

Recent results from Belle

Tao Luo (Fudan University) On Behalf of the Belle Collaboration June 8 - 10, 2018 Seventh Workshop on Theory, Phenomenology and Experiments in Flavour Physics and the future of BSM physics, Capri Island, Italy

The KEKB accelerator The Belle detector Overview of recent Belle results Summary

- \rightarrow Boosted BB pairs
 - $(\rightarrow time dep. CPV)$

The KEKB accelerator

The Belle experiment

Belle Detector

Data set on Belle

- ✓ Υ (4S): 711 fb⁻¹, 772 × 10⁶ $B\overline{B}$ pairs.
- ✓ All energies: 980 fb⁻¹.

- Belle results from 2018 are included into this talk. There are following categories by physics subject:
 - ✓ CP violation.
 - ✓ Standard model tests.
 - ✓ Spectroscopy.
 - ✓ Transitions between quarkonium states.
 - ✓ Initial state radiation processes.
 - $\checkmark \tau$ physics.
 - γγ processes.
 - ✓ Branching fraction and cross section measurements.

CP violation

CP violation in $D^+ o \pi^+ \pi^0$

PRD 97, 011101

The *D* mass for $p_{D^*}^* > 2.95 \text{ GeV}/c \text{ (top)},$ $2.50 < p_{D^*}^* < 2.95 \text{ GeV}/c$ (bottom), *D*⁺ (left), *D*⁻ (right) The raw asymmetry

$$A_{\rm raw}^{K\pi} = A_{CP}^{K\pi} + A_{FB} + A_{\varepsilon}^{\pi^{\pm}},$$

where $A_{CP}^{K\pi}$ is the *CP* asymmetry of $D^+ \to K_S^0 \pi^+$

> The difference in the raw asymmetries

$$\Delta A_{\text{raw}} \equiv A_{\text{raw}}^{\pi\pi} - A_{\text{raw}}^{K\pi} = A_{CP}^{\pi\pi} - A_{CP}^{K\pi},$$
$$A_{CP}^{\pi\pi} = A_{CP}^{K\pi} + \Delta A_{\text{raw}}.$$

Measured results:

$$\Delta A_{\rm raw} = (+2.67 \pm 1.24 \pm 0.20)\%,$$

 $A_{CP}(D^+ \to \pi^+ \pi^0) = (+2.31 \pm 1.24 \pm 0.23)\%.$

Consistent with SM, null asymmetry! 8

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left\{ 1 + q \left[S \sin(\Delta m_d \Delta t) + \mathcal{A} \cos(\Delta m_d \Delta t) \right] \right\}, \quad (1)$$

00000

S - mixing-induced, B - direct CP violation parameters, q - flavor charge. Fit to $\mathcal{P}(t)$ modified to incorporate incorrect flavor assignment. Results: $S = -1.32 \pm 0.77 \pm 0.36$, $A = -0.48 \pm 0.41 \pm 0.07$. The central point is out of the physical region $S^2 + A^2 \leq 1$.

Theoretical prediction (SM):

Joint analysis combining Belle and BaBar data $(772 \times 10^6 + 471 \times 10^6 B\overline{B})$

Decay modes

 $\checkmark \quad B^{0} \to D^{0}\pi^{0}, \quad D^{0}\eta, \quad D^{0}\omega, \quad D^{*0}\pi^{0}, \quad D^{*0}\eta.$ $\checkmark \quad D^{*0} \to D^{0}\pi^{0}, \quad D^{0} \to K_{s}^{0}\pi^{+}\pi^{-}$

Analysis strategy

- ✓ The amplitude of $D^0 \to K_s^0 \pi^+ \pi^-$ is determined by a Dalitz analysis for continuum D mesons
- ✓ A time-dependent Dalitz analysis is performed on B⁰ → D^(*)h⁰ (D decay amplitude is fixed, only sin2β and cos2β are free).

