BESIII Latest Results

Marco Destefanis

Università degli Studi di Torino e INFN

on behalf of the BESIII Collaboration

VII Workshop on Theory, Phenomenology and Experiments in Flavour Physics – FPCapri2018 Anacapri, Italia June 08-10, 2018

Overview

> Introduction

BEPCII and the BESIII experiment BESIII dataset

Physics highlights
 Charmonium-like states: XYZ states
 Baryon spectroscopy
 Dark photon and µ anomalous
 magnetic moment

The BESIII Spectrometer @ IHEP

BEijing Spectrometer III

e⁺e⁻ collisions

D.M. Asner et al, Physics at BES-III, arXiv:0809.1869v1 [hep-ex] (2008)

BEPCII Storage Rings

BESIII Detector

Cylindrical GEM Inner Tracker

Low Material budget $\leq 1.5\%$ of X₀ for all layers

Momentum resolution:: $\sigma_{pt}/P_t = 0.5\%$ @1 GeV

High Rate capability: ~10⁴ Hz/cm²

Coverage: 93%

The current Inner Tracker suffers from aging. Italy, Germany and Sweden are building a new Inner Tracker based on three layers of cylindrical GEM using the same construction technique developed for the KLOE-2 CGEM detector.

Peculiarities of the BESIII CGEM

	KLOE-2	BESIII	action
Number of detector layers	4	3	→ 5 mm drift gap
Drift gap	3 mm	5 mm	also for µTPC
Material budget per layer	0.5% X ₀	0.4% X ₀	rohacell and anode
Momentum resolution @1 GeV	not used	$\sigma_{pt}/P_t = \sim 0.5\%$	
Rate capability – radiation hardness	< 10 kHz/cm ²	few 10 kHz/cm ²	
Spatial resolution $\boldsymbol{\phi}$	250-350 μm (B=0.5T)	100-150 μm (B=1T)	with μTPC
Spatial resolution Z	~1 mm	<500 μm	with μTPC
Magnetic filed	B = 0.52 T	B = 1 T	→ μTPC
Internal/external diameter	244/440 mm	156/356 mm	higher rate
Readout	digital	charge + time	new ASIC chip

Peculiarities of the BESIII CGEM

	KLOE-2	BESIII	action
Number of detector layers	4	3	→ 5 mm drift gap
		5 mm	also for µTPC
		0.4% X ₀	rohacell and anode
		$\sigma_{pt}/P_t = \sim 0.5\%$	
R	2	few 10 kHz/cm ²	
S		100-150 μm (B=1T)	with μTPC
S		<500 μm	with μTPC
Magnetic filed	B = 0.52 I	B = 1 T	\rightarrow µTPC
Internal/external diameter	244/440 mm	156/356 mm	higher rate
Readout	digital	charge + time	new ASIC chip

Peculiarities of the BESIII CGEM

	KLOE-2	BESIII	action
Number of detector layers	4	3	→ 5 mm drift gap
Drift gap	3 mm	5 mm	also for µTPC
Material budget per layer	0.5% X ₀	Layer 1	
Momentum resolution @1 GeV	not used		
Rate capability – radiation hardness	< 10 kHz/cm ²		
Spatial resolution ϕ	250-350 μm (B=0.5T)		
Sr G3-L3	~1 mm	These and	
M	B = 0.52 T		ATA DE
In	244/440 mm	156/356 mm	higher rate
Re	digital	charge + time	new ASIC chip
	Layer 3		9

CGEM Electronics: General Overview

Analog readout

reduce strip pitch 10000 channels

CGEM Electronics: General Overview

BESIII Datasets

- World largest data sample on J/ψ, ψ(25), ψ(3770), V(4260)...
 in e⁺e⁻ collisions
- From light meson spectroscopy to $\Lambda_c \Lambda_c$
- Fine and coarse scan of the accessible energy region

BESIII Data Taking 2017

- \cdot J/ ψ data taking, 4 months
- т mass measurement, 1 month
- $\psi(3686)$ scan for relative phase measurement, 1 month
 - 500 pb⁻¹ of data
 - from J/ ψ scan all phases compatible with 90 degrees (or 0 if a EM decay with the $\pi\pi$ exception)
 - from the present ψ(3686) measurements: SU3 on VP decay 180 degrees cont+BR PP decay 0 degrees
 - hence scan to get a phase direct measurement

XYZ States

Below DD threshold: all the states have been observed and described by the cc potential Model

Above the threshold: more complex situation • only a few of the predicted states above the threshold have been found

• Many new states have been observed with properties that are not consistent with the expectation for charmonium: X, Y, Z

X states: charmonium-like states with J^{PC}≠1⁻ observed in B decays, proton-proton, and proton-antiproton collisions.

