Lнср гнср

LHCb Highlights & Prospects

Introduction

Highlights

CKM angle γ weak phase ϕ_5

weak phase ϕ

 $b\to s\ell\ell$

 $\mathbf{b} \to \mathbf{c} \ell \, \nu$

Prospects

Conclusions

C. Fitzpatrick

June 8, 2018

Flavour at LHCb

Recent results and prospects

Conor Fitzpatrick On behalf of the LHCb Collaboration

7th Workshop on Theory, Phenomenology & Experiments in Flavour Physics 8-10 June 2018 Vill Orlandi, Anacapri

Why measure properties of heavy flavour?

Speaking to a biased audience here, but personal (Experimental) opinion:

- Complementarity: Probes effects of new particles at energy scales inaccessible in direct searches
- Variety: From time-dependent measurements of *CP* observables to rare decay searches, there is a wealth of experimental challenges
- Necessity: There is much we do not know about the nature of the universe, and many places to look:
 - If new particles are observed at the (HL)LHC, we must probe their flavour structure
 - If no new particles are observed, measurements in quantum loops can tell us what to build next

LHCb Highlights & Prospects

Introduction

 Highlights

 CKM angle γ

 weak phase ϕ_s
 $b \rightarrow s \ell \ell$
 $b \rightarrow c \ell \nu$

 Prospects

 Conclusions

C. Fitzpatrick

LHCb: The precision flavour experiment

LHCb was built to study beauty and charm at the LHC:

- Excellent decay time resolution: \sim 45fs (VELO)
- High purity + Efficiency with flexible trigger

LHCb Highlights & Prospects

ntroduction

HighlightsCKM angle γ weak phase ϕ_s b $\rightarrow s\ell\ell$ b $\rightarrow c\ell\nu$ Prospects

Conclusions

C. Fitzpatrick

The LHCb dataset

> 2018 is the last year of data taking with the present LHCb detector

Hoping to collect 2.5fb⁻¹ this year, total Run 1 + Run 2 dataset > 9fb⁻¹
 Run 2 dataset benefits from increased cross-sections and improved trigger

LHCb Highlights & Prospects

Highlights

 $b \rightarrow s \ell \ell$

 $b \rightarrow c \ell \nu$

Prospects Conclusions

CKM angle γ

weak phase ϕ_s

C. Fitzpatrick

Recent highlights

LHCb Highlights & Prospects

Introduction

Highlights

CKM angle γ

weak phase ϕ_s

 $b \rightarrow s \ell \ell$

 $b \rightarrow c \ell \nu$

Prospects

Conclusions

LHCb has a broad physics programme, covering much more than just b- and c-physics

- Electroweak measurements
- Spectroscopy
- Heavy Ion & fixed-target physics
- Today I will present some recent highlights, starting with CP and finishing with rare and semileptonic ratios

C. Fitzpatrick

CKM angle γ LHCb-CONF-2018-002

- $\blacktriangleright~\gamma$ is the least well measured angle of the UT
- Can be measured in modes dominated by tree-level contributions: Constrains the UT apex

No current measurement has a precision better than 10°: Make multiple measurements and combine

LHCb Highlights & Prospects

Introduction

Highlights

CKM angle γ

weak phase $\phi_{\it S}$

 $b \rightarrow s \ell \ell$

 ${\rm b} \to {\rm c} \ell \, \nu$

Prospects

Conclusions

C. Fitzpatrick

CKM angle γ LHCb-CONF-2018-002

▶ LHCb combination with Run 1 and several Run 2 inputs:

• LHCb finds $\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$ using a frequentist combination.

