple access to the conditions and calibration data
- Two reprocessings of single beam and cosmics data:
 - Dec '08 Jan '09
 - Apr '09
 - (very smooth: most
 - T1s completed in 1 week)

- CNAF performance:
 - in line with other Tier1's in both processings
 - significant improvements
 between the two runs
- job efficiency:
 - 95.6% (1st reprocessing)
 - 99.5% (2nd reprocessing)
- attempts before job success:
 - 1.83 (1st reprocessing)
 - 1.43 (2nd reprocessing)
- job retries:
 - 10% due to ATLAS software: excessive memory usage or crashes in specific events
 - 30% due to temporary site issues

Summary and outlook

- INFN Istituto Nazionale di Fisica Nucleare
- Most of the ATLAS detector took cosmics and single beam data in 2008:
 - main combined run with full ID in September;
 - for 2009 data taking expected full detector coverage.
- Since than made extensive use of available cosmics data:
 - sub-detector characterization
 - calibrations
 - combined performance
 - practice of monitoring and computing infrastructures
- Many interesting results!
 - ...but remember they are not collision data
 - limited coverage by cosmics / not pointing kinematics
 - further progress in detector understanding needs beams

ATLAS is ready for 2009 data taking!

BACKUP

2256

0.1648

3.179

9061

0.07148

3.743

15.1/2

0.0005259

 1328 ± 27.1

 $\textbf{0.639} \pm \textbf{0.016}$

-0.05041± 0.01293

25.98 / 2

2.286e-06

 420.6 ± 16.8

 0.04048 ± 0.01902

 0.5393 ± 0.0230

s3

s5

Entries

Mean RMS

 χ^2 / ndf

Constant

Prob

Mean

Sigma

Entries

Mean

RMS

Prob

Mean

Sigma

 χ^2 / ndf

Constant

sag phi sector 3

sag phi sector 5

1400

1200

1000

200

RPC performance

- Noise rate
 - measurement using random trigger (black histogram)
 - goo separation from real muon triggers (open histogram)
 - average rate <0.02 Hz/cm²
 - <0.1% noisy channels</p>
- Efficiency
 - cross checked with several methods
 - most inefficiencies are related to HV
 - typical strip efficiency is 98% at the nominal working point
 - 90% on average due to bad channels in 2008 run.
- Similar values (92% average) have been measured on TGC.

Solenoid bending power

• Change in direction between upper and lower track segments in the muon chambers, allow determination of bending power in the solenoid:

$$0.3 \int Bd\ell \, [\text{Tm}] = p \, [\text{GeV/c}] \left(\phi_{\text{up}} - \phi_{\text{down}} \right)$$

- Measured value: 4.4 Tm
- Expectation: 4.6 Tm
 - contribution from return yoke

ADC Review March 11-12 2009, CERN

Reprocessing. Dec08-Jan09

96.5% of 1beam and cosmics data were reprocessed in Dec08-Jan09 Ultimate goal to reprocess 100% of events. No events losses in reconstruction. Necessary changes in Production system is ready for March08 reprocessing

Reprocessing Jobs Statistics (1 job : 1 RAW data file)

T1	CA	GERN	ES	FR	IT	NG	NL	UK	US	sum
Total Jobs	20707	26348	364	48288	13619	12561	23472	54360	128764	329609
Done Jobs	20150	26015	364	46937	13018	12281	23167	51344	124667	317943
%%	97.3	94.7	100.	97.2	95.6	97.8	98.7	94.5	96.8	96.5
Aborted jobs	557	1459	0	1351	601	280	305	3016	4097	11666
%%	2.7	5.3	0	2.8	4.4	2.2	1.3	5.5	3.2	3.5

Number of attempts per successful job

TI CA	CERN	ES	FR	IT	NL	UK	US	<av></av>
## 1.02	1.16	1.18	1.11	1.83	2.85	2.31	1.39	1.8

Alexei Klimentov : ATLAS Computing

17

Spring 08 reprocessing

date-tier	CA	CERN	DE	ES	FR	IT	ND	NL	UK	ບຮ	sum
09-04-01	 0	4240	 0	 0	 0	 0	16	 0	1492	 0	5748
09-04-02	1806	2054	1510	1059	2166	0	513	1711	6530	3411	20760
09-04-03	4369	227	2565	2602	1572	0	1795	4732	8407	4192	30461
09-04-04	0000	Э	2775	6013	10000	0	4322	2271	12621	5710	55901
09-04-05	4327	418	5856	19	15819	0	4449	5634	13373	4166	54061
09-04-06	3559	0	3298	2	249	0	1633	1573	3518	8782	22614
09-04-07	442	0	817	0	2543	0	481	3544	6208	6417	20452
09-04-08	2	0	1605	22	5669	0	726	1335	1602	6495	17456
09-04-09	0	0	1440	0	886	2.53	65	817	62	6017	9540
09-04-10	0	0	1027	1	11	2586	1	650	3	8426	12705
09-04-11	0	0	0	0	6	2052	0	2192	0	2912	7162
09-04-12	0	0	0	0	0	3002	0	1925	0	5087	10014
09-04-13	0	0	0	0	0	4226	0	5040	0	5807	15073
09-04-14	0	0	0	0	179	1423	0	660	0	5536	7798
09-04-15	8	0	20	0	0	399	1	2	0	1436	1866
09-04-16	0	0	0	0	0	7	0	2	1	1079	1089
09-04-17	0	0	0	0	0	4	0	0	0	151	155
09-04-18	0	0	0	0	0	0	0	0	0	2699	2699
09-04-19	0	0	0	0	0	0	0	0	0	8040	8040
09-04-20	0	0	0	0	0	0	0	0	0	5940	5940
09-04-21	0	0	0	0	0	0	0	0	0	5116	5116
09-04-22	0	0	0	0	0	0	0	0	0	2442	2442
09-04-23	0	0	0	0	0	0	0	0	0	1839	1839
09-04-24	0	0	0	0	0	0	0	0	0	62.6	626
09-04-25	0	0	0	0	0	0	0	0	0	2368	2368
09-04-26	0	0	0	0	0	0	0	0	0	5220	5220
09-04-27	0	0	0	0	0	0	0	0	0	3862	3862
09-04-28	0	0	0	0	0	0	0	0	0	1915	1915
09-04-29	0	0	0	0	0	0	0	0	0	250	250
09-04-30	0	0	0	0	0	0	0	0	0	1	1