Y states: charmonium-like states with **J**^{PC}=1--; Observed in direct e+e- annihilation or initial state radiation (ISR).

Z states: charmonium-like states carrying electric charge; must contain at least cc and a light qq pair

Y States

- The observed charmonium-like states Y(4260), Y(4360), and Y(4660) can not interpreted as conventional charmoniums.
- New decay modes searching and the line shape measurement is useful for understanding the nature of these Y-states.
- > Hadronic transitions (by an n or π^0) to lower charmonia like J/ ψ are regarded as sensitive probes to study the properties of these Y-states.
- Nature of these Y-states: hybrids ? tetraquarks? hadro-charmonium? hadronic molecule?

e⁺e⁻ -> ψ(3686) π⁺π⁻

BaBar

Belle

M=4669 ± 22 MeV Γ=104 ± 49 MeV M=4652 ± 13 MeV Γ=68 ± 11 MeV

M=4667 \pm 7 MeV Γ =36 +32(-14) MeV B Γ_{ee} = 1.4 \pm 0.5 eV

(updated in PDG 72 ± 11 MeV)

16

Y(4660): Hidden Charmed Barionium?

According to R. Faccini et al., PRL 104, 132005 (2010) [see also L. Maiani et al., PRD 72, 031502 (2005)]

Y(4660) in $e^+e^- \rightarrow \psi(3686)\pi^+\pi^-$ cross section:

 σ_{peak} = 12 π / M² BΓ_{ee} / Γ x 1.5 (incl π⁰ π⁰) ~ 0.04 ± 0.025 nb to be compared to e⁺ e⁻ -> Λ_c Λ_{cbar} σ_{peak} ~ 0.55 nb

Y(4660) baryonic coupling ≥ 10 mesonic coupling -> Unexpected!
- Is it a hidden charmed baryonium?

Y(4660) fulfills the old Rossi Veneziano, G.F. Chew paradigm [Nucl.Phys. B123, 507(1977), G.F.Chew Nucl.Phys. B79, 365 (1974)] of a charm tetraquark (hidden charm baryonium) decay: mostly popping up from the vacuum a light quark pair and falling apart as a charmed baryon pair

Y(4660): data on $e^+e^- \rightarrow \Lambda_c\Lambda_c$

 Belle
 G. Pakhlova et al., [Belle Collaboration], PRL 101, 172001 (2008)

 BESIII
 Ablikim et al., PRL 120, 132001 (2018)

pp Cross Section

CMD3 new results e+e- -> ppbar Born cross section

Our new 2017 data in comparison with BaBar and CMD-3 2011-2012 scans (R.R. Akhmetshin et al., (CMD-3 Collaboration), Phys. Lett. B759, 634 (2016).)

E. Solodov, Baryon Form Factors: Where do we stand?, Bad Honnef, April 2018

BESIII vs BELLE

Not settled yet, since there is some tension between BESIII and Belle in $\sigma(e^+e^- \rightarrow \Lambda_c \Lambda_{cbar})$), as pointed out by Ulf Meißner and his collaborators In particular:

- Belle data show a wide resonance, consistent with the Y(4660), seen by BaBar and Belle in e⁺ e⁻ -> ψ (3686) $\pi^{+}\pi^{-}$, hardly compatible with BESIII flat behaviour up to 4.6 GeV
- Belle data are fit by means of a resonance on top of $\Lambda_c \Lambda_{cbar}$ FSI, that predicts again a fast rise at thr, but not a jump.