• Compare to indirect determination: $\gamma = (65.33^{+0.96}_{-2.54})^{\circ}$ [CKMFitter]

LHCb Highlights & Prospects

Introduction

Highlights CKM angle γ weak phase ϕ_5

 $b \rightarrow s \ell \ell$ $b \rightarrow c \ell \nu$

Prospects

Conclusions

C. Fitzpatrick

$\phi_s^{s\bar{s}s}$ in $B^0_s \rightarrow \phi \phi$ LHCb-CONF-2018-001 PRELIMINARY

- Weak phase \(\phi_s^{ccs}: CP\) violation in the interference between mixing and decay of B⁰_s mesons
- ▶ LHCb has made world best measurements in $B_s^0 \rightarrow J/\psi(KK, \pi\pi), B_s^0 \rightarrow D_sD_s$
- ▶ $\phi_s^{s\bar{s}s}$ accessible in $B_s^0 \rightarrow \phi \phi$:
 - Signal yield of ~8500 with 5fb⁻¹ of Run 1 + Run 2 data

LHCb Highlights & Prospects Introduction Highlights CKM angle γ weak phase ϕ_S b \rightarrow s $\ell \ell$ b \rightarrow c $\ell \nu$ Prospects Conclusions

- ▶ $\Lambda_b \rightarrow \phi p K^-$ and $B^0 \rightarrow \phi \phi$ components included in the fit
- ▶ No significant B⁰ component. Limit set: $\mathcal{B}(B^0 \rightarrow \phi \phi) < 2.4 \times 10^{-8}$ [90%CL]

C. Fitzpatrick

$\phi_s^{s\bar{s}s} \text{ in } B^0_s \rightarrow \phi\phi \text{ LHCb-CONF-2018-001 PRELIMINARY}$ $\phi_s^{s\bar{s}s} \text{ extracted from fit to time and angular distributions of background subtracted}$ $B^0_s \rightarrow \phi\phi:$

LHCb Highlights & Prospects

Introduction

Highlights

 $b \rightarrow s \ell \ell$

 $b \rightarrow c \ell \nu$

Prospects

Conclusions

CKM angle γ

weak phase ϕ_s

C. Fitzpatrick

June 8, 2018

φ_s^{sss} = -0.07 ± 0.13 (stat) ± 0.03 (syst) rad (preliminary)
 c.f.QCD factorisation limit: |φ_s^{sss}| < 0.02 rad

The anomalies

LHCb Highlights & Prospects

Introduction

Highlights

CKM angle γ

weak phase ϕ_{s}

 $b\to s\ell\ell$

 $b \rightarrow c \ell \nu$

Prospects

Prospects

Conclusions

Several interesting results recently

We've heard already from Tobias and Marco in this session. I'll recap LHCb results and discuss prospects

C. Fitzpatrick

$b\,{\rightarrow}\,s\ell\ell$: $R(K^*)$ JHEP 08 (2017) 055

► LFU test:
$$R(\mathsf{K}^*) = \frac{\mathcal{B}(\mathsf{B}^0 \to \mathsf{K}^* \mu^- \mu^+)}{\mathcal{B}(\mathsf{B}^0 \to \mathsf{K}^* e^- e^+)} = 1 \pm \mathcal{O}(10^{-3})$$

Measure double ratios to minimise uncertainties:

$$R(\mathsf{K}^*) = \frac{\mathcal{B}(\mathsf{B}^0 \to \mathsf{K}^* \mu^- \mu^+)}{\mathcal{B}(\mathsf{B}^0 \to \mathsf{K}^* \mathsf{J}/\psi(\to \mu^- \mu^+))} / \frac{\mathcal{B}(\mathsf{B}^0 \to \mathsf{K}^* \mathsf{e}^- \mathsf{e}^+)}{\mathcal{B}(\mathsf{B}^0 \to \mathsf{K}^* \mathsf{J}/\psi(\to \mathsf{e}^- \mathsf{e}^+))}$$

- Muons have excellent resolution and background rejection
- Measured in two q^2 regions: [0.045, 1.1] (low) and [1.1, 6] GeV²/ c^4 (central)

LHCb Highlights & Prospects

Introduction

Highlights

CKM angle γ

weak phase ϕ_{s}

 $b\to s\ell\ell$

 ${\rm b} \to {\rm c} \ell \, \nu$

Prospects

Conclusions

C. Fitzpatrick

$b \mathop{\rightarrow} s\ell\ell :\ {\it R}({\rm K}^*)$ JHEP 08 (2017) 055

▶ Simultaneous fit to $B^0 \rightarrow K^* J/\psi(\rightarrow \ell \ell)$ and nonresonant channels