Results:

- \checkmark sin2 β = 0.80±0.14±0.06±0.03,
- \checkmark cos2 β = 0.91 \pm 0.22 \pm 0.09 \pm 0.07.
- ✓ 4th uncertainties: $D^0 \to K_s^0 \pi^+ \pi^-$ amplitude mode
- ✓ $\beta = (22.5 \pm 4.4 \pm 1.2 \pm 0.6)^\circ$, the second minimum $(\beta' = \frac{\pi}{2} - \beta)$ is excluded by 7.3 σ level

Standard model tests

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}_\ell) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

 $f_B = 0.186 \pm 0.004$ (from lattice) is the *B* decay constant.

The SM prediction:

$$\begin{split} \mathcal{B}(B^- \to \mu^- \bar{\nu}_{\mu}) &= (3.80 \pm 0.31) \times 10^{-7}.\\ \text{Initial selection uses accompanying } B\\ \text{meson candidate } (M_{\text{bc}} > 5.1 \text{ GeV}/c^2,\\ -3 < \Delta E < 2 \text{ GeV}). \end{split}$$

Number of signal events is determined by fitting the distribution of neural network output and muon momentum. Result: $\mathcal{B}(B^- \to \mu^- \bar{\nu}_{\mu}) = (6.46 \pm 2.22 \pm 1.60) \times 10^{-7}$ Significance: 2.4 σ .

 τ polarization in $B^- \rightarrow D^* \tau^- \overline{\nu}_{\tau}$

Measured parameters:

•
$$R(D^*) = \frac{\mathcal{B}(\bar{B} \to D^* \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^* \ell^- \bar{\nu}_{\ell})}$$
.
For Belle and Babar, $\ell = e + \mu$; for LHCb, $\ell = \tau$.

• $P_{\tau}(D^*) = \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-}$, where Γ^+ , Γ^- - decay width with $\lambda_{\tau} = +1/2$ and -1/2.

Results: $R(D^*) = 0.270 \pm 0.035^{+0.028}_{-0.025}$, $P_{\tau}(D^*) = -0.38 \pm 0.51^{+0.21}_{-0.16}$.

Average of 3 Belle measurements: $R(D^*) = 0.292 \pm 0.020 \pm 0.012$. It is 1.7σ larger than SM prediction (0.252 ± 0.003). New world average is 3.5σ larger.

Spectroscopy

Excited Ω_c baryons

- LHCb observed 5 new narrow Ω_c states in PRL **118**, 182001 (2017).
- Belle searched for continuum production of these states in the same Ξ⁺_cK⁻ decay mode.
- 4 of 5 states are observed, 2 of them with significance of > 5σ.
- Ω_c(3188) is a possible wide state at higher mass (same LHCb analysis).

PRD 97,051102(R)

Confirmed states:

State	$\Omega_c(3000)$	$\Omega_c(3050)$	$\Omega_c(3066)$	$\Omega_c(3090)$
Yield	37.7 ± 11.0	28.2 ± 7.7	81.7 ± 13.9	86.6 ± 17.4
Significance	3.9σ	4.6σ	7.2σ	5.7σ
LHCb Mass	$3000.4 \pm 0.2 \pm 0.1$	$3050.2 \pm 0.1 \pm 0.1$	$3065.5 \pm 0.1 \pm 0.3$	$3090.2 \pm 0.3 \pm 0.5$
Belle Mass	$3000.7 \pm 1.0 \pm 0.2$	$3050.2 \pm 0.4 \pm 0.2$	$3064.9 \pm 0.6 \pm 0.2$	3089.3 \pm 1.2 \pm 0.2 $_{1}$

Observation of $\Xi_c(2930)^0$ in $B^- \to \Lambda_c^+ \overline{\Lambda}_c^- K^-$

BELI

- The $\Xi_c(2930)^0$ has previously been reported by BaBar in PRD 77, 031101 (2008) in the same pr
 - but the significance has not been specified \implies its status is unclear.
- Unbinned simultaneous extended maximum likelihood fit to the signal and Λ_c sidebands. The fit is 1-dimensional $(\Lambda_c^+ K^-)$.