Ling-Yun Dai, Johann Haidenbauer, Ulf-G. Meißner, PRD 96, 116001 (2017)

- Resonance Y(4660) [called X(4660) in this paper] + FSI @thr: $M = (4652.5 \pm 3.4) \text{ MeV}$ $\Gamma = (62.6 \pm 5.6) \text{ MeV}$ $\sigma_{\text{peak}} \sim 0.55 \text{ nb}$ [comparable to $\sigma(e^+e^- \rightarrow pp_{bar}) \sim 0.8 \text{ nb}$ @ threshold]
- Concerning BESIII measurements they write: "While they agree with the Belle data, as for as cross sections magnitude, they indicate a different trend in energy. It is impossible to fit both data. Hopefully BESIII will extend their measurements at higher energies and thereby clarify the situation."

Determination of Spin Parity of Z_c(3900)

Determination of spin-parity -> discrimination between theoretical models PWA performed on two different data samples (at 4.23 GeV and at 4.26 GeV)

 $A = |A(\sigma J/\psi) + A(f_0 J/\psi) + A(f_0 (1370)J/\psi) + A(f_2 (1270)J/\psi) + A(Z_c \pi)|$

 σ and $f_{0,2}$ components were tested in the J/ ψ recoil spectrum to understand if such states can produce rescattering peaks

PRL 119, 072001

Hypothesis of 1⁺ is favoured Compatible with the picture that Z_c(3900) = Z_c(3885) observed in DD*

Hypothesis	$\Delta(-2\ln L)$	$\Delta(\text{ndf})$	Significance
1 ⁺ over 0 ⁻	94.0	13	7.6σ
1^+ over 1^-	158.3	13	10.8σ
1 ⁺ over 2 ⁻	151.9	13	10.5σ
1 ⁺ over 2 ⁺	96.0	13	7.7σ

BESIII: Baryon Production

e⁺e⁻ -> p<u>p</u>γ

Angular distribution of the ISR photon in the Lab. Frame:

- ISR analysis: continuous q² range is available from the threshold (study of the q² dependence of the cross section and the proton form factors)
- Untagged ISR analysis: high cross section of the signal (high statistics)

e⁺e⁻ -> ppγ: Effective FF Structure

- Effective Form Factor as a function of the 3-momentum (P) of the relative motion of the two protons
- The oscillations can be extracted from the effective form factor as $F^{osc} = |Geff| F^{o}$ (F^o describes the regular behavior of the form factor over the long range of the ppbar invariant mass)

PRL 114, 232301 (2015); Phys. Rev. C 93, 035201 (2016)

Oscillations seen in eff. FF by Babar reproduced by both ISR tagged and untagged method

Observation of Spin Polarization in $J/\psi \rightarrow \Lambda\Lambda$

BESIII, PRD 95, 052003 (2017)

Process described by two Form Factors (two complex numbers) i.e. three real parameters:

 $rac{d\Gamma}{d\Omega} \propto 1 + oldsymbol{lpha_{\psi}} \cos^2 heta$

BF, a_{ψ} and phase $\Delta \Phi (G_{E}/G_{M}) \longrightarrow$

Dubnickova, Dubnicka, Rekalo Nuovo Cim. A109 (1996) 241 Gakh, Tomasi-Gustafsson NPA771 (2006) 169 Czyz, Grzelinska, Kuhn PRD75 (2007) 074026 Fäldt EPJ A51 (2015) 74; EPJ A52 (2016)141 Fäldt, Kupsc PLB772 (2017) 16 Measured for the first time!

Similar studies from Italian members on $J/\psi \rightarrow \Sigma^+\Sigma^-$

Fit results

 $0.913 \pm 0.028 \pm 0.012$

Results of the cross section and effective EMFFs

□ The cross section $\sigma = \frac{N_{signal}}{L\epsilon(1+\delta)Br(\Lambda \to p\pi^-)Br(\bar{\Lambda} \to \bar{p}\pi^+)}$

- > ISR correction factor $1 + \delta$ is from ConExc
- $\succ \epsilon$ is the detection efficiency, L is the luminosity
- > $\sigma = 119.0 \pm 5.3(stat.) \pm 7.3(sys.) \text{ pb}^1$

 \Box Effective form factors are related to σ , $|G(q^2)| =$

$$\sqrt{rac{\sigma(q^2)}{(1+rac{1}{2 au})(rac{4\pilpha^2eta}{3q^2})}}$$

 $> |G| = 0.123 \pm 0.003(stat.) \pm 0.004(sys.)$

 $\alpha \approx \frac{1}{137}$ is the fine structure constant,

 $\beta = \sqrt{1 - \frac{1}{\tau}}$ is the velocity, $\tau = \frac{q^2}{4m_{\Lambda}^2}$.