▶ Radiative J/ ψ tail an important component of the central q^2 invariant mass fit

LHCb Highlights &

Prospects

Introduction

C. Fitzpatrick

$b \rightarrow s\ell\ell$: $R(K^*)$ JHEP 08 (2017) 055

Simultaneous fit finds:

$$R_{\mathcal{K}^{*0}} = \begin{cases} 0.66^{+0.11}_{-0.07} \, (\text{stat}) \pm 0.03 \, (\text{syst}) & \text{for } 0.045 < q^2 < 1.1 \, \text{GeV}^2/c^4 \,, \\ 0.69^{+0.11}_{-0.07} \, (\text{stat}) \pm 0.05 \, (\text{syst}) & \text{for } 1.1 & < q^2 < 6.0 \, \text{GeV}^2/c^4 \,. \end{cases}$$

• Results compatible at $\sim 2 - 2.5\sigma$ level to the SM

C. Fitzpatrick

$b\,{\rightarrow}\,s\ell\ell{:}$ $R(K^*)$ JHEP 08 (2017) 055

Comparing to predictions and past measurements:

Results are more sensitive than, and compatible with the B-factories

LHCb measured R(K) in 2014 and also found a 2.6σ compatibility PRL 113, 151601 (2014)

LHCb Highlights & Prospects

C. Fitzpatrick

LHCb Highlights & Prospects

Introduction

Highlights

CKM angle γ

weak phase $\phi_{\it S}$

 $b\to s\ell\ell$

 ${\rm b} \to {\rm c} \ell \, \nu$

Prospects

Conclusions

Ratios of semileptonic decays are similarly interesting:

$$\blacktriangleright R(\mathsf{D}^{*-}) = \mathcal{B}(\mathsf{B}^0 \to \mathsf{D}^{*-}\tau^+\nu_{\tau})/\mathcal{B}(\mathsf{B}^0 \to \mathsf{D}^{*-}\mu^+\nu_{\mu})$$

- LHCb has made several measurements:
 - Using $\tau^- \rightarrow \mu^- \nu_\tau \overline{\nu}_\mu$ PRL 115, 111803 (2015)
 - Using three-prong $\tau^- \rightarrow \pi^- \pi^+ \pi^-$ decays PRL 120, 171802 (2018)
 - ► $R(J/\psi)$ using $B_c^+ \rightarrow J/\psi \tau^+ \overline{\nu}_\mu$ PRL 120, 121801 (2018)

C. Fitzpatrick

Muonic R(D*-) PRL 115, 111803 (2015)

- Fit in bins of q² to missing mass² and muon energy, E^{*}_µ
- Signal (red) more visible in higher q² bins
- ► Significant background from DD with one $D \rightarrow \mu X$

 $\mathcal{R}(D^*) = 0.336 \pm 0.027(stat) \pm 0.030(syst)$ LHCb, 3fb⁻¹

- ▶ 2.1 σ above SM expectation
- Systematic uncert dominated by simulation sample size

FÉDÉRALE DE LAUSANN 16 / 22

Three-prong $R(D^{*-})$ PRL 120, 171802 (2018)

- ► Uses nonresonant $B^0 \to D^{*-}3\pi$ as normalisation channel: $R(D^{*-}) = \frac{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-}3\pi)} \times \frac{\mathcal{B}(B^0 \to D^{*-}3\pi)}{\mathcal{B}(B^0 \to D^{*-}\mu^+\nu_{\mu})}$
- \blacktriangleright Benefits from good τ^- vertex, and no background from μ^- mode
- ▶ Main source of background is $B \rightarrow D^{*-}3\pi X$. Suppressed by $B^{0}-\tau^{-}$ vertex separation in beam axis:

LHCb Highlights & Prospects

Introduction

Highlights

CKM angle γ

weak phase $\phi_{\it S}$

 $b\to s\ell\ell$

 ${\rm b} \to {\rm c} \ell \, \nu$

Prospects

Conclusions

C. Fitzpatrick

Three-prong $R(D^{*-})$ PRL 120, 171802 (2018)