EPJC 78, 252 The $\Xi_c(2930)^0$ is observed with 5.1 σ global significance. Parameters: $M = 2928.9 \pm 3.0^{+0.9}_{-12.0} \text{ MeV}/c^2$, $\Gamma = (19.5 \pm 8.4^{+5.9}_{-7.0}) \text{ MeV}.$ $\mathcal{B}(B^- \to \Lambda_c^+ \bar{\Lambda}_c^- K^-) = (4.80 \pm 0.43 \pm 0.60) \times 10^{-4}$ $\mathcal{B}(B^- \to \Xi_c(2930)^0 \bar{\Lambda}_c^-) \times \mathcal{B}(\Xi_c(2930)^0 \to \Lambda_c^+ K^-) = (1.73 \pm 0.45 \pm 0.21) \times 10^{-4}$ $\mathcal{B}(B^- \to Y(4660)K^-) \times \mathcal{B}(Y(4660) \to \Lambda_c^+ \bar{\Lambda}_c^-) < 1.2 \times 10^{-4} (90\% \text{ C.L.})$

Observation of an excited Ω^- baryon

arXiv:1805.09384

- New resonance is observed
- It is found primarily in the decay of the narrow resonances Υ(1S), Υ(2S), and Υ(3S)
- No isospin asymmetry is observed

Data	Mode	Mass (MeV/c^2)	Yield	$\Gamma({ m MeV})$	$\chi^2/d.o.f.$	n_{σ}
$\Upsilon(1S, 2S, 3S)$	$\Xi^0 K^-, \Xi^- K^0_S$	2012.4 ± 0.7	$242 \pm 48, 279 \pm 71$	$6.4^{+2.5}_{-2.0}$	227/230	8.3
	(simultaneous)					
$\Upsilon(1S, 2S, 3S)$	$\Xi^0 K^-$	2012.6 ± 0.8	239 ± 53	6.1 ± 2.6	115/114	6.9
$\Upsilon(1S, 2S, 3S)$	$\Xi^- K_S^0$	2012.0 ± 1.1	286 ± 87	6.8 ± 3.3	101/114	4.4
Other	$\Xi^0 K^-$	2012.4 (Fixed)	209 ± 63	6.4 (Fixed)	102/116	3.4
Other	$\Xi^- K_S^0$	2012.4 (Fixed)	153 ± 89	6.4 (Fixed)	133/116	1.7

arXiv:1805.02308

- No clear signals are observed in the studied modes
- The 90% C.L. upper limits on the branching fractions are determined \succ
- The reported upper limits are not in contradiction with the naive expectation.

 $\mathcal{B}(\Upsilon(1S,2S) \to Z_c^+ Z_c^{(\prime)-}) \times \mathcal{B}(Z_c^+ \to \pi^+ + c\bar{c}) \ (c\bar{c} = J/\psi, \ \chi_{c1}(1P), \ \psi(2S))) \qquad \sigma(e^+e^- \to Z_c^+ Z_c^{(\prime)-}) \times \mathcal{B}(Z_c^+ \to \pi^+ + c\bar{c}) \ (c\bar{c} = J/\psi, \ \chi_{c1}(1P), \ \psi(2S)))$

Transitions between quarkonium states

Reconstruction: $\eta' \to \rho^0 \gamma$, $\pi^+ \pi^- \eta (\to \gamma \gamma)$; $\Upsilon(1S) \to \mu^+ \mu^-$. η : full reconstruction (left figure) or 1 photon only (right figure). Background PDF: linear (full reconstruction), Gaussian (partial reconstruction).

Significance (combined by simultaneous fit): 5.7 σ (with systematic uncertainty).

Branching: $\mathcal{B}(\Upsilon(4S) \to \eta' \Upsilon(1S)) = (3.43 \pm 0.88 \pm 0.21) \times 10^{-5}$.