	$\sigma_{Born}(pb)$	G
$BESIII^1\sqrt{s} = 2.40 \text{ GeV}$	$128{\pm}19{\pm}18$	$0.127{\pm}0.009{\pm}0.009$
$BaBar^2 \sqrt{s} = 2.35 - 2.40 \text{ GeV}$	176±34	$0.152{\pm}0.016$

¹Phys. Rev. D **97**, 032013 (2018)

¹The systematic uncertainty is dominated by a conservative estimate of the₂₉ contribution of $|\vec{p}|(\Lambda)$

²Phys. Rev. D **76**, 092006 (2007)

Results of $R = |G_E/G_M|$ and relative phase $\Delta \Phi$

Systematic uncertainty estimate				α_{Λ} is determined to be 0.75 by preliminary BESIII result
Source	R(%)	$\Delta \Phi(\%)$	=	preminary DEom result
$\chi^2(4C)$ cut	2.8	16.8		more than 8 σ deviation from
mass window of $p\pi$	• 0.1	5.5		PDG value
different range of $\cos\theta_{\Lambda}$	<u>1.3</u>	6.8		
total	3.1	18.9	_	
different α_{Λ}	2.0	13.7	_	

$$\Box R = 0.94 \pm 0.16(stat.) \pm 0.03(sys.) \pm 0.02(\alpha_{\Lambda})$$

$$\Box \Delta \Phi = 42^{\circ} \pm 16^{\circ}(stat.) \pm 8^{\circ}(sys.) \pm 6^{\circ}(\alpha_{\Lambda})$$

0110

The phase between time-like G_E and G_M of the Λ is determined for the first time for any baryon. ³⁰

Dark Photon search in $e^+e^- \rightarrow \gamma e^+e^-$ and $\gamma \mu^+\mu^-$

Dark Photon search in $e^+e^- \rightarrow \gamma e^+e^-$ and $\gamma \mu^+\mu^-$

PLB 774, 252 (2017)

2.9fb⁻¹ at $\psi(3770)$

Mass region: 1.5 - 3.4 GeV/c²

- < 1.5 GeV/c²: $\pi^{+}\pi^{-}$ background dominates
- > 3.4 GeV/c²: hadronic q-qbar process

Background: MC shape with Phokara

ISR technique

Fit QED background with 4 order polynomial

Difference γe^+e^- and $\gamma \mu^+\mu^-$ yelds

No peaking structure observed -> no dark photon signature

Combined statistics

90% confidence level

 J/ψ region removed

Dark Photon search in $e^+e^- \rightarrow \gamma e^+e^-$ and $\gamma \mu^+\mu^-$

Muon Magnetic Moment

Lepton magnetic moment: $\bar{\mu} = g \frac{Qe}{2m} \bar{s}$

Dirac theory prediction: g = 2(1 + a)

$$a_{\mu} = \frac{g_{\mu} - 2}{2}$$

Muon anomaly arises from quantum fluctuations

QED contribution (largest):

Hadronic contribution:

Muon Magnetic Moment

$$a_{\mu} = \frac{g_{\mu} - 2}{2} = \frac{\alpha}{2\pi} + \dots = 0.001161$$

 $a_{\mu}^{theo} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{hadr}$

Contribution	Results in 10	D ⁻¹⁰ units	
QED (leptons)	11658471.885	± 0.004	Kinoshita et al. (2012)
Weak	15.4	± 0.2	Czamecki et al. (2003)
HVP (LO)	692.3	± 4.2	Davier et al. (2001)
HVP (HO)	-9.84	± 0.07	Hagiwara et al. (2009)
HLBL	11.6	± 4.0	Jegerlehner, Nyffler (2009)
Total	11659181.3	± 5.8	
Experiment	11659208.9	± 6.3	Discrepancy: 27.6 ± 8.5