1200

1000

800

600

400

300

200

- 3D fit to bins of BDT output, τ⁻ decay time and q²
- Templates determined from simulation and control channels
- Signal yield: 1300 ± 85

 $\begin{aligned} \mathcal{R}(D^*) = \\ 0.291 \pm 0.019(\textit{stat}) \pm 0.026(\textit{syst}) \pm 0.013(\textit{ext}) \\ \mathsf{LHCb}, \ 3 \mathrm{fb}^{-1} \end{aligned}$

- \blacktriangleright Compatible with SM expectation at 1σ
- Systematic uncertainty dominated by simulation sample size

LHCb Highlights & Prospects Introduction Highlights CKM angle γ weak phase ϕ_s $b \rightarrow s \ell \ell$ $b \rightarrow c \ell \nu$ Prospects Conclusions C. Fitzpatrick June 8, 2018

$\mathbf{b}\!\rightarrow\!\mathbf{c}\ell\nu\,\,\mathrm{summary}$

LHCb Highlights & Prospects

Introduction

Highlights

CKM angle γ

weak phase $\phi_{\it S}$

 $b\to s\ell\ell$

 $\mathbf{b} \to \mathbf{c} \ell \, \nu$

Prospects

Conclusions

There is a consistent tension between predictions and experimental results for R(D*-)

- LHCb results are compatible with the B factories, pattern seems to emerge
- Not shown in this talk: R(J/ψ) also shows some tension at the 2σ level in the muon channel.

C. Fitzpatrick

Prospects with current dataset

► $b \rightarrow s\ell\ell$:

- ► $R(K), R(K^*)$ updates using partial Run 2 dataset underway, expect $\sim 3 \times$ more $B^+ \rightarrow K^+e^-e^+$ candidates
- Potential to include additional high q^2 bins, but challenging to fit this region:
 - Pollution from below: rare decays with higher K,K* resonances
 - Pollution from above: $\psi(2S)$ K
- Several additional modes under study: $R(K\pi\pi), R(pK), R(\phi)$

For $b \rightarrow c\ell\nu$:

- Strong potential for improved sensitivity at LHCb using Run 2 dataset: 3 × the signal yields
- systematic uncertainties will decrease
- $R(J/\psi)$ three prong analysis is also underway.

LHCb Highlights & Prospects

Introduction

Highlights

CKM angle γ

weak phase $\phi_{\it S}$

 $b \rightarrow s \ell \ell$

 $b \rightarrow c \ell \nu$ Prospects

Conclusions

C. Fitzpatrick

Future prospects

Looking beyond Run 2:

- 2019-2021: LHCb will undergo a major upgrade
- From 2021: $5 \times$ the instantaneous luminosity and a completely new readout/trigger
- Aim to collect 50fb^{-1} in 2021-2029
- A second major upgrade for the HL-LHC era to collect 300fb⁻¹
- ▶ With 50fb⁻¹ LHCb will reach precisions of LHCb-PUB-2014-040:

•
$$\sigma(\gamma) = 1^{\circ}$$

- $\sigma(\phi_s^{c\bar{c}s}) = 0.009 \text{rad}, \sigma(\phi_s^{s\bar{s}s}) = 0.02 \text{rad}$
- \triangleright b \rightarrow s $\ell\ell$ analyses will need to control electron systematic uncertainties to benefit from upgrade
 - Uncertainty from background models (data driven) will scale

Prospects CKM angle γ weak phase ϕ_s

Conclusions

C. Fitzpatrick

- LHCb has made many interesting measurements in heavy flavour with the Run 1 dataset
- Run 2 analyses already starting to appear
- \blacktriangleright LHCb currently dominates world averages in several beauty ${\cal C\!P}$ measurements
 - Looking forward to stiff competition from Belle II
- Some intriguing discrepancies in ratios of B decays to leptons
 - Results with more data will help clarify the situation

LHCb Highlights & Prospects

Introduction

Highlights

CKM angle γ

weak phase $\phi_{\it S}$

 $b\to s\ell\ell$

 $b \rightarrow c \ell \nu$

Prospects

Conclusions

C. Fitzpatrick