Initial state radiation processes

Partial reconstruction: D^0 from D^{*+} is not reconstructed. Distributions of the D^* helicity angles measured (for each mass bin):

- $D^{*+}D^{*-}$: no parameters.
- D*+D*-: distribution depends on 3 cross sections σ_{LL}, σ_{TL}, σ_{TT} (L: longitudinal, λ = 0; T: transverse, λ = ±1). Example result:

22

τ physics

Michel parameters of $\overline{\eta}$ and ξ_{κ}

$$\begin{split} \bar{\eta} &= \left| g_{RL}^{V} \right|^{2} + \left| g_{LR}^{V} \right|^{2} + \frac{1}{8} \left(\left| g_{RL}^{S} + 2g_{RL}^{T} \right|^{2} + \left| g_{LR}^{S} + 2g_{LR}^{T} \right|^{2} \right) + 2 \left(\left| g_{RL}^{T} \right|^{2} + \left| g_{LR}^{T} \right|^{2} \right), \\ \xi \kappa &= \left| g_{RL}^{V} \right|^{2} - \left| g_{LR}^{V} \right|^{2} + \frac{1}{8} \left(\left| g_{RL}^{S} + 2g_{RL}^{T} \right|^{2} - \left| g_{LR}^{S} + 2g_{LR}^{T} \right|^{2} \right) + 2 \left(\left| g_{RL}^{T} \right|^{2} - \left| g_{LR}^{T} \right|^{2} \right). \end{split}$$

In SM: $g_{LL}^V = 1$, other couplings $= 0 \implies \bar{\eta} = \xi \kappa = 0$.

The parameters $\bar{\eta}$ and $\xi \kappa$ are extracted by simultaneous fit to differential cross sections of $\tau^- \rightarrow \ell^- \nu_\tau \bar{\nu}_\ell \gamma$. Results: $\bar{\eta} = -1.3 \pm 1.5 \pm 0.8$, $\xi \kappa = 0.5 \pm 0.4 \pm 0.2$. Branching fractions with $E_\gamma > 10$ MeV: $\mathcal{B}(\tau^- \rightarrow e^- \nu_\tau \bar{\nu}_e \gamma) = (1.79 \pm 0.02 \pm 0.10) \times 10^{-2}$, $\mathcal{B}(\tau^- \rightarrow \mu^- \nu_\tau \bar{\nu}_\mu \gamma) = (3.63 \pm 0.02 \pm 0.15) \times 10^{-3}$. Ratio: $4.95 \pm 0.06 \pm 0.20$ (prediction: 4.605).

PTEP 2018, 023C01

γγ processes

Process: $e^+e^- \rightarrow e^+e^-K_S^0K_S^0$, one of the final-state e^{\pm} is detected, the other one is not. The cross sections depend on $Q^2 = -m_{\gamma^*}^2$.

Total cross sections in bins of Q^2 (bin center is specified on the histograms).

Differential cross sections for χ_{c0} and χ_{c2} .

Also, transition form factor of the $f'_2(1525)$ is measured for all helicity components (0, 1, 2).

 $\gamma \gamma \rightarrow \eta_c$ (1S, 2S) $\rightarrow \eta' \pi^+ \pi^-$

27

Reconstruction: no e^{\pm} tagging, selection by low p_t .

arXiv:1805.03044

Observed:

- $\eta_c(2S) \to \eta' \pi^+ \pi^- (5.5\sigma).$
- $\eta_c(1D) \to \eta' f_0(2080) \ (20\sigma).$

Measured:

- $f_0(2080)$: $J^{PC} = 0^{++}$ (exclusion of 2^{++} : 11σ).
- Parameters of η_c, η_c(2S), f₀(2080).

Branching fraction and cross section measurements

Branching fractions:

- ✓ $B^+ \to X_{c\bar{c}}K^+$, and $B^+ \to \overline{D}^{(*)0}\pi^+$: PRD 97, 012005 (2018)
- ✓ Ω_c^0 hadronic decays: PRD 97, 032001 (2018)
- $\checkmark \Lambda_c^+ \to \Sigma^+ \pi^+ \pi^-, \Lambda_c^+ \to \Sigma^+ \pi^0 \pi^0, \Lambda_c^+ \to \Sigma^0 \pi^+ \pi^0:$ arXiv:1802.03421
- ✓ $B \rightarrow D^{(*)}\pi l\nu$: arXiv: 1803.06444

Cross sections:

✓ e^+e^- → hyperons, charmed baryons: PRD 97, 072005 (2018)

 $\checkmark e^+e^- \rightarrow \eta \Upsilon_J, \eta h_b$: arXiv: 1803.03225

Thank you for your attention