Prediction limited by hadronic contributions

Perturbative method cannot be applied in the relevant energy regime

PRL 92, 161802 (2004) Nuclear Physics B (Proc. Suppl.) 144 (2005) 191-200

Muon Magnetic Moment

KLOE^[1] and BABAR^[2] measurement discrepancy 3-5% Another high precision measurement needed -> BESIII

Wider mass range than KLOE Closer to $\sqrt{s} \leq 2$ GeV than BABAR -> lower suppression of ISR events Untagged ISR mode can be used above $\sqrt{s} \gtrsim 1$ GeV -> no problem for $\geq 4\pi$

^[1] B. Aubert et al., Phys. Rev. Lett. 103, 231801 (2009). J.P. Lees et al., Phys. Rev. D86, 032013 (2012)

[²] F. Ambrosino et al. Phys. Lett. B 670, 285 (2009). F. Ambrosino et al. Phys. Lett. B 700, 102-110 (2011).
 D. Babusci et al. Phys. Lett. B 720, 336-343 (2013).

Comparison of $\pi^+\pi^-$ and $\pi^+\pi^-2\pi^0$ Form Factors

PLB 753, 629 (2016)

Pion Form Factor F_{π}

• New BESIII measurement agrees with KLOE^[1] and BABAR^[2]

Small shift wrt BABAR above ρ-ω interference

- ^[1] B. Aubert et al., Phys. Rev. Lett. 103, 231801 (2009). J.P. Lees et al., Phys. Rev. D86, 032013 (2012)
- ^[2] F. Ambrosino et al. Phys. Lett. B 670, 285 (2009). F. Ambrosino et al. Phys. Lett. B 700, 102-110 (2011).
 - D. Babusci et al. Phys. Lett. B 720, 336-343 (2013).

- Error: weighted mean of tagged and untagged events
- ≈ 3% precision like BABAR

$$a_{\mu}^{\pi^{+}\pi^{-}2\pi^{0}[0.92-1.8 \ GeV],LO}/10^{-10}$$

BESIII (preliminary) 18.63 ± 0.27 ± 0.57

BABAR (preliminary)

 $17.9 \pm 0.1 \pm 0.6$

PRELIMINARY

- [1] R. R. Akhmetshin et al., Phys. Lett. B 466, 392 (1999).
- [2] S. I. Dolinsky et al., Phys. Rept. 202, 99 (1991).
- [3] C. Bacci et al., Nucl. Phys. B 184, 31 (1981).
- [4] L. M. Kurdadze et al., J. Exp. Theor. Phys. Lett. 43 643 (1986).
- [5] M. N. Achasov et al., Preprint BUDKER-INP-2001-34 (Novosibirsk, 2001). 37
- [6] G. Cosme et al., Phys. Lett. B 63, 349 (1976).
- [7] G. Cosme et al., Nucl. Phys. B 152 215 (1979).
- [8] B. Esposito et al., Lett. Nuovo Cim. 31, 445 (1981).

BEPCII Upgrades

➢ Possible improvement in MAX beam energy 2.3 GeV → 2.45 GeV

- CMS energy upper limit 4.9 GeV
- ♦ In 2018 from 4.6 GeV to 4.7 GeV
- ♦ In 2020 from 4.7 GeV to 4.9 GeV

New physics topics from higher energies

- ✓ Exotics Y(4660), Y(4630), Z_c^+ (4430), Z_c^+ (4250), X...
- ✓ D_s^{*}D_{s2}^{*} threshold @ 4.68 GeV
- \checkmark $\Lambda_c \Sigma_c$ threshold @ 4.74 GeV
- ✓ We will be a bit below $\Sigma_c \Sigma_c$ threshold (4.91 GeV)

Improvement in integrated luminosity of 20-30%
In 2020? A bit more data

Summary

Huge statistics

J/ψ, ψ(25), ψ(3770) XYZ studies R scans Hadron form factors

• Near future

Collect data at higher energies to complete scans Higher luminosity expected from BEPCII Analyse the full data sample Many PWA to be completed

Stay tuned for new results!!